
Comptes Rendus

Mathématique

Shi-Ying Wang, Peng Chen and Lin Li

Ground state solution for a non-autonomous 1-Laplacian problem
involving periodic potential in RN

Volume 360 (2022), p. 297-304

Published online: 26 April 2022

https://doi.org/10.5802/crmath.276

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.276
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2022, 360, p. 297-304
https://doi.org/10.5802/crmath.276

Partial differential equations / Équations aux dérivées partielles

Ground state solution for a non-autonomous

1-Laplacian problem involving periodic

potential in RN

Shi-YingWanga, Peng Chena and Lin Li∗, b

a School of Science, China Three Gorges University, Hubei 443002, China
b School of Mathematics and Statistics & Chongqing Key Laboratory of Economic and
Social Application Statistics, Chongqing Technology and Business University,
Chongqing 400067, China

E-mails: 1454877945@qq.com (S. Wang), pengchen729@sina.com (P. Chen),
linli@ctbu.edu.cn (L. Li), lilin420@gmail.com (L. Li)

Abstract. In this paper, we consider the following 1-Laplacian problem

−∆1u +V (x)
u

|u| = f (x,u), x ∈RN , u > 0, u ∈ BV
(
RN

)
,

where ∆1u = div( Du
|Du| ), V is a periodic potential and f is periodic and verifies the super-primary condition

at infinity. By the Nehari type manifold method, the concentration compactness principle and some analysis
techniques, we show the 1-Laplacian equation has a ground state solution.
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1. Introduction and main result

In this paper, we consider the following 1-Laplace with potentials:
−∆1u +V (x) u

|u| = f (x,u), x ∈RN ,

u > 0

u ∈ BV
(
RN

)
,

(1)

where ∆1u = div( Du
|Du| ). Assume that V and f satisfies the following conditions:
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(V1) V (x) ∈C (RN ,R), infRN V (x) ≥V0 > 0, V (x) is 1-periodic in each of x1, x2, . . . , xN .

(f1) f ∈C 1 is 1-periodic in each of x1, x2, . . . , xN , and there exists p ∈ (1,1∗)(1∗ = N
N−1 if N ≥ 2

and 1∗ =+∞ if N = 1) such that

lim
|s|→∞

∣∣ f (x, s)
∣∣

|s|p−1 = 0, uniformly in x ∈RN .

(f2) lim|s|→0 f (x, s) = 0uniformly in x ∈RN .
(f3) lim|s|→∞ F (x,s)

s =∞, a. e. in x ∈RN .
(f4) f (x, s) is strictly increasing in s ∈R\ {0} for every x ∈RN .

The 1-Laplace problem like (1) derived from image denoising and restoration is of crucial
importance for many mathematical and physical fields introduced in [5]-[12]. Recently, more
and more attention has been paid to p-Laplace operator ∆p u = div(|∇u|p−2∇u), p ∈ [1,+∞). For
more details about the applications, see [2]-[7] and the references therein. However, there are
few results about the 1-Laplacian problem, partially because of the compactness of sequences as
p → 1 occurs in weak norms, and partially because the associated energy functional is no longer
smooth and strictly convex.

For the equation like (1), there are some results. For the case of V (x) = 1 and f (x, s) = s,
in [8], the versions of the Radial Lemma of Strauss and the Lions Lemma in BV (RN ) are proved
and applied to obtain existence of solutions for 1-Laplacian problem. Furthermore, the authors
in [1, 11] obtained the existence of nontrivial bounded variation solution in BV (RN ) under the
differential Berestycki–Lions’ type conditions. For the case of V (x) = 1 and f (x, s) = Q(x)g (s),
Zhou and Shen in [13] obtained the existence of nontrivial radial bounded variation solution
under the suitable Q and f where f satisfies the (AR) type condition. For the case of V (x) 6=
constant and f (x, s) = K (x)g (s), in [6], the existence of ground state bounded variation solution
is obtained when V is vanishing potential and suitable conditions under of K , g . Moreover, Alves,
Figueiredo and Pimenta in [2] got the similar results when V is steep potential and autonomous
f (x, s) = f (s).

From the above discussion, we find that if V is the periodic potential function and f is
periodic and verifies the super-primary condition at infinity, there are no results for 1-Laplacian
problem (1). In this paper, inspired by [9], we shall study this case. In order to overcome diffi-
culties derived from nonsmoothness of convex functional and compactness of the embeddings
BV (RN ) ,→ Lp (RN )(p ∈ (1,1∗)) of problem (1), we use the subdifferential and concentration com-
pactness principle to obtain our result. Here is the main result of this paper.

Theorem 1. Suppose that (V1) and ( f1) -( f4) hold. Then there exists a nontrivial bounded variation
ground state solution u ∈ X (function space X please see the next Section 2) of (1) such that
Φ(u) = c > 0, c is defined by

c = inf
N
Φ(u),

where

N := {
u ∈ X : u 6= 0,γ(u) = 0

}
,

Φ and γ are the same as in the following (2) and (4).

Remark 2. Let

F (x, s) = sin(2πx1) s ln(1+|s|).

Then

f (x, s) = sin(2πx1)

(
ln(1+|s|)+ |s|

1+|s|
)

.
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It is easy to see that f satisfies (f1)-(f4).

In this paper, denote L∞ norm by |·|∞. Br (x) represents a ball with the center at x and radius R.
Using C and C (ε) to denote by various positive constants and functions with ε, which may vary
from line to line.

2. Preliminaries

We shall work with the space of functions of bounded variation denoted by

BV
(
RN )

:=
{

u ∈ L1 (
RN )

; Du ∈M
(
RN ,RN )}

,

where Du represents the distributional derivative of u and M denotes the set of vectorial Radon
measures. In [8], BVr ad (RN ) = {u ∈ BV (RN );u(x) = u(|x|)} compactly embedded into Lq (RN ) is
proved for 1 < q < 1∗. It can be proved that u ∈ BV (RN ) if and only if u ∈ L1(RN ) and∫

RN
|Du| = sup

{∫
RN

u divφd x ; φ ∈C 1
c

(
RN ,RN )

, s.t.|φ|∞ ≤ 1

}
<+∞.

BV (RN ) is a Banach space with the norm

‖u‖ :=
∫
RN

|Du|+
∫
RN

|u|d x.

Denote the subspace of BV (RN ) by X where

X :=
{

u ∈ BV
(
RN )

:
∫
RN

V (x)|u|d x <∞
}

endowed with the following norm

‖u‖X :=
∫
RN

|Du|+
∫
RN

V (x)|u|d x.

Note that the embedding X ,→ BV (RN ) is continuous in such a way that X is a Banach space
that is continuously embedded into Lr (RN ) for r ∈ [1,1∗]. As one can see in [4], C∞

0 (RN ) is not
dense in X with respect to the strong convergence, but is dense with respect to the intermediate
convergence, where {un} ⊂ X converges to u ∈ X in the sense of intermediate convergence if
un → u in L1(RN ) and ∫

RN

∣∣Dun
∣∣→ ∫

RN
|Du|

as n →∞.
For a vectorial Radon measure µ ∈M (RN ,RN ), we denote by the usual decomposition by µ=

µa +µs according to the Radon Nikodyn Theorem, where µa and µs are the absolute continuous
and the singular parts with respect to the N−dimensional Lebesgue measure L N , respectively.
With |µ| being the scalar Radon measure, the usual Lebesgue derivative of µ with respect to |µ| is
defined by

µ

|µ| (x) = lim
r →0

µ (Br (x))

|µ| (Br (x))
.

We can define the energy functional corresponding to (1) in X as

Φ(u) =
∫
RN

|Du|+
∫
RN

V (x)|u|d x −
∫
RN

F (x,u)d x. (2)

For convenience, we let

Φ(u) =JV (u)−H (u),

where

JV (u) =
∫
RN

|Du|+
∫
RN

V (x)|u|d x, H (u) =
∫
RN

F (x,u)d x.

C. R. Mathématique — 2022, 360, 297-304
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Clearly, JV (u) is convex and Lipschitz continuous in X . Furthermore, JV is lower semicontinu-
ous with respect to the Lr (RN ) topology for r ∈ [1,1∗]. Although nonsmooth, the functional JV

admits some directional derivatives. From [3], we know that, given u ∈ X , for all v ∈ X such that
(Dv)s is absolutely continuous with respect to (Dv)s and v ≡ 0 a.e. in the set where u vanishes,

J ′
V (u)v =

∫
RN

(Du)a(Dv)a

|(Du)a | d x +
∫
RN

Du

|Du| (x)
Dv

|Dv | (x)
∣∣(Dv)s ∣∣+∫

RN
V (x)sgn(u)vd x. (3)

where sgn(u(x)) = 0 if u(x) = 0 and sgn(u(x)) = u(x)
|u(x)| if u(x) 6= 0. In particular, note that J ′

V (u)u =
JV (u) for all u ∈ X . Especially, from (f1)-(f3), it can be proved that H ∈ C 1(X ,R)). Taking v = u
in (3), it follows that

γ(u) :=Φ′(u)u =J ′
V (u)u −H ′(u)u = ‖u‖X −

∫
RN

f (x,u)ud x. (4)

Since Φ can be written as the difference between the Lipschitz functional JV and a smooth
functional H , we say that u ∈ X is a bounded variation solution of (1) if 0 ∈ ∂Φ(u), where ∂Φ(u)
denote the generalized gradient (subdifferential) of Φ in u. This is equivalent to H ′(u) ∈ ∂J ′

V u).
By the convexity of JV , we have

‖w‖X −‖u‖X ≥
∫
RN

f (x,u)(w −u)d x, ∀ w ∈ X . (5)

Hence, all u ∈ X such that (5) holds is called a bounded variation solution of (1).
Note that (1) is not well-defined wherever x ∈RN \ {0} such that ∇u(x) = 0 or u(x) = 0. So (1) is

only a formal version of the precise Euler–Lagrange equation associated to Φ. Arguing similarly
to that in [8], we can prove that, if u ∈ X is a bounded variation critical point ofΦ, then it satisfies
the following version of (1):

∃ z ∈ L∞ (
RN ,RN

)
, |z|∞ ≤ 1,divz ∈ L∞, N

(
RN

)
, s.t. −∫

RN u divzd x = ∫
RN |Du|

∃ z∗ ∈ L∞,N
(
RN

)
, s.t. z∗|u| =V (x)u a.e. inRN

−divz+ z∗ = f (x,u), a.e. inRN ,

where

L∞, N
(
RN )= {

f :RN →Rmeasurable,
∣∣ f

∣∣∞, N <∞
}

and ∣∣ f
∣∣∞, N = sup

|φ|+|φ|1∗ ≤1

∣∣∣∣∫
RN

f φd x

∣∣∣∣ .

3. Proof of Theorem 1

In order to prove Theorem 1, we need the following lemmas.

Lemma 3. For each u ∈ X \ {0}, there exists a unique tu = t (u) > 0, such that tuu ∈ N and
maxt >0Φ(tu) =Φ(tuu).

Proof. The proof can be seen in [7]. We omit its proof. �

Lemma 4. Let {un} be a minimizing sequence for c. Then

(i) There is β> 0 such that liminfn→∞ ‖un‖X ≥β.
(ii) {un} is bounded in X .

(iii) For a subsequence, up to translations, un * u 6= 0.

C. R. Mathématique — 2022, 360, 297-304



Shi-Ying Wang, Peng Chen and Lin Li 301

Proof.
(i) By (f1) and (f2), for each ε ∈ (0,1), there exists C (ε) > 0 such that∣∣ f (x, s)

∣∣≤ ε+C (ε)|s|p−1 (
p ∈ (

1,1∗
))

. (6)

Together with γ(un) = 0 and the continuity of embedding BV (RN ) ,→ Lp (RN ), we get

‖un‖X =
∫
RN

f (x,un)und x ≤ ε
∫
RN

|un |d x +Cε

∫
RN

|un |p d x ≤ ε‖un‖X +Cε ‖un‖p
X . (7)

Then, it yields that there exists β> 0 such that liminfn→∞ ‖un‖X ≥β.
(ii) Let {un} be a minimizing sequence for c. If {un} is not bounded, we define vn = un/‖un‖X ,
so ‖vn‖X = 1. Passing to a subsequence, we may assume that vn * v in X , vn → v in Lp

loc (RN )
(p ∈ (1,1∗)), vn → v a. e. on RN .

If v 6= 0, by ∫
RN

∣∣Dun
∣∣+∫

RN
V (x) |un |d x −

∫
RN

F (x,un)d x = c +o(1),

we have

1−
∫
RN

F (x,un)

‖un‖X
d x = c +o(1)

‖un‖X
> 0

because c > 0, its yields that

1−
∫
RN

F (x,un)

un
vnd x = c +o(1)

‖un‖X
> 0.

Together with Fatou’s lemma and the second limit of ( f2), we get a contraction as follows,

1 ≥ liminf
n→∞

∫
RN

F (x,un)

un
vnd x ≥

∫
RN

liminf
n→∞

F (x,un)

un
vnd x =∞.

If v = 0, we take yn = (y1
n , y2

n , . . . , y N
n ) ∈ NN with all y i

n(1 ≤ i ≤ N ) being integers. Define
translations of vn by wn(x) = vn(x + yn). Since V (x) and f (x,u) are 1-periodic in each of
x1, x2, . . . , xN , we have ‖wn‖X = ‖vn‖X = 1, |wn |p = |vn |p and Φ(wn) = Φ(vn). Passing to a
subsequence, we have wn *w in X , wn → w in Lp

loc (RN ) (p ∈ (1,1∗)), wn → w a. e. on RN .

(a) If there exists yn such that wn * w 6= 0 in X , then vn * v 6= 0 in X , this contradicts to
v = 0.

(b) If for any yn , wn → 0 in X . It yields that vn → 0 in Lp
loc (RN ). We have the following claim

lim
n→∞ sup

y ∈RN

∫
B2(y)

|vn |p d x = 0, for all p ∈ (1,1∗).

If this claim is not true, there exists p ∈ (1,1∗) and δ> 0 such that

lim
n→∞ sup

y ∈RN

∫
B2(y)

|vn |p d x ≥ δ> 0.

Then there exists zn ∈RN such that

lim
n→∞

∫
B2(zn )

|vn |p d x ≥ δ

2
> 0.

Choosing yn ∈NN and yn ∈ B2(zn) such that B1(yn) ⊂ B2(zn) and

lim
n→∞

∫
B1(yn)

|vn |p d x ≥ δ

2
> 0,

this reduces that

lim
n→∞

∫
B1(0)

|wn |p d x ≥ δ

2
> 0.

It yields wn → w 6= 0 in X . This is a contradiction because of the assumption of (b).

C. R. Mathématique — 2022, 360, 297-304
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By Lions’ Lemma in BV (RN )( [8, Theorem 1.3]), we get vn → 0 in Lp (RN ). Fix p ∈ (1,1∗),
by (6), we have |F (x, s)| ≤ ε|s|+C (ε)|s|p . Then, by fixing an R > c and using Lebesgue Dominated
Convergence theorem, we have

lim
n→∞

∫
RN

F (x,Rvn)d x =
∫
RN

lim
n→∞F (x,Rvn)d x = 0. (8)

Since by Lemma 3, Φ(tun) ≤Φ(un) for t > 0, we thus have

c +o(1) =Φ (un) ≥Φ
(

R

‖un‖X
un

)
=Φ(

Rvn
)= R −

∫
RN

F
(
x,Rvn

)
d x.

Together with (8), passing to limit, we have R ≤ c, which is a contradiction. Thus {un} is bounded.
(iii) Assume un * u. To show u 6= 0, again we define translations of {un} as above, assume

yn = (y1
n , y2

n , . . . , y N
n ) ∈ NN with all y i

n(1 ≤ i ≤ N ) being integers. yn = (y1
n , y2

n , . . . , y N
n ) ∈ NN with

all y i
n(1 ≤ i ≤ N ) being integers.uyn

n (x) = un(x + yn) are all possible translation of un . If for some
yn ∈NN , uyn

n * u 6= 0 we are done. If for any yn ∈NN , uyn
n * 0, by similar argument as above we

can prove un → 0 in Lp (RN ) (p ∈ (1,1∗)). Then we have limn→∞
∫
RN un f (x,un)d x = 0. Therefore,

we get 0 < β ≤ ‖un‖X = ∫
RN un f (x,un)d x → 0asn → ∞. Thus this yields that ‖un‖X = 0, which

contradicts to (i). Therefore (iii) holds. �

Lemma 5. Let {un} ∈ X \ {0} be a sequence such that γ(un) → 0 and
∫
RN un f (x,un)d x → 0 as

n →∞. Then exist tn > 0 such that tnun ∈N , tn → 1, as n →∞.

Proof. Since un 6= 0, by Lemma 3, there exists unique tn > 0 such that tnu ∈N . Together with (4),
we have

tn ‖un‖X −
∫
RN

f
(
x, tnun

)
tnund x = 0. (9)

By (6), we have | f (x, s)s| ≤ ε|s|+C (ε)|s|p for any ε> 0, together with the above equality, (V1) and
the continuity of embedding, we have

tn ‖un‖X ≤ εtn ‖un‖X +C (ε)t p
n ‖un‖p

X .

It yields that tn → 0 by Lemma 4(ii). Thus there exists T > 0 such that tn ≥ T > 0. By (f4), we have

F (x, s) =
∫ s

0
f (x, t )d t ≤

∫ s

0
f (x, s)d t = f (x, s)s,

that is f (x, s)s ≥ F (x, s). Together with (9), (f3) and Lemma 4(ii), if tn →∞, we have

a +o(1) =
∫
RN

un f (x,un)d x = ‖un‖X =
∫
RN

f
(
x, tnun

)
tnun

tn
d x ≥

∫
RN

F
(
x, tnun

)
tnun

und x →∞.

This is a contradiction. Thus 0 < T ≤ tn < C for some C > 0. Assume that tn → t0. By tnun ∈ N ,
the condition of γ(un) → 0 and tn → t0 as n →∞, we have

t0 ‖un‖X −
∫
RN

f
(
x, t0un

)
t0und x = o(1)

and

‖un‖X −
∫
RN

f
(
x,un

)
und x = o(1).

Two equalities are subtracted, we obtain

o(1) =
∫
RN

(
f
(
x, t0un

)
un −

∫
RN

f
(
x,un

)
und x

)
d x =

∫
RN

(
f
(
x, t0un

)− f
(
x,un

))
und x. (10)

From Lemma 4, we know that there exists a subsequence, still denoted by un , such that un → u
in Lp

loc (RN ) for p ∈ (1,1∗). According to Lemma 4(iii), we may assume u 6= 0. By Fatou’s lemma,
passing the limit to (10), we obtain that∫

RN

(
f
(
x, t0u

)− f (x,u)
)

ud x = 0.

C. R. Mathématique — 2022, 360, 297-304
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Together with (f4), we deduce t0 = 1. �

In order to prove H (un) →H (u) as n →∞, consider equation (1) on BR (0)
−∆1u +V (x) u

|u| = f (x,u), x ∈ BR (0),

u = 0, x ∈ ∂BR (0),

u ∈ BV
(
RN

)
,

(11)

We can similarly define NR , CR . By the similar method of [7] about 1-Laplacian problem with
V (x) = 0 and f (x, s) = f (s) satisfying (f1)-(f4) in the bounded domain, there exists uR ∈ NR such
that uR is a positive solution of (11). It is easy to check that cR > c and cR → c as R → ∞. This
implies that uR minimizes c as R →∞. Let Rn →∞, un := uRn . Then the following lemma holds.

Lemma 6. For p ∈ (1,1∗), we have:

(i)
∫
RN |un |p d x → A > 0.

(ii) There exist {xn} ⊂RN such that for ∀ ε> 0, ∃ R. liminf
∫

BR (xn ) |un |p ≥ A−ε.

Proof.
(i) Since γ(un) = 0, (7) and Lemma 4, there exists A > 0 such that

∫
RN |un |p d x → A as n →∞.

(ii) We shall apply the concentration compactness principle [10] to
∫
RN |un |p d x to prove (ii). By

(i ), vanishing doesn’t occur for
∫
RN |un |p d x. Then there exist α ∈ (0,1], {xn} ⊂ RN such that for

∀ ε> 0, ∃ R > 0, ∀ r > R, r ′ > R, we have

liminf
∫

Br (xn )
|un |p ≥αA−ε and liminf

∫
BC

r ′ (xn )
|un |p ≥ (1−α)A−ε. (12)

Next, we shall prove that α ∈ (0,1)(dichotomy) cannot occur, but α= 1(compactness) holds.
Assume that α ∈ (0,1). Choosing εn → 0, rn →∞ and r ′

n = 4rn . Take φ(x) = ξ(|x − xn |/rn)un ,
where the cut-off function ξ ∈C∞

0 (RN ) such that

ξ(x) =
{

0, |x| ≤ 1 or |x| ≥ 4,

1, 2 ≤ |x| ≤ 3,

and |ξ′(x)| ≤ 2. By (3), consider the following equation

0 =J ′
V (un)φ−H ′ (un)φ

=
∫
RN

(
Dun

)a (
Dφ

)a∣∣(Dun
)a∣∣ d x +

∫
RN

Dun∣∣Dun
∣∣ (x)

Dφ∣∣Dφ∣∣ (x)
∣∣(Dφ

)s ∣∣
+

∫
RN

V (x)sgn(un)φd x −
∫
RN

f (x,un)φd x.

Since un is a solution of (11), one has∫
BRn

(∣∣Dun
∣∣+V (x)

)
ξd x −

∫
BRn

f (x,un)ξd x = o(1).

Together with the definition of ξ, we have∫
B3rn (xn )\B2rn (xn )

(∣∣Dun
∣∣+V (x)un

)
d x −

∫
B3rn (xn )\B2rn (xn )

f (x,un)und x = o(1).

Take another cut-off function η ∈C∞
0 (RN ) such that

η(x) =
{

0, |x| ≥ 3,

1, |x| ≤ 2,

and |η′(x)| ≤ 2 for 2 ≤ |x| ≤ 3. Let

wn(x) = η(|x −xn |/rn
)
un , vn(x) = (

1−ξ( |x −xn |/rn
))

un .

C. R. Mathématique — 2022, 360, 297-304
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Together with (2) and (12), by the same method, we have

Φ (un) =Φ (wn)+Φ (vn)+o(1),∫
RN

|wn |p ≥αA−εn

and ∫
RN

|vn |p ≥ (1−α) A−εn .

From J ′
V (un)wn −H ′(un)wn = 0 and J ′

V (un)vn −H ′(un)vn = 0, we have

γ(wn) =J ′
V (un) wn −H ′ (un) wn +o(1) = o(1),

γ(vn) =J ′
V (un) vn −H ′ (un) vn +o(1) = o(1).

By Lemma 5, there exist tn → 1 and sn → 1 such that tn wn ∈N and sn vn ∈N . Then

c +o(1) =Φ (un) =Φ (wn)+Φ (vn)+o(1) =Φ(
tn wn

)+Φ(
sn vn

)+o(1) ≥ 2c +o(1).

This is a contradiction. Thus α= 1. �

Proof of Theorem 1. Let {un} ⊂ N be the minimizing sequence for c defined as in Theorem 1.
By Lemma 4, {un} is bounded in X and weak convergent to u 6= 0. By Lemma 6, we can obtain
H (un) = H (u)+o(1). Moreover, since JV is lower semicontinuous and convex, take the liminf
both sides of Φ(un) = JV (un)+H (un) = c +o(1), we have Φ(u) ≤ c. If u ∈ N , we have Φ(u) = c.
If u 6∈N , by Lemma 3, there exists t > 0 such that tu ∈N . Then

c ≤Φ(tu) ≤ liminf
n→∞ Φ

(
tun

)≤ liminf
n→∞ Φ (un) = c.

Now, by [7, Theorem 2], the minimizer is a critical point of Φ. �
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