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Abstract. We consider two singular limits: a fast reaction limit with a non-monotone nonlinearity and a
regularization of the forward-backward diffusion equation. We derive pointwise identities satisfied by the
Young measure generated by these problems. As a result, we obtain an explicit formula for the Young
measure even without the non-degeneracy assumption used in the previous works. The main new idea is
an application of the Radon–Nikodym theorem to decompose the Young measure.

2020 Mathematics Subject Classification. 35K57, 35B25, 35B36.

Funding. Jakub Skrzeczkowski was supported by National Science Center, Poland through project no.
2017/27/B/ST1/01569. He is grateful to Benoît Perthame for fruitful discussions and helpful suggestions.

Manuscript received 25th May 2021, revised 12th August 2021 and 4th October 2021, accepted 5th October 2021.

1. Introduction and main results

1.1. Presentation of the problem

In this paper, we are interested in the limiting behavior (as ε→ 0) of the following problems: for
the reaction-diffusion system

∂t uε = vε−F
(
uε

)
ε

, uε(0, x) = u0(x),
∂

∂n
uε(t , x) = 0 for x ∈ ∂Ω (1)

∂t vε =∆vε+ F
(
uε

)− vε

ε
, vε(0, x) = v0(x),

∂

∂n
vε(t , x) = 0 for x ∈ ∂Ω (2)

and for the regularization of the forward-backward parabolic equation ∂t u =∆F (u)

∂t uε =∆vε, uε(0, x) = u0(x), (3)

vε = F
(
uε

)+ε∂t uε,
∂

∂n
vε(t , x) = 0 for x ∈ ∂Ω (4)
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Both problems are posed on some bounded and smooth domain Ω ⊂ Rd . Moreover, they admit
unique, global-in-time classical solutions cf. Lemmas 10 and 17.
The initial conditions u0, v0 and the nonlinearity F satisfy the following.

Assumption 1 (Initial data for (1)–(2)). Functions u0(x), v0(x) satisfy

(1) (nonnegativity) u0, v0 ≥ 0.
(2) (regularity) u0, v0 ∈C 2+α(Ω) for some α ∈ (0,1).
(3) (boundary condition) u0, v0 satisfy the Neumann boundary condition.

Assumption 2 (Initial data for (3)–(4)). Function u0(x) belongs to L∞(Ω) and satisfy u0(x) ≥ 0 for
a.e. x ∈Ω.

Assumption 3 (Reaction function F ). We assume that the function F (u) satisfies:

(1) (nonnegativity) F (0) = 0 and F ≥ 0.
(2) (piecewise monotonicity) There are α− < α+ < β− < β+ such that F (β−) = F (α−), F (α+)

= F (β+), F is strictly increasing on (−∞,α+)∪ (β−,∞) and strictly decreasing on (α+,β−)
(see Figure 1). Moreover, limu→∞ F (u) =∞.

(3) (regularity) F is Lipschitz continuous. Moreover, it is continuously differentiable on each of
the intervals (−∞,α+), (α+,β−) and (β−,∞).

In what follows, it will be crucial to introduce a notation related to the inverses of function F .

Notation 4. Let S1(λ) ≤ S2(λ) ≤ S3(λ) be the solutions of equation F (Si (λ)) = λ (see Figure 1).
These are inverses of F satisfying

S1 :
(−∞, f+

]→ (−∞,α+] , S2 :
(

f−, f+
)→ (

α+,β−
)

, S3 :
[

f−,∞)→ [
β−,∞)

.

Their role is to focus our analysis on parts of the plot of F where monotonicity of F does not change.
By a small abuse of notation, we extend functions Si by a constant value to the whole of R. We
usually write

I1 = (−∞,α+] , I2 =
(
α+,β−

)
, I3 =

[
β−,∞)

,

J1 =
(−∞, f+

]
, J2 =

(
f−, f+

)
, J3 =

[
f−,∞)

.

for images of functions S1, S2, S3 and for their domains.

System (1)–(2) is an interesting toy model for studying oscillations in reaction-diffusion systems
as they are known to occur in their steady states [28]. For monotone F the problem is fairly
classical and has been studied for a great variety of reaction-diffusion systems, also with more
than two components [5, 6, 14, 29] or reaction-diffusion equation coupled with an ODE [21]. In
the limit ε → 0, one obtains widely studied cross-diffusion systems [9, 10, 15, 16, 22, 24] where
the gradient of one quantity induces a flux of another one. A slightly different yet connected
type of problem deals with the fast-reaction limit for irreversible reactions which leads to free
boundary problems [11, 17, 20]. Finally, for non-monotone F as in this paper, the only available
result was established very recently in [33] (see below). We also refer to the recent stability analysis
of problems of type (1)–(2) [12, 13, 25].
System (3)–(4) was extensively studied by Plotnikov [34, 35] who identified the limits as ε →
0 in terms of Young measures (see below) and by Novick–Cohen and Pego who studied its
asymptotics with ε > 0 fixed [31]. The regularization term in (3)–(4) was also generalized in [3,
4, 40]. Recently, so-called nonstandard analysis was used to study the limit problem in the space
of grid functions [7, 8].
It is known [33, 35] that both systems exhibit the following surprising phenomenon: as ε → 0,
F (uε) → v and vε → v converge strongly without any known a priori estimates allowing to
conclude so. As a consequence, uε converges weakly to

u(t , x) =λ1(t , x)S1
(
v(t , x)

)+λ2(t , x)S2
(
v(t , x)

)+λ3(t , x)S3
(
v(t , x)

)
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Jakub Skrzeczkowski 191

where
∑3

i=1λi (t , x) = 1. More precisely, if {µt , x }t , x is the Young measure generated by {uε}ε>0, we
have

µt , x =λ1(t , x)δS1(v(t , x)) +λ2(t , x)δS2(v(t , x)) +λ3(t , x)δS3(v(t , x))

which represents oscillations between phases S1(v(t , x)), S2(v(t , x)) and S3(v(t , x)). The proof
exploits a family of energies as well as analysis of related Young measures in the spirit of Murat
and Tartar’s work on conservation laws and compensated compactness [30, 41]. The numerical
simulations suggest that the middle state, referred to as an unstable phase, is not present [19]
which motivates research on two-phase solutions to such problems [23,26,39,42] with a result of
nonuniqueness when the unstable phase is present [43].
So far, the main assumption on F that allows to deduce the strong convergence is the so-called
non-degeneracy condition: for (1)–(2) it reads

for all intervals R ⊂ (
f−, f+

)
:

3∑
i=1

ai
(
S′

i (r )+1
)= 0 for r ∈ R =⇒ a1 +a2 +a3 = 0 (5)

while for (3)–(4) it reads

for all intervals R ⊂ (
f−, f+

)
:

3∑
i=1

ai S′
i (r ) = 0 for r ∈ R =⇒ a1 +a2 +a3 = 0. (6)

While it is fairly classical for this type of problems [1, 31, 35], it is hard to be verified for a given
nonlinearity F . Moreover, the non-degeneracy condition excludes piecewise affine functions
used in more explicit computations as in [26].

1.2. Main results and outline of the paper

In this paper, we take a slightly different approach to study the strong convergence. Although we
use a family of energy identities to characterize the Young measure as Plotnikov [35], we aim at
pointwise identities to obtain an optimal amount of information from these energy identities,
in particular we deduce new results. To achieve this, we use the Radon–Nikodym Theorem as
explained below.

u

F (u)

f+

f−

I1 I2 I3

α− α+ β− β+

Figure 1. Plot of a typical function F . It is strictly increasing in the intervals I1 := (−∞,α+],
I3 := [β−,∞) and strictly decreasing in I2 := (α+,β−). For r ∈ [ f−, f+], the function F is not
invertible and equation F (u) = r has three roots u = S1(r ) ≤ S2(r ) ≤ S3(r ).
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Let {µt , x }t , x be the Young measure generated by sequence {uε}ε∈ (0,1) solving either (1)–(2) or (3)–
(4), i.e. for any bounded function G : R→ R we have (up to a subsequence and for a.e. (t , x) ∈
(0,T )×Ω)

G
(
uε

) ∗
*

∫
R

G(λ)dµt , x (λ),

see Appendix A.3 if necessary. To analyze the amount ofµt , x on intervals I1, I2 and I3, see Figure 1,
we introduce restrictions

µ(1)
t , x :=µt , x 1I1 , µ(2)

t , x :=µt ,x 1I2 , µ(3)
t , x :=µt , x 1I3 .

The reason we introduce these measures is that in the sequel, we will gain information only about
measure F #µt , x , i.e. a push-forward (image) of µt , x along F defined as

F #µt , x =µt , x

(
F−1(A)

)
, A ⊂R+.

Observe that for all i = 1,2,3, measures F #µ(i )
t , x are absolutely continuous with respect to F #µt ,x .

Therefore, the Radon–Nikodym theorem implies that there exist densities g (1)(λ), g (2)(λ) and
g (3)(λ) such that

F #µ(i )
t , x (A) =

∫
A

g (i )(λ)dF #µt , x (λ), i = 1,2,3. (7)

We also note that for all A ⊂R+

3∑
i=1

F #µ(i )
t , x (A) =

3∑
i=1

µt , x

(
F−1(A)∩ Ii

)
=µt , x

(
F−1(A)

)
= F #µt , x (A). (8)

In particular, from (7) and (8) we deduce that for F #µt , x -a.e. λ we have

3∑
i=1

gi (λ) = 1. (9)

The main result of this paper reads:

Theorem 5.

(A) Let {µt , x }t , x be the Young measure generated by sequence {uε}ε∈ (0,1) solving (1)–(2). Then,
for almost all λ0 (with respect to F #µt , x ) and all τ0 6= f−, f+ we have

3∑
i=1

(
S′

i (τ0)+1
) [
1λ0 >τ0 gi (λ0)−F #µ(i )

t , x (τ0,∞)
]
+ (

S′
1(τ0)−S′

2(τ0)
) (

F #µ(1)
t , x

(
R+)− g1(λ0)

)
= 0.

where Si are the inverses of F as in Notation 4 and gi are the Radon–Nikodym densities as
in (7). Moreover, for λ0 6= f−, f+ we have(

1−F #µt , x {λ0}
) 3∑

i=1

(
S′

i (λ0)+1
)

gi (λ0) = 0. (10)

(B) Let {µt , x }t , x be the Young measure generated by sequence {uε}ε∈ (0,1) solving (3)–(4). Then,
for almost all λ0 (with respect to F #µt , x ) and all τ0 6= f−, f+ we have

3∑
i=1

S′
i (τ0)

[
1λ0>τ0 gi (λ0)−F #µ(i )

t , x (τ0,∞)
]
+ (

S′
1(τ0)−S′

2(τ0)
) (

F #µ(1)
t , x

(
R+)− g1(λ0)

)
= 0.

where Si are the inverses of F as in Notation 4 and gi are the Radon–Nikodym densities as
in (7). Moreover, for λ0 6= f−, f+ we have(

1−F #µt , x {λ0}
) 3∑

i=1
S′

i (λ0) gi (λ0) = 0. (11)
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As F #µt , x turns out to be the Young measure generated by {vε}ε>0 cf. Corollary 11, strong conver-
gence vε → v can be deduced if one proves that F #µt , x is the Dirac measure cf. Lemma 23(A).
Equation (10) shows that the latter follows if one finds λ0 in the support such that the sum∑3

i=1(S′
i (λ0) + 1) gi (λ0) does not vanish (some additional care is needed when λ0 = f−, f+,

cf. Lemma 15).
We remark that similar forms of the entropy equality as in Theorem 5 are well-known however

they have not been formulated as in our paper. In particular, they are usually stated without
explicitly identified coefficients standing next to (S′

i (τ0)+1).
First, we show that the form presented in Theorem 5 can be used to recover the result of
Plotnikov [35] and of Perthame and Skrzeczkowski [33].

Theorem 6. Suppose that non-degeneracy condition (5)–(6) is satisfied. Then, vε → v strongly
in L2((0,T ) ×Ω). Moreover, there are nonnegative numbers λ1(t , x), λ2(t , x), λ3(t , x) such that∑3

i=1λi (t , x) = 1 and

µt ,x =λ1(t , x)δS1(v(t , x)) +λ2(t , x)δS2(v(t , x)) +λ3(t , x)δS3(v(t , x)).

Now, we move to the new results that easily follow from Theorem 5. The first one asserts that if
one knows a priori that the Young measure {µt , x }t , x is not supported in the interval I2 where F
is decreasing, the strong convergence occurs. The fact concerning the support of {µt , x }t , x was
observed in the numerical simulations [19] and so, the next theorem may serve as a tool to prove
strong convergence without the non-degeneracy condition.

Theorem 7. Suppose that:

• there exists τ0 ∈ ( f−, f+) such that S′
1(τ0)−S′

3(τ0) 6= 0,
• Young measure {µt , x }t , x is not supported in the interval I2 (see Figure 1).

Then, vε → v strongly in L2((0,T )×Ω). Moreover, there are nonnegative numbers λ1(t , x), λ3(t , x)
such that λ1(t , x)+λ3(t , x) = 1 and

µt , x =λ1(t , x)δS1(v(t , x)) +λ3(t , x)δS3(v(t , x)).

The next result shows that the systems (1)–(2) and (3)–(4) are not exactly the same in view of the
strong convergence. Indeed, for the first one, we can establish a simple condition on F implying
strong convergence of vε → v that does not exclude piecewise affine functions as in the case of
non-degeneracy condition (5).

Theorem 8. Let {µt , x }t , x be the Young measure generated by sequence {uε}ε∈ (0,1) solving (1)–(2).
Suppose that:

• there exists τ0 ∈ ( f−, f+) such that S′
1(τ0)−S′

3(τ0) 6= 0,
• S′

2(λ)+1 > 0 for all λ ∈ ( f−, f+).

Then, vε → v strongly in L2((0,T )×Ω). Moreover, there are nonnegative numbers λ1(t , x), λ2(t , x),
λ3(t , x) such that

∑3
i=1λi (t , x) = 1 and

µt , x =λ1(t , x)δS1(v(t , x)) +λ2(t , x)δS2(v(t , x)) +λ3(t , x)δS3(v(t , x)).

As an example, the following function F satisfies assumptions of Theorem 8:

F (λ) =


2λ if λ ∈ [0,1],

3−2λ if λ ∈ [
1, 5

4

]
,

4λ− 9
2 if λ ∈ [ 5

4 ,∞)
.

Then, S′
1(λ) = 1

2 , S′
2(λ) =− 1

2 and S′
3(λ) = 1

4 so that S′
1(λ)−S′

3(λ) = 1
4 6= 0 and S′

2(λ)+1 = 1
2 > 0. Note

that F does not satisfy non-degeneracy condition (5) that was used in the previous paper on the
fast reaction limit with non-monotone reaction function [33].

C. R. Mathématique — 2022, 360, 189-203
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The proofs of Theorem 7 and 8 are based on equation (10), namely one uses g1(λ0)+ g2(λ0)+
g3(λ0) = 1 to show that for λ0 ∈ suppF we have F #µt , x {λ0} = 1. Note that (10) is not valid for
λ0 = f−, f+ so some additional care is needed if the support of measure F #µt , x accumulates
only in these points. This is studied in Lemma 15 and it requires an additional assumption that
S′

1(τ)−S′
3(τ) does not vanish at least for one value of τ, see also Remark 16.

The structure of the paper is as follows. In Section 2 we review (well-known) properties of the
fast-reaction system (1)–(2). Then, in Section 3 we use the compensated compactness approach
to prove Theorem 5. In Section 4 we prove Theorems 6, 7 and 8 while in Section 5 we show how to
easily adapt proofs of Theorems 5–7 to the case of system (3)–(4). Finally, Appendix A provides the
necessary background on Young measures, supports of measures and compensated compactness
results.

2. Properties of the fast-reaction system (1)–(2)

We begin by recalling the energy equality and the well-posedness result from [33]. As parts (4)–(6)
of Lemma 10 were not stated in [33] in the form we need here, we prove these results below.

Lemma 9 (energy equality). Given a smooth test function φ :R→R, we define

Ψ(λ) :=
∫ λ

0
φ

(
F (τ)

)
dτ, Φ(λ) :=

∫ λ

0
φ(τ)dτ. (12)

Then, if (uε, vε) solve (1)–(2), it holds

∂tΨ
(
uε

)+∂tΦ
(
vε

)=∆Φ(
vε

)−φ′ (vε
) ∣∣∇vε

∣∣2 −
(
vε−F

(
uε

))(
φ

(
vε

)−φ(
F

(
uε

)))
ε

. (13)

Proof. Multiplying equation for uε in (1)–(2) with φ(F (uε)) and equation for vε in (1)–(2) with
φ(vε) we obtain

∂tΨ
(
uε

)= vε−F
(
uε

)
ε

φ
(
F

(
uε

))
,

∂tΦ
(
vε

)=∆Φ(
vε

)−φ′ (vε
) ∣∣∇vε

∣∣2 + F (uε)− vε

ε
φ

(
vε

)
.

Summing up these equations we deduce (13). �

Lemma 10. There exists the unique classical solution uε, vε : [0,∞)×Ω→ R of (1)–(2) which is
nonnegative and has regularity

uε ∈Cα,1+α/2
(
[0,∞)×Ω

)
, vε ∈C 2+α,1+α/2

(
[0,∞)×Ω

)
.

Moreover, we have

(1) 0 ≤ uε ≤ M, 0 ≤ vε ≤ M with M = max(‖F (u0)‖∞, ‖u0‖∞, ‖v0‖∞, f+, β+),
(2) {∇vε}ε∈ (0,1) is uniformly bounded in L2((0,∞)×Ω),
(3) { F (uε)−vεp

ε
}ε∈ (0,1) and {

p
ε∆vε}ε∈ (0,1) are uniformly bounded in L2((0,∞)×Ω),

(4) {∂t uε+∂t vε}ε∈ (0,1) is uniformly bounded in L2(0,T ; H−1(Ω)),
(5) for all smooth ϕ :R→R, {∇ϕ(vε)}ε∈ (0,1) is uniformly bounded in L2((0,∞)×Ω),
(6) for all smooth φ : R → R, {∂tΨ(uε) + ∂tΦ(vε)}ε∈ (0,1) is uniformly bounded in (C (0,T ;

H k (Ω)))∗ for sufficiently large k ∈N.

Proof. Existence and uniqueness of the global solution as well as points (1)–(3) were proven
in [33, Theorem 3.1] so we only sketch the argument. First, local well-posedness and nonneg-
ativity follows from the classical theory [37]. To extend these results to an arbitrary interval of

C. R. Mathématique — 2022, 360, 189-203
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time, we need to prove a priori estimates as in (1). To this end, we note that thanks to (13), the
nonnegative map

t 7→
∫
Ω

[
Ψ

(
uε(t , x)

)+Φ(
vε(t , x)

)]
dx

is nonincreasing whenever φ′ ≥ 0. Choosing φ vanishing on (0, M) and stricly increasing for
(M ,∞) we obtain (1) and the global well-posedness. Then, (2) and (3) follows from (13) with
φ(v) = v . Furthemore, (4) follows from the equality ∂t uε+∂t vε = ∆vε and property (2) while (5)
follows from the chain rule for Sobolev functions, boundedness of vε from (1) and (2). Finally, to
see (6) we choose k ≥ d so that H k (Ω) embedds continuously into L∞(Ω). Let ϕ ∈C (0,T ; H k (Ω)).
Note that there is a constant C such that∥∥ϕ∥∥∞ ≤C

∥∥ϕ∥∥
C(0,T ; H k (Ω)) ,

∥∥ϕ∥∥
L2(0,T ; H 1(Ω)) ≤C

∥∥ϕ∥∥
C(0,T ; H k (Ω)) . (14)

Thanks to (13) we have∫
(0,T )×Ω

(
∂tΨ

(
uε

)+∂tΦ
(
vε

))
ϕdt dx −

∫
(0,T )×Ω

∇Φ(
vε

) ·∇ϕdt dx

=−
∫

(0,T )×Ω
φ′ (vε

) ∣∣∇vε
∣∣2
ϕdt dx −

∫
(0,T )×Ω

(
vε−F

(
uε

))(
φ

(
vε

)−φ(
F

(
uε

)))
ε

ϕdt dx.

As |φ′(vε)| ≤C and |φ(vε)−φ(F (uε)| ≤C |vε−F (uε)| we use bounds (14) together with points (2)
and (3) to deduce for some possibly larger constant C (independent of ε)∣∣∣∣∫

(0,T )×Ω
(
∂tΨ

(
uε

)+∂tΦ
(
vε

))
ϕdt dx

∣∣∣∣≤C
∥∥ϕ∥∥

C(0,T ; H k (Ω)) . �

Corollary 11. Let {µt , x }t , x and {νt , x }t , x be the Young measures generated by sequences {uε}ε>0 and
{vε}ε>0 respectively. Combining Lemma 10 (3) and Lemma 23 (B, C) we obtain that F #µt , x = νt , x .

3. Proof of Theorem 5 for fast-reaction system (1)–(2)

We begin by formulating the entropy equality.

Lemma 12 (Entropy equality). Let Ψ and Φ be defined with (12), {µt , x } be the Young measure
generated by sequence {uε}ε>0 solving (1)–(2) and gi be the densities given by (7). Then, for almost
all λ0 (with respect to F #µt , x ) we have

3∑
i=1

(
Ψ

(
Si (λ0)

)+Φ(λ0)
)

gi (λ0) =
3∑

i=1

∫
R+

(
Ψ

(
Si (λ)

)+Φ(λ)
)

gi (λ)dF #µt , x (λ), (15)

where Si are the inverses of F as in Notation 4.

Proof. Thanks to Lemma 10(6), for all smooth φ : R→ R, {∂tΨ(uε)+∂tΦ(vε)}ε∈ (0,1) is uniformly
bounded in (C (0,T ; H k (Ω)))∗. Similarly, for all smooth ϕ : R → R, {∇ϕ(vε)}ε∈ (0,1) is uniformly
bounded in L2((0,∞)×Ω). Hence, Lemma 19 implies

w*-lim
ε→0

(
Ψ

(
uε

)+Φ(
vε

))
ϕ

(
vε

)= w*-lim
ε→0

(
Ψ

(
uε

)+Φ(
vε

))
w*-lim
ε→0

ϕ
(
vε

)
.

As vε−F (uε) → 0 cf. Lemma 10(3), we may replace vε with F (uε) in the identity above to obtain

w*-lim
ε→0

(
Ψ

(
uε

)+Φ(
F

(
uε

)))
ϕ

(
F

(
uε

))= w*-lim
ε→0

(
Ψ

(
uε

)+Φ(
F

(
uε

)))
w*-lim
ε→0

ϕ
(
F

(
uε

))
.

In the language of Young measures, this identity reads∫
R+

(
Ψ(λ)+Φ(F (λ))

)
ϕ(F (λ))dµt , x (λ) =

∫
R+

(
Ψ(λ)+Φ(F (λ))

)
dµt , x (λ)

∫
R+
ϕ(F (λ))dµt , x (λ).
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We observe that λ = ∑3
i=1 Si (F (λ))1λ∈ Ii . Hence, we may use the concept of push-forward mea-

sure to write

3∑
i=1

∫
R+

(
Ψ

(
Si (λ)

)+Φ(λ)
)
ϕ(λ)dF #µ(i )

t , x (λ)

=
3∑

i=1

∫
R+

(
Ψ

(
Si (λ)

)+Φ(λ)
)

dF #µ(i )
t , x (λ)

∫
R+
ϕ(λ)dF #µt , x (λ).

Using (7) with densities g1(λ), g2(λ) and g3(λ) we obtain

3∑
i=1

∫
R+

(
Ψ

(
Si (λ)

)+Φ(λ)
)
ϕ(λ) gi (λ)dF #µt , x (λ)

=
3∑

i=1

∫
R+

(
Ψ

(
Si (λ)

)+Φ(λ)
)

gi (λ)dF #µt , x (λ)
∫
R+
ϕ(λ)dF #µt , x (λ).

Hence, when λ0 belongs to the support of measure F #µt , x , we obtain

3∑
i=1

(
Ψ

(
Si (λ0)

)+Φ(λ0)
)

gi (λ0) =
3∑

i=1

∫
R+

(
Ψ

(
Si (λ)

)+Φ(λ)
)

gi (λ)dF #µt , x (λ).

�

To analyze the entropy inequality, we need to deal with integrals of the form
∫ Si (λ)

0 φ(F (τ))dτ. This
is the content of the next lemma.

Lemma 13. We have

Ψ
(
Si (λ0)

)= ∫ Si (λ0)

0
φ(F (τ))dτ=

∫ λ0

0
φ(τ)S′

i (τ)dτ+Ci (φ)

where C1(φ) = 0 and C2(φ) =C3(φ) = ∫ f+
0 φ(τ) (S′

1(τ)−S′
2(τ))dτ.

Proof. For i = 1 we note that F is invertible on (0,S1(λ)) so that a simple change of variables
implies

Ψ
(
S1(λ0)

)= ∫ S1(λ0)

0
φ(F (τ))dτ=

∫ λ0

0
φ(τ)S′

1(τ)dτ.

For i = 2 we first split the integral for two intervals (0,α+), (α+,λ0) cf. Notation 4. On each of them,
F is invertible so we can apply a change of variables again:

Ψ
(
S2(λ0)

)= ∫ α+

0
φ(F (τ))dτ+

∫ S2(λ0)

α+
φ(F (τ))dτ

=
∫ f+

0
φ(τ)S′

1(τ)dτ−
∫ f+

λ0

φ(τ)S′
2(τ)dτ=C2(φ)+

∫ λ0

0
φ(τ)S′

2(τ)dτ.

For i = 3 we split the integral for three intervals and apply a change of variables again:

Ψ
(
S3(λ0)

)= ∫ α+

0
φ(F (τ))dτ+

∫ β−

α+
φ(F (τ))dτ+

∫ S3(λ0)

β−
φ(F (τ))dτ

=
∫ f+

0
φ(τ)S′

1(τ)dτ−
∫ f+

f−
φ(τ)S′

2(τ)dτ+
∫ λ0

f−
φ(τ)S′

3(τ)dτ.

As S′
2(τ) = 0 and S′

3(τ) = 0 for τ ∈ (0, f−), the proof is concluded. �

Lemma 14. Consider function

F (τ0) =
3∑

i=1

(
S′

i (τ0)+1
)

F #µ(i )
t , x

(
(τ0,∞)

)+ (
S′

1(τ0)−S′
2(τ0)

) (
1−F #µ(1)

t , x

(
R+))

.
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Then, for almost all λ0 (with respect to F #µt , x ) and τ0 6= f−, f+ we have

1λ0 >τ0

3∑
i=1

(
S′

i (τ0)+1
)

gi (λ0)+ (
S′

1(τ0)−S′
2(τ0)

) (
1− g1(λ0)

)=F (τ0).

Proof. We consider φ(τ) = φδ(τ) = 1
δ 1[τ0,τ0+δ] and send δ → 0 so that Φ(λ0) = ∫ λ0

0 φδ(τ)dτ →
1λ>τ0 . Moreover,

∫ λ0
0 φδ(τ)S′

i (τ)dτ → S′
i (τ0)1λ0 >τ0 . Therefore, from Lemmas 12 and 13 we

deduce

3∑
i=1

(
1λ0 >τ0

(
S′

i (τ0)+1
)+ (

S′
1(τ0)−S′

2(τ0)
)
1i=2,3

)
gi (λ0) =

=
3∑

i=1

∫
R+

(
1λ>τ0

(
S′

i (τ0)+1
)+ (

S′
1(τ0)−S′

2(τ0)
)
1i=2,3

)
gi (λ)dF #µt , x (λ).

Using identities from (8) and (9)

1− g1(λ0) = g2(λ0)+ g3(λ0), 1−F #µ(1)
t , x

(
R+)= F #µ(2)

t , x

(
R+)+F #µ(3)

t , x

(
R+)

,

we conclude the proof. �

Proof of Theorem 5. The first part of Theorem 5 is proved in Lemma 14. To see the second one,
fix λ0 6= f−, f+. For τ0 := η>λ0 we obtain

3∑
i=1

(
S′

i (η)+1
)

F #µ(i )
t , x

((
η,∞))+ (

S′
1(η)−S′

2(η)
) (

F #µ(1)
t , x

(
R+)− g1(λ0)

)
= 0

while for τ0 := ξ<λ0 we deduce

3∑
i=1

(
S′

i (ξ)+1
) (

gi (λ0)−F #µ(i )
t , x

(
(ξ,∞)

))+ (
S′

1(ξ)−S′
2(ξ)

) (
F #µ(1)

t , x

(
R+)− g1(λ0)

)
= 0.

Sending ξ,η→λ0 and using continuity of λ 7→ S′
i (λ) at λ 6= f−, f+ we obtain

3∑
i=1

(
S′

i (λ0)+1
)

gi (λ0) =
3∑

i=1

(
S′

i (λ0)+1
)

F #µ(i )
t , x {λ0}.

Finally, we note that for almost all λ0 (with respect to F #µt , x ) F #µ(i )
t , x {λ0} = gi (λ0)F #µt , x {λ0} and

this concludes the proof. �

4. Proofs of Theorems 6, 7 and 8 for fast-reaction system (1)–(2)

Proof of Theorem 6. If suppF #µt , x ∩ (0, f−) is nonempty, we take any λ0 ∈ suppF #µt , x ∩ (0, f−).
Note that S′

2(λ0) = S′
3(λ0) = 0. Moreover, (10) in Theorem 5 implies(

1−F #µt , x {λ0}
) (

S′
1(λ0)+1

)
g1(λ0) = 0.

For almost all λ0 ∈ (0, f−) we have g1(λ0) = 1 so we conclude F #µt , x {λ0} = 1. A similar argument
works in the case λ0 ∈ ( f+,∞).

Now, let λ0 ∈ [ f−, f+]∩suppF #µt , x . If suppF #µt , x = {λ0}, we conclude F #µt , x = δλ0 . Otherwise,
there are λ1,λ2 ∈ suppF #µt , x such that f− ≤ λ1 < λ2 ≤ f+. For any τ0 ∈ (λ1,λ2) we use Theorem 5
with λ0 =λ1,λ2 to obtain two equations:

3∑
i=1

(
S′

i (τ0)+1
) [

gi (λ2)−F #µ(i )
t , x (τ0,∞)

]
+ (

S′
1(τ0)−S′

2(τ0)
) (

F #µ(1)
t , x

(
R+)− g1(λ2)

)
= 0,

−
3∑

i=1

(
S′

i (τ0)+1
)

F #µ(i )
t , x (τ0,∞)+ (

S′
1(τ0)−S′

2(τ0)
) (

F #µ(1)
t , x

(
R+)− g1(λ1)

)
= 0.
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Hence,
∑3

i=1(S′
i (τ0)+1) gi (λ2)+ (S′

1(τ0)−S′
2(τ0)) (g1(λ1)− g1(λ2)) = 0. But then, non-degeneracy

condition (5) implies that
∑3

i=1 gi (λ2) = 0 6= 1 raising contradiction.
It follows that F #µt , x is the Dirac measure. From Corollary 11 we deduce that the Young

measure {νt , x }t , x generated by {vε}ε>0 is also the Dirac measure so vε → v strongly and νt , x =
δv(t , x), cf. Lemma 23. The representation formula for µt , x follows from F #µt , x = δv(t , x). �

Before proceeding to the proofs of Theorems 7 and 8, we will state a simple lemma concerning
the case when F #µt , x is supported only at f− and f+. This needs some care as functions S′

1, S′
2

and S′
3 are not continuous at these points.

Lemma 15 (Accumulation at the interface). Suppose that there exists τ0 ∈ ( f−, f+) such that
S′

1(τ0)−S′
3(τ0) 6= 0. Assume that suppF #µt , x ⊂ { f−, f+}. Then, F #µt , x = δ f− or F #µt , x = δ f+ .

Proof. Aiming at contradiction, we assume that F #µt , x { f+} > 0 and F #µt ,x { f−} > 0. Note that
F−1( f+) ∉ I2 so that

0 =µ(2)
t , x

(
F−1 (

f+
)∩ I2

)
= F #µ(2)

t , x

{
f+

}= g2
(

f+
)

F #µt , x
{

f+
}

.

It follows that g2( f+) = 0 and similarly g2( f−) = 0. Applying Theorem 5 with τ0 ∈ ( f−, f+) and
λ0 ∈ { f−, f+} we obtain

3∑
i=1

(
S′

i (τ0)+1
) [
1λ0 >τ0 gi (λ0)−F #µ(i )

t , x (τ0,∞)
]
+ (

S′
1(τ0)−S′

2(τ0)
) (

F #µ(1)
t , x

(
R+)− g1(λ0)

)
= 0.

As τ0 ∈ ( f−, f+), we have

F #µ(i )
t , x (τ0,∞) = F #µ(i )

t , x

{
f+

}= gi
(

f+
)

F #µt , x
{

f+
}

.

But this implies(
1λ0 >τ0 −F #µt , x

{
f+

}) ∑
i=1,3

(
S′

i (τ0)+1
)

gi (λ0)+ (
S′

1(τ0)−S′
2(τ0)

) (
F #µ(1)

t , x

(
R+)− g1(λ0)

)
= 0.

Considering λ0 = f+, f− and using 1−F #µt , x { f+} = F #µt , x { f−} we obtain two equations:

F #µt , x
{

f−
} ∑

i=1,3

(
S′

i (τ0)+1
)

gi
(

f+
)+ (

S′
1(τ0)−S′

2(τ0)
) (

F #µ(1)
t , x

(
R+)− g1( f+)

)
= 0, (16)

−F #µt , x
{

f+
} ∑

i=1,3

(
S′

i (τ0)+1
)

gi
(

f−
)+ (

S′
1(τ0)−S′

2(τ0)
) (

F #µ(1)
t , x

(
R+)− g1( f−)

)
= 0. (17)

Using 1−F #µt , x { f+} = F #µt , x { f−} once again we obtain

F #µ(1)
t , x

(
R+)− g1

(
f+

)= g1
(

f+
)

F #µt , x
{

f+
}+ g1

(
f−

)
F #µt , x

{
f−

}− g1
(

f+
)

= (
g1

(
f−

)− g1
(

f+
))

F #µt , x
{

f−
}

and similarly for F #µ(1)
t , x (R+) − g1( f−). As we assume that F #µt , x { f−},F #µt , x { f+} > 0, we may

simplify (16)–(17) to obtain∑
i=1,3

(
S′

i (τ0)+1
)

gi
(

f+
)+ (

S′
1(τ0)−S′

2(τ0)
) (

g1
(

f−
)− g1

(
f+

))= 0, (18)

− ∑
i=1,3

(
S′

i (τ0)+1
)

gi
(

f−
)+ (

S′
1(τ0)−S′

2(τ0)
) (

g1
(

f+
)− g1

(
f−

))= 0. (19)

We observe further that g1(λ0)+ g3(λ0) = 1, cf. (9), so that∑
i=1,3

(
S′

i (τ0)+1
)

gi (λ0) = (
S′

1(τ0)−S′
3(τ0)

)
g1(λ0)+ (

S′
3(τ0)+1

)
.

Hence, we may further simplify (18)–(19) to get(
S′

1(τ0)−S′
3(τ0)

)
g1

(
f+

)+ (
S′

3(τ0)+1
)+ (

S′
1(τ0)−S′

2(τ0)
) (

g1
(

f−
)− g1

(
f+

))= 0, (20)

−(
S′

1(τ0)−S′
3(τ0)

)
g1

(
f−

)− (
S′

3(τ0)+1
)+ (

S′
1(τ0)−S′

2(τ0)
) (

g1
(

f+
)− g1

(
f−

))= 0. (21)
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By assumption, there is τ0 ∈ ( f−, f+) such that S′
1(τ0)−S′

3(τ0) 6= 0. Using (20)–(21) for such τ0 we
see that g1( f+) = g1( f−). But then, coming back to (18)–(19), we deduce that∑

i=1,3

(
S′

i (τ0)+1
)

gi
(

f+
)= 0,

∑
i=1,3

(
S′

i (τ0)+1
)

gi
(

f−
)= 0.

As S1, S3 are increasing, this implies g1( f−) = g3( f−) = g1( f+) = g3( f+) = 0 raising contradiction
with g1( f−)+ g3( f−) = 1 and g1( f+)+ g3( f+) = 1. �

Remark 16. Without the assumption that there is τ0 ∈ ( f−, f+) such that S′
1(τ0)−S′

3(τ0) 6= 0 we
observe that (20)–(21) degenerate to the same equation:

g1
(

f+
)− g1

(
f−

)= 1+S′
3(τ0)

S′
1(τ0)−S′

2(τ0)

valid for all τ0 ∈ ( f−, f+). Hence, it the function τ0 7→ 1+S′
3(τ0)

S′
1(τ0)−S′

2(τ0)
is not constant, we may also

obtain contradiction. Nevertheless, we believe that the assumption on S′
1(τ0)−S′

3(τ0) is easier to
formulate.

Proof of Theorem 7. As in the proof of Theorem 6, we may assume that suppF #µt , x ⊂ [ f−, f+]
(this did not use the non-degeneracy condition!). By assumption of the theorem, for any set
A ⊂R+

0 =µt , x

(
F−1(A)∩ I2

)
= F #µ(2)

t , x (A) =
∫

A
g2(λ)dF #µt , x (λ)

so g2(λ) = 0 for almost all λ. Hence, when λ0 ∈ suppF #µt , x ∩ ( f−, f+), the sum
3∑

i=1

(
S′

i (λ0)+1
)

gi (λ0) ≥ min
(
S′

1(λ0)+1,S′
3(λ0)+1

)> 0

because g1(λ0) + g3(λ0) = 1 and S1, S3 are strictly increasing. It follows from Theorem 5 that
F #µt , x {λ0} = 1, i.e. F #µt , x = δλ0 . Finally, if there is no such λ0 ∈ suppF #µt , x ∩ ( f−, f+), we apply
Lemma 15.

It follows that F #µt , x is the Dirac measure so that we can conclude as in Theorem 6. �

Proof of Theorem 8. Mimicking the proof of Theorem 7, we let λ0 ∈ suppF #µt , x ∩( f−, f+) and we
observe that the sum

3∑
i=1

(
S′

i (λ0)+1
)

gi (λ0) ≥ min(1,δ(λ0))
3∑

i=1
gi (λ0) = min(1,δ(λ0)) > 0

where δ(λ0) is such that S′
2(λ0)+1 > δ(λ0) > 0. We conclude as in the proof of Theorem 7. �

5. Proof of Theorems 5–7 to the forward-backward diffusion system (3)–(4)

We first formulate a basic well-posedness result for (3)–(4). This comes mostly from [31, 35] but
the compactness estimates are simplified.

Lemma 17. Let u0 ∈ L∞(Ω). Then, there exists the unique solution uε : [0,∞)×Ω→ R of (3)–(4)
which is nonnegative and has regularity C 1([0,T ];L2(Ω))∩L∞(Ω). Moreover, we have

(1) for M = max(‖F (u0)‖∞, f+) we have 0 ≤ uε ≤ M,
(2) {∇vε}ε∈ (0,1) is uniformly bounded in L2((0,T )×Ω),
(3) {

vε−F (uε)p
ε

}
ε∈ (0,1)

= {p
εuε

t

}
ε∈ (0,1)

are uniformly bounded in L2((0,T )×Ω),
(4) for all smooth ϕ :R→R, {∇ϕ(vε)}ε∈ (0,1) is uniformly bounded in L2((0,T )×Ω),
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(5) for all smooth φ : R→ R, {∂tΨ(uε)}ε∈ (0,1) is uniformly bounded in (C (0,T ; H k (Ω)))∗ for
sufficiently large k ∈N.

Proof. We observe that the equation is equivalent to the following ODE:

∂t uε = (I −ε∆)−1 ∆F
(
uε

)
.

As long as ε > 0, the (RHS) is Lipschitz continuous, say on L2(Ω), so the local well-posedness
follows. To obtain global well-posedness, we consider functions Ψ, Φ defined in (12). We have

∂tΨ
(
uε

)=φ(
F

(
uε

))
uε

t =
(
φ

(
F

(
uε

))−φ(
vε

))
uε

t +φ
(
vε

)
∆vε

= (
φ

(
F

(
uε

))−φ(
vε

))
uε

t +∆Φ
(
vε

)−φ′ (vε
) ∣∣∇vε

∣∣2 .
(22)

If φ is nondecreasing, we have(
φ

(
F

(
uε

))−φ(
vε

))
uε

t =
(
φ

(
F

(
uε

))−φ(
vε

)) vε−F
(
uε

)
ε

≤ 0

so after integration in space, the (RHS) of (22) is nonnegative. Hence, ∂t
∫
ΩΨ(uε) ≤ 0. Choosing

φ = 0 for [0, M ] and φ′(x) > 0 for x ∉ [0, M ] we prove (1) and conclude the proof of global well-
posedness. To see (2) and (3) we take φ(x) = x and integrate (22) in time and space. Part (4)
easily follows from the chain rule and (2). Finally, (5) follows from (22) and exactly the same
computations as in Lemma 10. �

Now, we formulate an analog of Lemma 12.

Lemma 18 (Entropy equality). LetΨ be defined with (12), {µt , x } be the Young measure generated
by sequence {uε}ε>0 solving (3)–(4) and gi be the densities given by (7). Then, for almost all λ0

(with respect to F #µt , x ) we have
3∑

i=1
Ψ

(
Si (λ0)

)
gi (λ0) =

3∑
i=1

∫
R+
Ψ

(
Si (λ)

)
gi (λ)dF #µt , x (λ), (23)

where Si are the inverses of F as in Notation 4.

Proof. Thanks to Lemma 17 (5), for all smooth φ : R→ R, {∂tΨ(uε)}ε∈ (0,1) is uniformly bounded
in (C (0,T ; H k (Ω)))∗. Similarly, for all smooth and bounded ϕ :R→R, {∇ϕ(vε)}ε∈ (0,1) is uniformly
bounded in L2((0,∞)×Ω). Hence, Lemma 19 implies

w*-lim
ε→0

Ψ
(
uε

)
ϕ

(
vε

)= w*-lim
ε→0

Ψ
(
uε

)
w*-lim
ε→0

ϕ
(
vε

)
.

As vε−F (uε) = εuε
t → 0 cf. Lemma 17(3), we may replace vε with F (uε) in the identity above to

obtain
w*-lim
ε→0

Ψ
(
uε

)
ϕ

(
F

(
uε

))= w*-lim
ε→0

Ψ
(
uε

)
w*-lim
ε→0

ϕ
(
F

(
uε

))
.

In the language of Young measures, this identity reads∫
R+
Ψ(λ)ϕ(F (λ))dµt , x (λ) =

∫
R+
Ψ(λ)dµt , x (λ)

∫
R+
ϕ(F (λ))dµt , x (λ).

We observe that λ=∑3
i=1 Si (F (λ))1λ∈ Ii . Hence, we may use push-forward measure to write

3∑
i=1

∫
R+
Ψ

(
Si (λ)

)
ϕ(λ)dF #µ(i )

t , x (λ) =
3∑

i=1

∫
R+
Ψ

(
Si (λ)

)
dF #µ(i )

t , x (λ)
∫
R+
ϕ(λ)dF #µt , x (λ).

Using densities g1(λ), g2(λ) and g3(λ) we obtain

3∑
i=1

∫
R+
Ψ

(
Si (λ)

)
ϕ(λ) gi (λ)dF #µt ,x (λ)

=
3∑

i=1

∫
R+
Ψ

(
Si (λ)

)
gi (λ)dF #µt , x (λ)

∫
R+
ϕ(λ)dF #µt , x (λ).
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Hence, if λ0 belongs to the support of the measure F #µt , x , we obtain (23). �

Proof of Theorems 5–7. Comparing formulations of Lemmas 12 and 18 we see that it is sufficient
to modify proofs in Sections 3-4 by replacing S′

1 + 1, S′
2 + 1 and S′

3 + 1 with S′
1, S′

2 and S′
3

respectively. �

Note that Theorem 8 is only true for fast-reaction limit (1)–(2) because its proof exploits presence
of term S′

2 +1 in the entropy formulations.

Appendix A. Useful notions and results

A.1. Compensated compactness lemma

We formulate the lemma used in the proof of Theorem 5, more precisely in Lemma 12. For the
proof see [27, Proposition 1].

Lemma 19. Let Ω ⊂ Rn be a bounded domain. Suppose that {an}n∈N is uniformly bounded in
L2(0,T ; H 1(Ω)) and {bn}n∈N is uniformly bounded in L2(0,T ;L2(Ω)). Moreover, assume that the
sequence of distributional time derivatives {∂t bn}n∈N is uniformly bounded in the dual space
C (0,T ; H m(Ω))∗ for some m ∈ N. Then, if an * a and bn * b we have an bn → a b in the sense
of distributions.

In our case, the considered sequences are also in L∞((0,T )×Ω) so the resulting convergence
is true in the weak∗ sense.

A.2. Support of a measure

We recall definition of the support of measure on Rn [38, Definition 1.14]. For this, let B(x,r )
denote a ball of radius r > 0 centered at x ∈Rn .

Definition 20. Let µ be a nonnegative measure on Rn . We say that x ∈ suppµ if and only if
µ(B(x,r )) > 0 for all r > 0.

Remark 21. When a given property (like an equation) is satisfied for almost every x (with respect
to µ) one may worry that it is not true for the particularly chosen value of x. This is not the
problem if one takes x ∈ suppµ because in each neighbourhood of x there is y ∈ suppµ such that
the considered property has to be satisfied as the measure of each neighbourhood is nonzero.

A.3. Young measures

Finally, we recall the theory of Young measures introduced by Young [44, 45] and recalled in
the seminal paper of Ball [2]. Reader interested in a modern presentation may consult [18], [32,
Chapter 6] or [36, Chapter 4]. For simplicity, we formulate it for sequences of functions {un}n∈N
uniformly bounded in Lp (Ω) with some 1 ≤ p ≤∞ andΩ⊂Rn being a bounded domain. We start
by recalling the most important result that we cite from [32, Theorem 6.2]:

Theorem 22 (Fundamental Theorem of Young Measures). Let Ω ⊂ Rn be a a bounded domain
and let {un}n∈N be a sequence bounded in Lp (Ω) with 1 ≤ p ≤∞. Then, there exists a subsequence
(not relabeled) and a weakly-∗ measurable family of probability measures {µx }x∈Ω such that for
all bounded and smooth G :R→R, we have

G
(
un(x)

) ∗
*

∫
R

G(λ) dµx (λ) in L∞(Ω). (24)

We say that the sequence {un}n∈N generates the family of Young measures {µx }x∈Ω.
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Now we list properties of Young measures used in the paper.

Lemma 23. Under the notation of Theorem 22, the following hold true.

(A) We have un → u a.e. (up to a subsequence) if and only if µt , x = δu(t , x).
(B) If {wn}n∈N is another bounded sequence such that un −wn → 0 a.e. then Young measures

generated by {un}n∈N and {wn}n∈N coincide.
(C) If F : R → R, sequence {F (un)}n∈N generates Young measure F #µt , x (i.e. push-forward

µt , x ◦F−1).

Sketch of the proof. For (A) we consider G(u) = u and G(u) = u2 to deduce that un → u in
L2(Ω) so that (up to a subsequence) un converges a.e. The opposite direction is clear because
G(un(x)) → G(u(x)) a.e. For (B) we note that for all bounded and smooth G , weak limits of
G(un(x)) and G(wn(x)) coincide. For (C), it is sufficient to write

G
(
F (un)

)= ∫
R

G(F (λ))dµt , x (λ) =
∫
R

G(λ)d
(
µt , x ◦F−1

)
(λ).

�
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