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Abstract. We introduce a sequence P2n of monic reciprocal polynomials with integer coefficients having the
central coefficients fixed. We prove that the ratio between number of nonunimodular roots of P2n and its
degree d has a limit when d tends to infinity. We present an algorithm for calculation the limit and a numerical
method for its approximation. If P2n is the sum of a fixed number of monomials we determine the central
coefficients such that the ratio has the minimal limit. We generalise the limit of the ratio for multivariate
polynomials. Some examples suggest a theorem for polynomials in two variables which is analogous to Boyd’s
limit formula for Mahler measure.

Résumé. Nous introduisons une suite P2n de polynômes unitaires réciproques avec des coefficients entiers
ayant les coefficients centraux fixes. Nous prouvons que le rapport entre le nombre de racines non unimo-
dulaires de P2n et son degré d a une limite lorsque d tend vers l’infini. Nous présentons un algorithme de
calcul de la limite et une méthode numérique pour son approximation. Si P2n est la somme d’un nombre fixe
de monômes, nous déterminons les coefficients centraux de sorte que le rapport ait la limite minimale. Nous
généralisons la limite du rapport pour les polynômes de plusieurs variables. Certains exemples suggèrent une
conjecture pour les polynômes à deux variables qui est analogue à la formule limite de Boyd pour la mesure
de Mahler.
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1. Introduction

If P (x) = ad xd +ad−1xd−1+·· ·+a1x+a0 (ad 6= 0) has zerosα1,α2, . . . ,αd then the Mahler measure
of P (x) is

M(P (x)) = |ad |
d∏

j=1
max(1, |α j |).

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.28
mailto:dstankov@rgf.bg.ac.rs
https://comptes-rendus.academie-sciences.fr/mathematique/


160 Dragan Stankov

Let I (P ) denote the number of complex zeros of P (x) which are < 1 in modulus, counted with
multiplicities. Let U (P ) denote the number of zeros of P (x) which are = 1 in modulus, (again,
counting with multiplicities). Such zeros are called unimodular. Let E(P ) denote the number of
complex zeros of P (x) which are > 1 in modulus, counted with multiplicities. Then it is obviously
that I (P )+U (P )+E(P ) = d . Pisot number can be defined as a real algebraic integer greater than
1 having the minimal polynomial P (x) of degree d such that I (P ) = d −1. Salem number is a real
algebraic integer > 1 having the minimal polynomial P (x) of degree d such that U (P ) = d − 2,
I (P ) = 1. It is well known that the minimal polynomial of a Salem number is reciprocal.

We say that a polynomial of degree d is reciprocal if P (x) = xd P (1/x). If moduli of coefficients
are small then a reciprocal polynomial has many unimodular roots. A Littlewood polynomial is a
polynomial all of whose coefficients are 1 or −1. Mukunda [7] showed that every self-reciprocal
Littlewood polynomial of odd degree at least 3 has at least 3 zeros on the unit circle. Drungilas [5]
proved that every self-reciprocal Littlewood polynomial of odd degree n ≥ 7 has at least 5 zeros
on the unit circle and every self-reciprocal Littlewood polynomial of even degree n ≥ 14 has at
least 4 unimodular zeros. In [1] two types of very special Littlewood polynomials are considered:
Littlewood polynomials with one sign change in the sequence of coefficients and Littlewood
polynomials with one negative coefficient. The numbers U (P ) and I (P ) of such Littlewood
polynomials P are investigated. In [2] Borwein, Erdélyi, Ferguson and Lockhart showed that
there exists a cosine polynomial

∑N
m=1 cos(nmθ) with the nm integral and all different so that

the number of its real zeros in [0,2π) is O(N 9/10(log N )1/5) (here the frequencies nm = nm(N )
may vary with N ). However, there are reasons to believe that a cosine polynomial

∑N
m=1 cos(nmθ)

always has many zeros in the period.
Clearly, if α j , is a root of a reciprocal P (x) then 1/α j is also a root of P (x) so that I (P ) = E(P ).

Let C (P ) = I (P )+E(P )
2n be the ratio between the number of nonunimodular zeros of P and its degree.

Actually, it is the probability that a randomly chosen zero is not unimodular, and C (P ) = E(P )
n .

We are looking for the sequence P2n of monic reciprocal polynomials with integer coefficients,
such that C (P2n) has a limit when n tends to ∞ and 0 < limn→∞C (P2n) < 1. If P2n is a sequence
of Salem polynomials then this limit is trivially 0. Such sequences are well known: Salem (see [8,
Theorem IV, p. 30]) found a simple way to construct infinite sequences of Salem numbers (and
Salem polynomials) from Pisot numbers.

Here we will investigate a special sequence of polynomials. Let n, k, a0, a1, . . . , ak , be integers
such that n > k ≥ 0, and let P2n(x) be a monic, reciprocal polynomial with integer coefficients

P2n = xn

(
xn +a0 + 1

xn +
k∑

j=1
a j

(
x j + 1

x j

))
.

2. The main theorem

Theorem 1. If k > 0 is an integer then for all fixed integers a j , j = 1, . . . ,k there is a limit C (P2n)
when n tends to infinity.

Proof. The theorem will be proved if we show that 1−C (P2n) has a limit when n tends to ∞. Since
1−C (P2n) = U (P2n )

2n we have to count the unimodular roots of P2n(x). If we use the substitution
x = e i t in the equation P2n(x) = 0 we get

e i nt

(
2cosnt +a0 +

k∑
j=1

2a j cos j t

)
= 0

Since e i nt 6= 0 it follows that the equation is equivalent to

cosnt =−a0

2
−

k∑
j=1

a j cos j t . (1)

C. R. Mathématique, 2020, 358, n 2, 159-168



Dragan Stankov 161

From the substitution x = e i t it follows that x is unimodular if and only if t is real so that we
have to count the real roots of (1) (t ∈ [0,2π)). If Γ1 is the graph of f1(t ) = cosnt and Γ2 is the
graph of f2(t ) =−a0/2−∑k

j=1 a j cos j t , the function on the right side of equation (1), then U (P ) is
equal to the number of intersection points of these two graphs. These intersection points are
obviously settled between lines y = −1 and y = 1. Graph Γ2 of the continuous function f2 is
fixed i.e. does not depend on n, therefore we can introduce a partition of [0,2π] using points
0 = t0 < t1 < ·· · < tp = 2π such that | f2(t j )| = 1, 0 < j < p. Let us consider subintervals I j = [t j−1, t j ]
such that if t ∈ I j then | f2(t )| < 1, j ∈ J = { j1, j2, . . . , jr } ⊆ {1,2, . . . , p}.

Definition 2. A part of the graph of f1(t ) = cosnt such that (k −1)π/n ≤ t ≤ kπ/n, k ∈ Z is k-th
branch of cosnt. The interval [(k −1)π/n,kπ/n] is the domain of the k-th branch.

Each branch of cosnt obviously has exactly one intersection point with the t-axis. We are going
to prove that if n is large enough then each branch of cosnt also has exactly one intersection point
with Γ2. We need the next lemma which will be proved in the next subsection.

Lemma 3. For all B1,B2 > 0 and ε such that 1 > ε> 0, there is n0 ∈N such that if n ≥ n0 then

(1) if |cos(nt )| < 1−ε then n|sin(nt )| > B1,
(2) if |cos(nt )| > 1−ε then n2|cos(nt )| > B2.

We will also need the following claims.

(i) There is a bound B1 of the modulus of the first derivative of f2(t ). Indeed | f ′
2(t )| =

|∑k
j=1 j a j sin j t | ≤∑k

j=1 j |a j | =: B1.
(ii) There is a bound B2 of the modulus of the second derivative of f2(t ). Indeed | f ′′

2 (t )| =
|∑k

j=1 j 2a j cos j t | ≤∑k
j=1 j 2|a j | =: B2.

(iii) The first derivative of f2(t ) has a finite number of roots on [0,2π] so that there is ε j > 0
such that 1−ε j is greater than the value at each local maximum and −1+ε j is less than
the value at each local minimum of f2(t ) on (t j−1, t j ).

(iv) If the domain of a branch of cosnt is the subset of the interior of I j then cosnt − f2(t ) has
values of the opposite sign at the end points of the domain so that the branch has at least
one intersection point with Γ2.

Since f2(t ) is continuous at t j−1 and t j it follows that there are δ1 j > 0, δ2 j > 0 such that if
t ∈ (t j−1, t j−1 + δ1 j ) or t ∈ (t j − δ2 j , t j ) then 1 − | f2(t )| < ε j . If we bring to mind (iii) it follows
that f2(t ) is monotonic on (t j−1, t j−1 +δ1 j ) and on (t j −δ2 j , t j ). Therefore we can choose δ1 j > 0,
δ2 j > 0 such that | f2(t j−1 +δ1 j )| = 1−ε j , | f2(t j −δ2 j )| = 1−ε j

Using Lemma 3(1) there is n j such that if n ≥ n j and | f1(t )| < 1−ε j then | f ′
1(t )| > B1. It follows

that on E j := [t j−1+δ1 j , t j−δ2 j ] a branch of cosnt andΓ2 can not have more than one intersection
point: if they have two intersection points M1, M2 then using the mean value theorem for the
continuous function f1 the slope S of the line M1M2 is greater than B1 in modulus. Using the
mean value theorem again for the continuous function f2 it follows that there is a point t such
that f ′

2(t ) = S so that | f ′
2(t )| = |S| > B1 which is the contradiction with (i).

It remains to be proved that if the domain of a branch is the subset of D1 j = (t j−1, t j−1+δ1 j ] or
of D2 j = [t j −δ2 j , t j ) then the branch of cosnt and Γ2 can not have more than one intersection
point. Let 1 > f2(t ) > 1− ε j and let the branch has an adjacent branch such that the union of
its domains is [(k − 1)π/n, (k + 1)π/n] ⊂ D1 j and k is even. Then using Lemma 3(2) it follows
that if cos(nt ) > 1−ε then f ′′

1 (t )− f ′′
2 (t ) =−n2 cosnt − f ′′

2 (t ) <−B2 − f ′′
2 (t ) is negative. Therefore

f1(t )− f2(t ) is a concave function so that its graph can have at most two intersection points with
the line y = 0. If such an adjacent branch does not exist which means that t j−1 ∈ [kπ/n, (k+1)π/n],
k is even, then we can prove the concavity of f1(t )− f2(t ) in the same manner. We conclude that
if t j−1, the start point of I j , is in the domain of a branch of cosnt then the branch can have 0, 1,
or 2 intersection points with Γ2 (see Figure 1).

C. R. Mathématique, 2020, 358, n 2, 159-168
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Figure 1. Graph Γ1, a branch of cosnt , can have 0, (Γ′′1 ) 1, (Γ′1, Γ′′′1 ) or 2 (Γ1) intersection
points with Γ2, the graph of f2.

If −1 < f2(t ) < −1+ ε j after showing the convexity of f1(t )− f2(t ) on D1 the claim follows in
the similar manner. Analogously we prove the claim if the domain of a branch is the subset of D2

as well as the claim for the end point of I j : if t j is in the domain of a branch of cosnt then the
branch can have 0, 1, or 2 intersection points with Γ2.

We conclude that if n is large enough then each branch of cosnt , such that the start and the
end point of I j are not elements of its domain, has exactly one intersection point with Γ2. Thus
the number U j of intersection points of Γ1 and Γ2 differs to the number V j of intersection points
of Γ1 and the t-axis, t ∈ I j , by 0,1 or 2, because in the beginning and at the end of I j branches are
not complete (see Figure 1). If we take the sum U j and V j over all r subintervals then it is clear
that U (P2n) differs to the number V (P2n) =∑

j∈J V j by a number ≤ 2r . Since 2r does not depend
on n it follows that

(
lim

n→∞(1−C (P2n)) =
)

lim
n→∞

U (P2n)

2n
= lim

n→∞
V (P2n)

2n

(
= lim

n→∞

∑
j∈J V j

2n

)
.

Since the intersection points of the graphs of y = cosnt and the t-axis are obviously uniformly
distributed on I j we conclude

lim
n→∞

∑
j∈J V j

2n
=

∑
j∈J |I j |
2π

. �
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2.1. Proof of Lemma 3

Using the symmetry and the periodicity of cosnt it is enough to prove the claim for the first
branch of cosnt , t ∈ [0,π/n]. For an arbitrarily chosen ε> 0 and n ∈ N we determine τ such that
|cos(nτ)| = 1−ε. It follows that τ= arccos(1−ε)/n or τ= arccos(−1+ε)/n so that

(1) if t ∈ (τ,π/n−τ) then n sinnt > n sinnτ= n sin(arccos(1−ε)) →∞when n →∞. Therefore
the claim follows immediately if we chose

n1 =
⌈

B1

sin(arccos(1−ε))

⌉
.

(2) if t ∈ (0,τ)
⋃

(π/n−τ,π/n) then n2|cosnt | > n2|cosnτ| = n2 cos(arccos(1−ε)) = n2(1−ε) →
∞ when n →∞. Therefore the claim follows immediately if we chose

n2 =
⌈√

B2

1−ε

⌉
.

It remains to take n0 = max(n1,n2). �

2.2. Algorithm for determination limn→∞C (P2n)

In the proof of Theorem 1 we actually declared steps of an algorithm for determination
limn→∞C (P2n):

(1) determine all real roots t j of the equations f2(t ) = 1 and f2(t ) =−1,
(2) arrange them as an increasing sequence 0 = t0 < t1 < ·· · < tp = 2π,
(3) determine I j = [t j−1, t j ] such that if t j−1 < t < t j then | f2(t )| < 1, j ∈ J = { j1, j2, . . . , jr } ⊆

{1,2, . . . , p},
(4) calculate limn→∞C (P2n) = 1−∑

j∈J (t j − t j−1)/(2π).

If f2(t ) is defined:

f2(t ) =
{

1, | f2(t )| ≥ 1

0, otherwise

then

lim
n→∞C (P2n) = 1

2π

∫ 2π

0
f2(t )dt . (2)

3. Approximating limn→∞C (P2n)

The equation f2(t ) = ±1 i.e. −a0/2 −∑k
j=1 a j cos j t = ±1 is algebraic in cos t so that t j can be

expressed by arccosine of an algebraic real number α ∈ [−1,1] thus only solutions of this kind
should be taken into account.

We can approximate numerically the integral in (2) i.e. limn→∞C (P2n). Suppose the interval
[0,2π] is divided into p equal subintervals of length ∆t = 2π/p so that we introduce a partition of
[0,2π] 0 = t0 < t1 < ·· · < tp = 2π such that t j − t j−1 = ∆t . Then we chose numbers ξ j ∈ [t j , t j−1]
and count all ξ j such that | f2(ξ j )| > 1, j = 1,2, . . . , p. If there are s such ξ j then limn→∞C (P2n) is
approximately equal to s

p .

lim
n→∞C (P2n) ≈ 1

p

p∑
j=1

f2( j
2π

p
)

where we chosed ξ j = 2 jπ/p.

C. R. Mathématique, 2020, 358, n 2, 159-168
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3.1. Small limit points of C (P2n)

In the case of trinomials i.e. if k = 0, |a0| ≤ 2 then all roots of P2n(x) = x2n +a0xn +1 obviously are
unimodular. If |a0| > 2 then P2n does not have any unimodular root so that C (P ) tends either to
zero or to one as n approaches infinity.

In the case of quadrinomials i.e. if k = 1, a0 = 0, a1 =±1 then P2n(x) = x2n ± xn+k ± xn−k +1 =
(xn−k ±1)(xn+k ±1) so that obviously all roots are unimodular. If |a1| > 1 then

C (x2n +a1xn+k +a1xn−k +1) = 2arccos(1/a1)/π

so that it has the minimum value 2/3 when a1 = 2 and C (P ) tends to one as a1 approaches infinity.
If we exclude trinomials and quadrinomials then it is clear that the limit points of C (P2n) are

always greater than zero. A natural question that arises here is what is the smallest value, greater
than 0, of the limit points of C (P2n)?

Among all monic reciprocal polynomials P2n , composed of l = 2k +3 = 5,7,9,11 monomials,
with integer coefficients x2n + a j0 xn +∑k

i=1 a ji (xn+ ji + xn− ji )+1 an exhaustive search such that
j1 = 1,2, . . . ,10, ji = ji−1+1, ji−1+2, . . . , ji−1+10, i = 2,3, . . . ,k; a j =±1,±2, · · ·±10, j = j0, j1, . . . , jk
suggests that C (Sl (x)) has the minimal limit point where we denoted Sl (x) = S2k+3(x) = x2n+xn+∑k

i=1(xn+i+xn−i ))+1). Using the algorithm we solve the equation 1/2+cos t+cos2t+·· ·+cos(k)t =
±1. If we develop cos4t , cos3t and cos2t and substitute cos t = x we get two algebraic equations.
By inverse cosine function of its real solutions which are ≤ 1 in modulus we get the exact value of
limn→∞C (Sl ).

Among all monic reciprocal polynomials P2n , composed of l = 2k+2 = 6,8,10 monomials, with
integer coefficients x2n +∑k

i=1 a ji (xn+ ji +xn− ji )+1 an exhaustive search such that j1 = 1,2, . . . ,10,
ji = ji−1 +1, ji−1 +2, . . . , ji−1 +10, i = 2,3, . . . ,k; a j =±1,±2, · · ·±10, j = j1, j2, . . . , jk suggests that
C (Sl (x)) has the minimal limit point where we denoted Sl (x) = S2k+2(x) = x2n +∑k

i=1(xn+2i−1 +
xn−(2i−1))+1). Using the algorithm we solve the equation cos t + cos3t + ·· ·+ cos(2k −1)t = ±1.
If we develop cos7t , cos5t and cos3t and substitute cos t = x we get two algebraic equations.
Using inverse cosine function of its real solutions which are ≤ 1 in modulus we determine the
exact value of limn→∞C (Sl ).

Table 1. Among all monic reciprocal polynomials P2n ∈ Z(x), composed of l monomials,
Sl (x) has the smallest limn→∞C (P2n).

l Polynomial Sl (x) limn→∞C (Sl ) Exact value of limn→∞C (Sl )

5 x2n +xn+1 +xn +xn−1 +1 1/3 1/3

6 x2n +xn+3 +xn+1 +xn−1 +xn−3 +1 0.308799876 2
π arccos(α), α=

3
√p

57
288 + 23

864 + 1
6

3
√p

57
72 + 1

8

7 S5(x)+xn+2 +xn−2 0.274187115 (1/π)arccos((
p

13−1)/4)
8 S6(x)+xn+5 +xn−5 0.243784699 2

π arccos(α8)

9 S7(x)+xn+3 +xn−3 0.218549881 1
π arccos

(
36

3
√

61
p

29
10368 + 3035

93312 −6
3
√p

29
48 + 61

432 +7

36
3
√p

29
48 + 61

432

)
10 S8(x)+xn+7 +xn−7 0.197681551 2

π arccos(α10)
11 S9(x)+xn+4 +xn−4 0.208201295 1

π (arccos(α11)+ π
3 −arccos(β11))

In Table 1 we presented Sl (x) as results of our experiments and value of limn→∞C (Sl ) where
α8 = 0.927571571 is the real solution of 16x5−16x3+3x = 1,α10 = 0.952175588 is the real solution
of 64x7−96x5+40x3−4x = 1,α11 = 0.843858756 is the real solution of 8x4−4x3−6x2−2x+1/2 = 1,
β11 = 0.573949518 is the real solution of 8x4 −4x3 −6x2 −2x +1/2 =−1.

C. R. Mathématique, 2020, 358, n 2, 159-168
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Figure 2. Each intersection point of graph of f1 = cos60t (blue curve) and f2 = −cos t −
cos2t (red curve) corresponds to an unimodular root of x120 +x63 +x61 +x59 +x57 +1.

Figure 3. Unit circle sectors where unimodular roots of x120 + x63 + x61 + x59 + x57 +1 are
located.

Each intersection point of graph of f1 = cos60t and f2 = −cos t − cos2t (see Figure 2) corre-
sponds to an unimodular root of the reciprocal polynomial x120+x63+x61+x59+x57+1. Nonuni-
modular roots have arguments in [−θ,θ] or in [π−θ,π+θ] where θ = arccos(α) ≈ 0.485 ≈ 27.8◦

(see Figure 3) and α is the real root of 4x3 −2x = 1 having the exact value presented in Table 1 in
the row l = 6. Since there are 41 intersection point on [0,π] and f1, f2 are both even it follows that
there are 120− 2 · 41 = 38 nonunimodular roots so that C (P120) = 38/120 ≈ 0.317 is close to the
limit of C (P2n) → 2

π arccos(α) = 2
πθ ≈ 0.308799876.

3.2. Polynomials with smallest limit points of C (P2n)

Our calculations suggest that the next conjecture seems to be true:

Conjecture 4. If P2n is a sum of l = 2k+3 monomials, i.e. a0 6= 0, then the sequence C (x2n+xn+k+
·· ·+xn+2 +xn+1 +xn +xn−1 +xn−2 +·· ·+xn−k +1) tends to the smallest limit, greater than zero, of
C (P2n), n →∞.

C. R. Mathématique, 2020, 358, n 2, 159-168
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Let k ≥ 1 be an integer. If P2n is a sum of l = 2k + 2 monomials, i.e. a0 = 0, then the sequence
C (x2n + xn+2k−1 + ·· · + xn+5 + xn+3 + xn+1 + xn−1 + xn−3 + xn−5 + ·· · + xn−(2k−1) + 1) tends to the
smallest limit, greater than zero, of C (P2n), n →∞.

But in the case of dodecanomials we found that C (x2n +xn+9 +xn+7 +2xn+5 +2xn+3 +2xn+1 +
2xn−1+2xn−3+2xn−5+xn−7+xn−9+1) tends to 2arccos(0.943468)/π= 0.215085 which is smaller
than 0.226163 = 2(arccos(0.966357)+arccos(0.877575)−arccos(0.919147))/π the limit of C (x2n +
xn+9+xn+7+xn+5+xn+3+xn+1+xn−1+xn−3+xn−5+xn−7+xn−9+1). Nevertheless the conjecture
seems to be true for many k.

It is natural to ask: do the following limits exist

lim
k→∞

lim
n→∞C

(
xn

(
xn + 1

xn +
k∑

j=1

(
x2 j−1 + 1

x2 j−1

)))
,

lim
k→∞

lim
n→∞C

(
xn

(
xn +1+ 1

xn +
k∑

j=1

(
x2 j + 1

x2 j

)))
?

Our experiments with k ≈ half of million, n ≈ one hundred million suggest that these limits
exist and that they are both equal to 0.20885.

4. Extension of Mahler measure

The definition of the Mahler measure could be extended to polynomials in several variables. We
recall Jensen’s formula which states that 1

2π

∫ 2π
0 log |P (e iθ)|dθ = log |a0|+∑d

j=1 logmax(|α j |,1) Thus

M(P ) = exp

{
1

2π

∫ 2π

0
log |P (e iθ)|dθ

}
,

so M(P) is just the geometric mean of |P (z)| on the torus T .
Hence a natural candidate for M(F ) is

M(F ) = exp

{
1

(2π)r

∫ 2π

0
dθ1 . . .

∫ 2π

0
log |F (e iθ1 , . . . ,e iθr )|dθr

}
.

The smallest known Mahler measures in two variables are (see [3])

M((x +1)y2 + (x2 +x +1)y +x(x +1)) = 1.25542. . .

and
M(y2 + (x2 +x +1)y +x2) = 1.28573. . . .

Boyd proved [4] the next

Theorem 5. As m →∞, M(P (x, xm)) → M(P (x, y)).

Let Q(x1, x2) =∑k
j=0α j x

e j 1

1 x
e j 2

2 , α j ∈R, e j i ∈Z, j = 0,1, . . . ,k, i = 1,2 and let

W (x1, x2) = xn
1 xn

2

(
xn

1 xn
2 +x−n

1 x−n
2 +Q(x1, x2)+Q(x−1

1 , x−1
2 )

)
where n ∈N is greater than max(|e j i |) so that W is a bivariate polynomial. Let

g2(x1, x2) :=−1/2(Q(x1, x2)+Q(x−1
1 , x−1

2 ))

and

g2(x1, x2) :=
{

1, |g2(x1, x2)| ≥ 1

0, otherwise,
(3)

then we can define

LC (W ) := 1

(2π)2

∫ 2π

0

∫ 2π

0
g2(exp(i t1),exp(i t2))dt1dt2. (4)
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If x2 = 1 and if we chose the coefficients α j of Q in such a way that Q(x1,1) = a0/2+∑k
j=1 a j x j

1

then W (x1,1) = P2n(x1), g2(exp(i t ),1) = f2(t ) and g2(exp(i t ),1) = f2(t ) so that, recalling (2), we
conclude that LC (P2n) = limn→∞C (P2n).

If Q(x, y) = x + y + 1 we can prove that the Boyd’s property for LC is valid: LC (W (x, xm)) →
LC (W (x, y)) as m → ∞. Indeed LC (x2n + xn(x + xm + 2 + x−1 + x−m)) + 1) = limn→∞C (x2n +
xn(x + xm + 2 + x−1 + x−m)) + 1) = 1

2π

∫ 2π
0 f2m(t ), where f2m(t ) = −1 − cos(mt ) − cos(t ). Since

cos(t ) =−cos(π−t ) it follows that cos(2(m1+1)t ) =−cos(π−2(m1+1)t ) =−cos((2m1+1)(π−t )).
Therefore if m is odd then for each interval I = [a,b] ⊆ [0,π] such that | f2m(t )| > 1, a < t < b, there
is the interval I ′ = [π−b,π−a] of the equal length such that | f2m(t )| ≤ 1, t ∈ I ′. We conclude that
1
π

∫ π
0 f2m(t ) = 0.5 for m odd so that LC (W (x, xm)) → 0.5 as m →∞.
On the other hand

LC (W ) = 1

(2π)2

∫ 2π

0

∫ 2π

0
−1

2
(exp(i t1)+exp(i t2)+2+exp(−i t1)+exp(−i t2))dt1dt2

= 1

(2π)2

∫ 2π

0

∫ 2π

0
(−1−cos t1 −cos t2)dt1dt2.

Since if t1, t2 ∈ [0,π] then |1 + cos t1 + cos t2| ≥ 1 is equivalent with t2 ≤ π− t1 and using the
symmetry of the set {(t1, t2) ∈ [0,2π]× [0,2π] : −1−cos t1 −cos t2 ≥ 1} it follows that

LC (W ) = 4

(2π)2

∫ π

0

(∫ π−t1

0
dt2

)
dt1 = 1

π2

∫ π

0
(π− t1)dt1 = 1

2
.

This example as well as numerical approximations of LC of many other polynomials in two
variables using the formula (2) and the definition (4) suggest us that the Boyd’s limit formula
in Theorem 5 is also valid for LC i.e. we propose the following

Theorem 6. As m →∞, LC (W (x, xm)) → LC (W (x, y)).

To prove Theorem 6 we use two lemmas which Everest and Ward proved in [6]. Denote as
usual the (multiplicative) circle group by K =S1, and the torus by K 2 =S1×S1. For an integrable
function f : K →C, write ∫ 1

0
f (e2πiθ)dθ =

∫
f (x)dµK =

∫
f dµK (5)

and for an integrable function g : K 2 →C, write∫ 1

0

∫ 1

0
g (e2πiθ1 ,e2πiθ2 )dθ1dθ2 =

∫
g (x1, x2)dµK 2 =

∫
g dµK 2 . (6)

We will use the Lebesgue measure µK on the circle to evaluate the measure of disjoint unions of
intervals (whose measure is simply the sum of the lengths).

Lemma 7. Let φ : K 2 →R be any continuous function. Then

lim
N→∞

∫
φ(x, xN )dµK =

∫
φdµK 2

Lemma 8. Let φ : K 2 → R be any Riemann-integrable function and δ > 0 be given. There are
finite trigonometric series P (x1, x2) =∑

‖n‖<M an xn1
1 xn2

2 and Q(x1, x2) =∑
‖n‖<M bn xn1

1 xn2
2 with the

property that

P (x1, x2) ≤φ(x1, x2) ≤Q(x1, x2)

for all (x1, x2) ∈ K 2 and ∫
(Q −P )dµK 2 < δ,

where ‖n‖ = max{|n1|, |n2|}, M > 0.
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The finite sums P , Q used to bound φ are called trigonometric polynomials since in the ad-
ditive group notation the monomial xn1

1 xn2
2 corresponds to e2πi (n1θ1+n2θ2) under the correspon-

dence x1 = e2πiθ1 , x2 = e2πiθ2 .

Proof of Theorem 6. If r = 2 in (3) then function g2(x1, x2) is not continuous but is Riemann-
integrable (since it is bounded and the set of discontinuities of g2 has measure 0). By
Lemma 8 there are finite trigonometric series P2(x1, x2) = ∑

‖n‖<M an xn1
1 xn2

2 and Q2(x1, x2) =∑
‖n‖<M bn xn1

1 xn2
2 with the property that

P2(x1, x2) ≤ g2(x1, x2) ≤Q2(x1, x2)

for all (x1, x2) ∈ K 2 and ∫
(Q2 −P2)dµK 2 < δ.

It follows that ∫
P2(x, xm)dµK ≤

∫
g2(x, xm)dµK ≤

∫
Q2(x, xm)dµK . (7)

Function P2, Q2 are continuous so by Lemma 7∫
P2(x, xm)dµK →

∫
P2(x1, x2)dµK 2 , (8)∫

Q2(x, xm)dµK →
∫

Q2(x1, x2)dµK 2 . (9)

Since
∫

Q2dµK 2 −∫
P2dµK 2 < δ and δ> 0 was arbitrary, (7), (8) and (9) then show that∫

g2(x, xm)dµK →
∫

g2(x1, x2)dµK 2 .

Recalling (5), (6) and using the substitutions t = 2πθ, t1 = 2πθ1, t2 = 2πθ2 it follows that∫
g2(x, xm)dµK =

∫ 1

0
g2(e2πiθ ,e2mπiθ)dθ = 1

2π

∫ 2π

0
g2(e i t ,emi t )dt = LC (W (x, xm))

and∫
g2(x1, x2)dµK 2 =

∫ 1

0

∫ 1

0
g2(e2πiθ1 ,e2πiθ2 )dθ1dθ2 = 1

4π2

∫ 2π

0

∫ 2π

0
g2(e i t1 ,e i t2 )dt1dt2

= LC (W (x1, x2)),

hence the claim follows. �
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