Henry Fallet

Cherednik algebra for the normalizer

Volume 360 (2022), p. 47-52

<https://doi.org/10.5802/crmath.281>

© Académie des sciences, Paris and the authors, 2022. Some rights reserved.

This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l’édition scientifique ouverte www.centre-mersenne.org
Representation theory / Théorie des représentations

Cherednik algebra for the normalizer

Henry Fallet

33 Rue St Leu, 80000 Amiens, LAMFA, UMR 7352 CNRS-UPJV, France
E-mail: henry.fallet@u-picardie.fr

Abstract. Ginzburg, Guay, Opdam and Rouquier established an equivalence of categories between a quotient category of the category O for the rational Cherednik algebra and the category of finite dimension modules of the Hecke algebra of a complex reflection group W. We announce a generalization of this result to the extension of the Hecke algebra associated to the normalizer of a reflection subgroup.

2020 Mathematics Subject Classification. 20C08.

Version française abrégée

1. Introduction

Let V be a C-vector space of finite dimension n. Let $W < GL(V)$ be a finite complex reflection group. Let $W_0 < W$ be a reflection subgroup of W. According to [3], we can associate to W a braid group $B(W)$ and a Hecke algebra $H(W)$. In [14] is introduced an extension of $H(W)$ as an algebra associated to the normalizer $N_W(W_0)$, called its Hecke algebra and denoted $H(W,W_0)$, for more results see [10, 11].

We refer to [3] for the general definitions used below. We have a surjection $\pi : B(W) \to W$ sending a braided reflection of hyperplane H to the distinguished reflection s_H of hyperplane H. We denote \mathcal{A} the hyperplane arrangement of W. Let $\bar{B}_0 := \pi^{-1}(N_W(W_0))$ and J be the two-sided ideal of $C\bar{B}_0$ generated by $\langle a_H^{m_H} = 1, H \in \mathcal{A} \setminus \mathcal{A}_0 \rangle$ and $a_H^{m_H} = \sum_{k=0}^{m_H-1} a_{H,k}^{m_H} H \in \mathcal{A}_0$ where m_H is the order of the pointwise stabilizer of H in W, denoted W_H and the scalars $(a_{H,k})_{k \in \{0, \ldots, m_H-1\}}$ are complex numbers invariant under the action of $N_W(W_0)$, $\forall w \in N_W(W_0)$, $a_{w(H),k} = a_{H,k}$ for all $k \in \{1, \ldots, m_H - 1\}$. As in [14] we define the Hecke algebra of the normalizer as the quotient algebra of $C\bar{B}_0$ by the ideal J.

ISSN (electronic) : 1778-3569
https://comptes-rendus.academie-sciences.fr/mathematique/
There is a second equivalent definition. Let $K := \text{Ker}(\pi_1(X/W) \to \pi_1(X_0/W_0))$ and $\tilde{\mathcal{B}}_0 := \frac{\mathcal{B}_0}{K}$ where $X := V \setminus \bigcup_{H \in \mathcal{O}_d} H$ and $X_0 = V \setminus \bigcup_{H \in \mathcal{O}_d} H$. Then

$$H(W, W_0) = \frac{\mathbb{C}\tilde{\mathcal{B}}_0}{\langle a_H^{m_H} = \sum_{k=0}^{m_H-1} a_{H,k} a_H^k, \quad H \in \mathcal{O}_d \rangle}$$

We introduce Cherednik algebras in this new context, and we prove

Theorem 1. There exists an equivalence of categories between the quotient category $\mathcal{O} \mathcal{O}_d$ and the category of $H(W, W_0)$-modules of finite dimension, where \mathcal{O}_d is a highest weight category associated to the Cherednik algebra of the pair (W_0, W).

2. Construction of the KZ_0-functor

2.1. The Cherednik algebra of the pair (W_0, W)

We denote $A(W_0, W)$ this algebra, and we define it as an algebra admitting a triangular decomposition in the sense of [13]. As a vector space, $A(W_0, W)$ is $\mathbb{C}[V] \otimes \mathbb{C}N_W(W_0) \otimes \mathbb{C}[V^*]$ and we add the following relations on the generators of $\mathbb{C}[V]$, $\mathbb{C}[V^*]$ and $\mathbb{C}N_W(W_0)$,

$$[x', x] = 0 \text{ for all } (x, x') \in V^* \times V^*$$

$$[y, y'] = 0 \text{ for all } (y, y') \in V \times V$$

$$[y, x] = tx(y) + \sum_{H \in \mathcal{O}_d} \frac{\alpha_{H,y} x(\nu_H)}{\alpha_{H,y}} \sum_{j=0}^{m_H-1} m_H(k_{H,j+1} - k_{H,j}) \epsilon_{H,j}$$

where $\epsilon_{H,j} = \frac{1}{m_H} \sum_{w \in \mathcal{W}_H \setminus \{\text{id}\}} \det(w)^j w$ is a primitive orthogonal idempotent of $\mathbb{C}W_H$, $\alpha_H \in V^*$ such that $\text{Ker}(\alpha_H) = H$. The vector $\nu_H \in V$ is such that ν_H is a W_H-stable complement of H.

The set $(k_{H,j})_{j \in \{0, ..., m_H-1\}}$ is a set of complex number such that $k_{w(H),j} = k_{H,j}$ and $t \in \mathbb{C}$. In order to define a KZ functor, we need to assume $t \neq 0$. Therefore, up to renormalization we can assume $t = 1$ which we do from now on.

As noticed by the referee, this algebra is a special case of a symplectic reflection algebra as in [6], for $N_W(W_0)$ acting on $V \otimes V^*$ in natural way.

2.2. Dunkl–Opdam operators

We denote by $\mathcal{D}(X)$ the algebra of differential operators over X. In [11] is introduced a differential 1-form, $N_W(W_0)$-equivariant and integrable,

$$\omega_0 = \sum_{H \in \mathcal{O}_d} a_H \frac{d\alpha_H}{\alpha_H} \in \Omega^1(X) \otimes \mathbb{C}W_0$$

where $a_H = \sum_{j=0}^{m_H-1} m_H k_{H,j} \epsilon_{H,j}$. We build a connection on a trivial vector bundle over X, by

$$\nabla := d + \omega_0.$$

This connection is flat and $N_W(W_0)$-equivariant. The covariant derivative of this connection in the direction of $y \in V$ is a differential operator called Dunkl–Opdam operator, notated T_y.

Proposition 2. For all $y \in V$, $T_y := \partial_y + \sum_{H \in \mathcal{O}_d} \frac{a_H(y)}{a_H} a_H \in \mathcal{D}(X) \otimes N_W(W_0)$. This family of differential operators satisfies two properties $\forall (y, y') \in V \times V$,

$$[T_y, T_{y'}] = 0$$

and $\forall y \in V, \forall w \in N_W(W_0), w.T_y.w^{-1} = T_{w(y)}$.

We introduce the algebra $A(W, W_0)_{\text{reg}} = \mathbb{C}[X] \otimes_{\mathbb{C}[V]} A(W, W_0)$. We can define a faithful representation of $A(W, W_0)$.
Theorem 3 (Dunkl embedding).

(1) \[\Phi : A(W_0, W) \longrightarrow \mathcal{D}(X) \rtimes N_W(W_0) \]
\[x \in V^* \longrightarrow x \]
\[w \in N_W(W_0) \longrightarrow w \]
\[y \in V \longrightarrow T_y \]
is an injective morphism of algebras.

(2) By localization, the morphism \(\Phi \) becomes an isomorphism of algebra. We note \(\Phi_{\text{reg}} \) the isomorphism between \(A(W_0, W)_{\text{reg}} \) and \(\mathcal{D}(X) \rtimes N_W(W_0) \).

2.3. The category \(\mathcal{O} \)

Let \(e u_0 = \sum_{y \in \mathcal{B}} y^* y - \sum_{H \in \mathcal{A}_0} a_H \), where \(\mathcal{B} \) is a basis of \(V \). This operator is called the Euler element. It induces an inner graduation on \(A(W_0, W) \). \(A(W_0, W) \) is a mere finitely generated, locally nilpotent \(\mathcal{O} \)-module, for the action of \(\mathcal{O} \)-torsion, i.e. \(e u_0, x = x, [e u_0, y] = -y, [e u_0, w] = 0 \).

For every simple \(\mathbb{C}_N(W_0) \) module \(E, \sum_{H \in \mathcal{A}_0} a_H \in \mathcal{Z}(\mathbb{C}_N(W_0)) \) acts on \(E \) by multiplication by a scalar \(c_E \). We define a partial ordering on \(\text{Irr}(\mathbb{N}_W(W_0)) \): \(E < E' \) if \(c_E - c_{E'} \in \mathbb{Z}_{>0} \).

For each \(E \in \text{Irr}(\mathbb{N}_W(W_0)) \) we define a \(A(W_0, W) \) module called standard object or Verma module,

\[\Delta(E) = \text{Ind}_{\mathcal{C}[V^*] \rtimes \mathbb{C}_N(W_0)}^{A(W_0, W)} E \]

The category \(\mathcal{O} \) is a full sub category of the category of \(A(W_0, W) \) modules, where the modules are finitely generated, locally nilpotent for the action of \(\mathbb{C}[V^*] \) and isomorphic to the direct sum of the generalized \(e u_0 \)-eigenspaces. According to \([1, 2, 9] \), the category \(\mathcal{O} \) is Abelian, Artinian. The object \(\Delta(E) \) is indecomposable. The category \(\mathcal{O} \) is highest weight with \(\{ \Delta(E) \}_{E \in \text{Irr}(\mathbb{N}_W(W_0))} \) as the set of standard object. Every standard object \(\Delta(E) \) admits a simple head \(L(E) \). Every simple object in \(\mathcal{O} \) is isomorphic to some \(L(E) \) and \(L(E) \) admits a projective cover. Every object \(M \) of \(\mathcal{O} \) admits a finite composition series. The B.G.G reciprocity law is satisfied inside \(\mathcal{O} \).

2.4. Functor \(KZ_0 \)

Let \(\delta := \prod_{H \in \mathcal{A}_0} a_H \in \mathbb{C}[V] \). Let \((A(W_0, W)_{\text{mod}})_{\text{tor}} \) be the subcategory of \(A(W_0, W)_{\text{mod}} \)-modules with \(\delta \)-torsion, i.e. \(M \in (A(W_0, W)_{\text{mod}}), M_{\text{tor}} := \{ m \in M \mid \exists n \geq 0 \delta^n m = 0 \} \), then \(M \in (A(W_0, W)_{\text{mod}})_{\text{tor}} \).

We have a localization functor,

\[\text{Loc} : A(W_0, W)_{\text{mod}} \longrightarrow A(W_0, W)_{\text{reg}}_{\text{mod}} \]
\[M \longrightarrow (A(W_0, W)_{\text{reg}} \otimes A(W_0, W)) M \]

This functor induces a fully faithful functor \(\mathcal{O} \longrightarrow (A(W_0, W)_{\text{reg}})_{\text{mod}} \).

The Dunkl embedding gives an equivalence of categories between \(A(W_0, W)_{\text{reg}} \)-modules and \(\mathcal{D}(X) \rtimes N_W(W_0) \)-modules. We also have the following equivalence of categories between \(\mathcal{D}(X) \rtimes N_W(W_0) \)-modules and \(e, (\mathcal{D}(X) \rtimes N_W(W_0))_{\text{-mod}} \)-modules and with \(\mathcal{D}(X) \)-modules where \(e = \frac{1}{|N_W(W_0)|} \sum_{g \in N_W(W_0)} g \) is an idempotent of \(\mathbb{C}_N(W_0) \). From the results of \([4] \) we get an isomorphism of algebras \(\mathcal{D}(X)_{\text{reg}} \cong \mathcal{D}(X / N_W(W_0)) \), thanks to the fact that \(N_W(W_0) \) acts without fixed points on \(X \).

Let us examine the structure of \(\mathcal{D}(X) \rtimes N_W(W_0) \)-modules for the case of a localized standard object. The localized Verma module \(\Delta(E)_{\text{reg}} \) is a free \(\mathbb{C}[X] \)-module of dimension \(\text{dim}(E) \), so it corresponds to an algebraic vector bundle over \(X \). We endow this vector bundle with a connection by considering the action of \(T_y \) on an element of \(\Delta(E)_{\text{reg}} \). This leads to the formula

\[\nabla_y (P \otimes v) := \partial_y (P \otimes v) = \partial_y (P) \otimes v + \sum_{H \in \mathcal{A}_0} \frac{a_H(y)}{a_H} . (P \otimes a_H v) \]
Proposition 4. \(\nabla_y \) is a flat, \(N_W(W_0) \)-equivariant connection with regular singularities over \(\nu \).

Since this property is true for every standard object, it is also true for every object in \(\mathcal{O} \). Applying the Riemann–Hilbert–Deligne correspondence, we get a horizontal sections functor \(\mathcal{O}_{\text{reg}} \rightarrow \mathcal{C}(X/N_W(W_0))\text{-mod} \), \(M \rightarrow (M_{\text{reg}}^W(W_0))^{\text{an}} \). According to [11, Proposition 2.6], this action by monodromy factorizes through \(H(W,W_0) \). So we get a functor \(KZ_0: \mathcal{O}_{\text{reg}} \rightarrow H(W,W_0)\text{-mod} \) which is exact and fully-faithful. From classical results (see [15]), we get that \(KZ_0 \) is representable by a projective object noted \(P_{KZ_0} \). We prove the following

Theorem 5. \(KZ_0 \) is fully faithful and essentially surjective from the category \(\mathcal{O}_{\text{reg}} \) to the category of \(H(W,W_0)\text{-mod} \).

3. Forgetting \(W \)

In this section we provide a related result involving only \(W_0 \), and not the ambient group \(W \). The general setting is as follows. Let \(G \) be a finite subgroup of \(GL(V) \). Let \(G_0 \) be a normal subgroup of \(G \) generated by reflections. Let \(\mathcal{H}_0 \) be the set of reflections of \(G_0 \) and \(\mathcal{A}_0 \) the arrangement of reflecting hyperplanes of \(G_0 \). The first goal is to build up a Hecke algebra for \(G \) from the Hecke algebra of \(G_0 \) generalizing \(H(W_0,W) \) for \(G = N_W(W_0) \).

Let \(X^+ \) be the subspace of \(V \) on which \(G \) acts freely and let \(X_0 \) be the subspace of \(V \) on which \(G_0 \) acts freely. The manifold \(X_0 \setminus X^+ \) is of codimension \(>2 \) then \(\pi_1(X^+) \approx \pi_1(X_0) \) [12, Theorem 2.3]. Since \(G_0 \) acts freely on \(X_0 \), it also acts freely on \(X^+ \) therefore the projection maps \(X_0 \rightarrow X_0/G_0 \) and \(X^+ \rightarrow X^+/G_0 \) are covering maps and we get two short exact sequences.

\[
\begin{array}{ccccccc}
1 & \rightarrow & \pi_1(X^+) & \rightarrow & \pi_1(X^+/G_0) & \rightarrow & G_0 & \rightarrow & 1 \\
| & & \approx & & | & & | & & |
\end{array}
\]

\[
\begin{array}{ccccccc}
1 & \rightarrow & \pi_1(X_0) & \rightarrow & \pi_1(X_0/G_0) & \rightarrow & G_0 & \rightarrow & 1 \\
| & & \approx & & | & & | & & |
\end{array}
\]

The exactness and the commutativity of the diagram together imply \(\pi_1(X^+/G_0) \approx \pi_1(X_0/G_0) \).

The braid group \(B_0 \) of \(G_0 \) is a normal subgroup of \(B := \pi_1(X^+/G) \), we get a short exact sequence

\[
\begin{array}{ccccccc}
1 & \rightarrow & B_0 := \pi_1(X_0/G_0) & \rightarrow & \pi_1(X^+/G) & \rightarrow & G/G_0 & \rightarrow & 1
\end{array}
\]

Let \(I \) be the ideal of \(\mathcal{C} B_0 \) generated by the relations \(\sigma^{m_{ij}}_H = \sum_{k=0}^{m_{ij}-1} a_{H,k} \sigma^j_H \) for \(\sigma_H \) a braided reflection associated to \(H \in \mathcal{A}_0 \). Then the Hecke algebra of \(G_0 \) is the quotient \(H_0 := \mathcal{C} B_0/I \).

According to the now proven BMR freeness conjecture (see the references of [11] or its weaker version in Characteristic \(0 \) [5]) it is an algebra finitely generated of dimension \(|G_0| \). Let \(I^+ = \mathcal{C} B \otimes_{\mathcal{C} B_0} I \) be the ideal which define the Hecke algebra of \(G \), \(H(G) := \mathcal{C} B_0/I^+ = \mathcal{C} B \otimes_{\mathcal{C} B_0} H_0 \) is of dimension \(|G| \).

Let us make a link between this new algebra and the algebra \(H(W_0,W) \). We defined \(H(W_0,W) \) as a quotient of the algebra \(\mathcal{C} B_0 \). We defined \(B_0 \) as the quotient of \(\pi_1(X/N_W(W_0)) \) by \(K := \text{Ker}(\pi_1(X) \rightarrow \pi_1(X_0)) \). Since \(X_0 \setminus X^+ \) has codimension \(>2 \)

\[
K = \text{Ker}(\pi_1(X) \rightarrow \pi_1(X_0)) = \text{Ker}(\pi_1(X/N_W(W_0)) \rightarrow \pi_1(X^+/N_W(W_0)))
\]

And \(B_0 = \pi_1(X^+/N_W(W_0)) \) is our group \(\pi_1(X^+/G) =: B \). As a result, the algebra \(H(W_0,W) \) is the same as \(H(G) \).

Let us consider the category \(\mathcal{O}_{\text{reg}}^0 \) the full subcategory of \(\mathcal{O} \) of module annihilated by a power of \(\delta_0 := \prod_{H \in \mathcal{A}_0} \alpha_H \). We have

Theorem 6. \(KZ_0 \) is fully faithful and essentially surjective from the category \(\mathcal{O}_{\text{reg}}^0 \) to the category of finite dimension \(H(G)\text{-mod} \).
A priori \mathcal{O}_{tor} and $\mathcal{O}^0_{\text{tor}}$ are different. Actually, we can prove that these two categories are the same. Let $M \in \mathcal{O}^0_{\text{tor}}$ then $\text{Loc}(M) = \mathbb{C}[X] \otimes_{\mathbb{C}[X_0]} (\mathbb{C}[X_0] \otimes_{\mathbb{C}[V]} M)$, so $M \in \mathcal{O}_{\text{tor}}$.

Conversely, let M be a module inside \mathcal{O}_{tor}, we would like to prove $M_{\text{reg}}^0 := \mathbb{C}[X_0] \otimes_{\mathcal{O}[V]} M = 0$.

Let $i : X^+ \rightarrow X_0$ be a continuous injection of the open set X^+ inside X_0. We denote by \mathcal{O}_{X^+} the structural sheaf of X^+ and \mathcal{O}_{X_0} the structural sheaf of \mathcal{O}_{X_0}. We denote by \mathcal{D}_{X^+} the sheaf of algebraic differential operators over X_0 and \mathcal{D}_{X^+} the sheaf of algebraic differential operators over X^+. [8, definitions 2.1.5 and 2.1.12].

We have a morphism of ringed space $(i, i^\sharp) : (X^+, \mathcal{O}_{X^+}) \rightarrow (X_0, \mathcal{O}_{X_0})$ where $i^\sharp : i^{-1} \mathcal{O}_{X_0} \rightarrow \mathcal{O}_{X^+}$ is the identity map, then $i^\sharp : \mathcal{O}_{X_0} \rightarrow \mathcal{O}_{X^+, x}$ is the identity too. The pull back functor is

$$i^* : \mathcal{D}_{X_0} \rightarrow \mathcal{D}_{X^+}$$

We have two functors $A(W_0)_{\text{reg}}^0 \rightarrow \mathcal{D}_{X_0} \rightarrow \mathcal{D}_{X^+}$.

We need to prove $i^* M_{\text{reg}}^0 = 0$. We have for all $x \in X \subset X_0$, $M_{\text{reg}, x} = 0$ it is due to $M \in \mathcal{O}_{\text{tor}}$. Since M_{reg}^0 and M_{reg} are locally free \mathcal{O}_{X_0}-module, respectively \mathcal{O}_{X_0}-module, $(i^* M_{\text{reg}}^0)_x = M_{\text{reg}, x}$. Therefore, $(i^* M_{\text{reg}})_x = M_{\text{reg}, x} \approx \mathcal{O}_{X_0}^n$, so $n = 0$.

Since $i^* M_{\text{reg}}^0$ is a locally free \mathcal{O}_{X_0} module, there exists an open affine covering $(U_i)_{i \in I}$ of X such that $(i^* M_{\text{reg}}^0)_{U_i} \approx (\mathcal{O}_{X_0}^n)_{U_i} = 0$, thus $i^* M_{\text{reg}}^0 = 0$ so $M_{\text{reg}}^0 = 0$ then $M \in \mathcal{O}_0^0$. The categories \mathcal{O}_{tor} and $\mathcal{O}^0_{\text{tor}}$ are equals. The proof of the equivalence of categories induced by KZ_0 uses the same arguments as for 5.

Acknowledgements

These results are part of my PhD-Thesis [7] at University Picardie Jules Verne under the supervision of Prof. Ivan Marin. I would like to thank the referee, which suggested forgetting the ambient group W.

References

