I N S T I T U T D E F R A N C E Académie des sciences

Comptes Rendus

Mathématique

Jared Duker Lichtman

Translated sums of primitive sets

Volume 360 (2022), p. 409-414
Published online: 26 April 2022
https://doi.org/10.5802/crmath. 285
(c) BY \quad This article is licensed under the

Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569

Translated sums of primitive sets

Jared Duker Lichtman*, ${ }^{*}$

${ }^{a}$ Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
E-mail: jared.d.lichtman@gmail.com

Abstract

The Erdős primitive set conjecture states that the sum $f(A)=\sum_{a \in A} \frac{1}{a \log a}$, ranging over any primitive set A of positive integers, is maximized by the set of prime numbers. Recently Laib, Derbal, and Mechik proved that the translated Erdős conjecture for the sum $f(A, h)=\sum_{a \in A} \frac{1}{a(\log a+h)}$ is false starting at $h=81$, by comparison with semiprimes. In this note we prove that such falsehood occurs already at $h=1.04 \cdots$, and show this translate is best possible for semiprimes. We also obtain results for translated sums of k-almost primes with larger k.

Mathematical subject classification (2010). 11N25, 11Y60, 11A05, 11M32.
Funding. The author is supported by a Clarendon Scholarship at the University of Oxford.
Manuscript received 30th August 2021, revised 14th October 2021, accepted 19th October 2021.

1. Introduction

A set $A \subset \mathbb{Z}_{>1}$ of positive integers is called primitive if no member divides another (we trivially exclude the singleton $\{1\}$). An important family of examples is the set \mathbb{N}_{k} of k-almost primes, that is, numbers with exactly k prime factors counted with multiplicity. For example, $k=1,2$ correspond to the sets of primes and semiprimes, respectively.

In 1935 Erdős [3] proved that $f(A)=\sum_{a \in A} \frac{1}{a \log a}$ converges uniformly for any primitive A. In 1988 he further conjectured that the maximum of $f(A)$ is attained by the primes $A=\mathbb{N}_{1}$. One may directly compute $f\left(\mathbb{N}_{1}\right)=1.636 \cdots$, whereas the best known bound is $f(A)<e^{\gamma}=1.781 \cdots$ for any primitive A [8]. As a special case, Zhang [9] proved that the primes maximize $f\left(\mathbb{N}_{k}\right)$, that is, $f\left(\mathbb{N}_{1}\right)>f\left(\mathbb{N}_{k}\right)$ for all $k>1$.

One may pose a translated analogue of the Erdős conjecture, namely, the maximum of $f(A, h)=\sum_{a \in A} \frac{1}{a(\log a+h)}$ is attained by the primes $A=\mathbb{N}_{1}$. Recently Laib, Derbal, and Mechik [5] proved that this translated conjecture is false, by showing $f\left(\mathbb{N}_{1}, h\right)<f\left(\mathbb{N}_{2}, h\right)$ for all $h \geq 81$. Their proof method is direct, by studying partial sum truncations of $f(A, h)$. (Laib [4] very recently announced a bound $h \geq 60$, as a refinement of the same method.)

By different methods, we extend the range of such falsehood down to $h>1.04 \cdots$, and show this translate is best possible for semiprimes.

[^0]Theorem 1. Let $P(s)=\sum_{p} p^{-s}$ denote the prime zeta function. We have $f\left(\mathbb{N}_{1}, h\right)<f\left(\mathbb{N}_{2}, h\right)$ if and only if $h>h_{2}$, where $t=h_{2}=1.04 \cdots$ is the unique real solution to

$$
\int_{1}^{\infty}\left[P(s)-\frac{1}{2}\left(P(s)^{2}+P(2 s)\right)\right] e^{(1-s) t} \mathrm{~d} s=0
$$

Moreover $f\left(\mathbb{N}_{1}, h\right)<f\left(\mathbb{N}_{k}, h\right)$ for all k sufficiently large, if and only if $h>0.277 \cdots$.
This suggests that the Erdős conjecture, if true, is only barely so. Moreover, for the same value $h=h_{2}=1.04 \cdots$ we show the primes minimize $f\left(\mathbb{N}_{k}, h\right)$, which may be viewed as the inverse analogue of Zhang's maximization result.

Theorem 2. For $h_{2}=1.04 \cdots$, we have $f\left(\mathbb{N}_{1}, h_{2}\right)<f\left(\mathbb{N}_{k}, h_{2}\right)$ for all $k>1$.

2. Proof of Theorem 1

We introduce the zeta function for k-almost primes $P_{k}(s)=\sum_{n \in \mathbb{N}_{k}} n^{-s}$, whose relevance to us arises from the identity,

$$
\begin{align*}
f\left(\mathbb{N}_{k}, h\right) & =\sum_{n \in \mathbb{N}_{k}} \frac{1}{n(\log n+h)}=\sum_{n \in \mathbb{N}_{k}} \frac{1}{n \log \left(n e^{h}\right)} \\
& =\sum_{n \in \mathbb{N}_{k}} e^{h} \int_{1}^{\infty}\left(n e^{h}\right)^{-s} \mathrm{~d} s=\int_{1}^{\infty} P_{k}(s) e^{(1-s) h} \mathrm{~d} s \tag{1}
\end{align*}
$$

Here the interchange of sum and integral holds by Tonelli's theorem, since $f\left(\mathbb{N}_{k}, h\right) \leq f\left(\mathbb{N}_{k}\right)$ converges uniformly after Erdős. The significance of the identity (1) was first observed when $k=1$, $h=0$ by H. Cohen [2, p. 6], who rapidly computed $f\left(\mathbb{N}_{1}\right)=1.636616 \cdots$ to 50 digits accuracy. By comparison, the direct approach by partial sums $\sum_{p \leq x} 1 /(p \log p)$ converge too slowly, i.e. $O(1 / \log x)$. Similarly for $k>1$, we shall see (1) leads to sharper results.

Note one has $P_{1}(s)=P(s)$ and $P_{2}(s)=\frac{1}{2} P(s)^{2}+\frac{1}{2} P(2 s)$, as well as

$$
\begin{aligned}
& P_{3}(s)=\frac{1}{6} P(s)^{3}+\frac{1}{2} P(s) P(2 s)+\frac{1}{3} P(3 s) \\
& P_{4}(s)=\frac{1}{24} P(s)^{4}+\frac{1}{4} P(s)^{2} P(2 s)+\frac{1}{8} P(2 s)^{2}+\frac{1}{3} P(s) P(3 s)+\frac{1}{4} P(4 s)
\end{aligned}
$$

In general for $k \geq 1$, [6, Proposition 3.1] gives an explicit formula for P_{k} in terms of P,

$$
\begin{equation*}
P_{k}(s)=\sum_{n_{1}+2 n_{2}+\cdots=k} \prod_{j \geq 1} \frac{1}{n_{j}!}(P(j s) / j)^{n_{j}} \tag{2}
\end{equation*}
$$

Here the above sum ranges over all partitions of k. Also see [7, Proposition 2.1].
In practice, we may rapidly compute P_{k} (and P_{k}^{\prime}) using recursion relations.
Lemma 3. For $k \geq 1$ let $P_{k}(s)=\sum_{\Omega(n)=k} n^{-s}$ and $P_{1}(s)=P(s)=\sum_{p} p^{-s}$. We have

$$
\begin{equation*}
P_{k}(s)=\frac{1}{k} \sum_{j=1}^{k} P_{k-j}(s) P(j s) \quad \text { and } \quad P_{k}^{\prime}(s)=\sum_{j=1}^{k} P_{k-j}(s) P^{\prime}(j s) \tag{3}
\end{equation*}
$$

Proof. The recursion (3) for P_{k} is given in [6, Proposition 3.1], and is equivalent to (2).
The recursion (3) for P_{k}^{\prime} is obtained by differentiating (2),

$$
\begin{aligned}
P_{k}^{\prime}(s) & =\sum_{n_{1}+2 n_{2}+\cdots=k} \sum_{i \leq k} P^{\prime}(i s) \frac{(P(i s) / i)^{n_{i}-1}}{\left(n_{i}-1\right)!} \prod_{j \neq i} \frac{1}{n_{j}!}(P(j s) / j)^{n_{j}} \\
& =\sum_{i \leq k} P^{\prime}(i s) \sum_{n_{1}+2 n_{2}+\cdots=k-i} \prod_{j \geq 1} \frac{1}{n_{j}!}(P(j s) / j)^{n_{j}}=\sum_{i \leq k} P^{\prime}(i s) P_{k-i}(s) .
\end{aligned}
$$

As observed empirically in [1], the Dirichlet series $P_{2}(s)-P(s)=\frac{1}{2}\left[P(s)^{2}+P(2 s)\right]-P(s)$ has a unique root at $s=\sigma=1.1403 \cdots$, through which it passes from positive to negative. We prove this more generally for $k \leq 20$.

Lemma 4. For $2 \leq k \leq 20$, the Dirichlet series $P_{k}(s)-P(s)$ has a unique root at $s=\sigma_{k}>1$, through which it passes from positive to negative.

Proof. For each $k \geq 1, P_{k}(s)$ is monotonically decreasing in $s>1$. As such there is a unique $s_{k}>1$ for which $P(s)$ passes through $(k!)^{1 /(k-1)}$ from above. Using the main term in (2), $P_{k}(s)>P(s)^{k} / k$! which is larger than $P(s)$ iff $P(s)^{k-1}>k!$ iff $s<s_{k}$ by definition. That is,

$$
\begin{equation*}
P_{k}(s)>P(s)>0 \quad \text { for } \quad s \in\left(1, s_{k}\right) \tag{4}
\end{equation*}
$$

Also there is a unique $s_{k}^{\prime}>1$ for which $P_{k-1}(s)$ passes through 1 from above. Using the first term in the recursion (3), $-P_{k}^{\prime}(s)>-P^{\prime}(s) P_{k-1}(s)$ which is larger than $-P^{\prime}(s)>0$ iff $P_{k-1}(s)>1$ iff $s<s_{k}^{\prime}$ by definition. That is,

$$
\begin{equation*}
P_{k}^{\prime}(s)<P^{\prime}(s)<0 \quad \text { for } \quad s \in\left(1, s_{k}^{\prime}\right) \tag{5}
\end{equation*}
$$

For $c<2^{k}, P_{k}(s) c^{s}$ is monotonically decreasing in $s>1$, and so is $P_{k}(s) /\left(2^{-s}+3^{-s}\right)=$ $\left\{1 /\left[P_{k}(s) 2^{s}\right]+1 /\left[P_{k}(s) 3^{s}\right]\right\}^{-1}$. Thus there is a unique $t_{k}>1$ for which $P_{k}(s) /\left(2^{-s}+3^{-s}\right)$ passes through 1 from above. Now by definition $P(s) /\left(2^{-s}+3^{-s}\right)>1=P_{k}\left(t_{k}\right) /\left(2^{-t_{k}}+3^{-t_{k}}\right)$, which is larger than $P_{k}(s) /\left(2^{-s}+3^{-s}\right)$ iff $s>t_{k}$ by monotonicity. That is,

$$
\begin{equation*}
0<P_{k}(s)<P(s) \quad \text { for } \quad s \in\left(t_{k}, \infty\right) \tag{6}
\end{equation*}
$$

In summary $P_{k}-P$ has at most one root in $\left(1, s_{k}^{\prime}\right)$, and no roots in $\left(1, s_{k}\right) \cup\left(t_{k}, \infty\right)$. We directly compute that $s_{k}<t_{k}<s_{k}^{\prime}$ for $2 \leq k \leq 20$, and so $P_{k}(s)-P(s)$ has a unique root $\sigma_{k} \in\left(s_{k}, t_{k}\right)$ as claimed.

We deduce the following corollary, which gives (the first part of) Theorem 1 when $k=2$.
Corollary 5. For $2 \leq k \leq 20, f\left(\mathbb{N}_{k}, h\right)-f\left(\mathbb{N}_{1}, h\right)$ has a unique root at $h_{k}>0$, through which it passes from negative to positive.

Proof. For $h \geq 0$, recall $f\left(\mathbb{N}_{k}, h\right)=\int_{1}^{\infty} P_{k}(s) e^{(1-s) h} \mathrm{~d} s$ by (1). Now by Lemma $4, P_{k}(s)-P(s)$ passes from positive to negative at $s=\sigma_{k}>1$. Thus

$$
\begin{aligned}
{\left[f\left(\mathbb{N}_{k}, h\right)-f\left(\mathbb{N}_{1}, h\right)\right] e^{\left(\sigma_{k}-1\right) h} } & =\int_{1}^{\infty}\left[P_{k}(s)-P(s)\right] e^{\left(\sigma_{k}-s\right) h} \mathrm{~d} s \\
& =\int_{1}^{\sigma_{k}}\left[P_{k}(s)-P(s)\right] e^{\left(\sigma_{k}-s\right) h} \mathrm{~d} s-\int_{\sigma_{k}}^{\infty}\left[P(s)-P_{k}(s)\right] e^{\left(\sigma_{k}-s\right) h} \mathrm{~d} s
\end{aligned}
$$

is difference of two integrals with positive integrands, which are mononotically increasing and decreasing in $h \geq 0$, respectively. Hence the difference is mononotically increasing in $h \geq 0$. And $f\left(\mathbb{N}_{k}, 0\right)-f\left(\mathbb{N}_{1}, 0\right)<0$ by Zhang [9], so the result follows.

For the second part of Theorem 1, note for any fixed $h \geq 0$ we have $\log n+h \sim \log n$ for $n \in \mathbb{N}_{k}$ as $k \rightarrow \infty$, since $n \geq 2^{k}$. Thus $f\left(\mathbb{N}_{k}, h\right) \sim f\left(\mathbb{N}_{k}, 0\right)$ as $k \rightarrow \infty$. Hence by [6, Theorem 2.2],

$$
\lim _{k \rightarrow \infty} f\left(\mathbb{N}_{k}, h\right)=\lim _{k \rightarrow \infty} f\left(\mathbb{N}_{k}\right)=1
$$

Note $1-f\left(\mathbb{N}_{1}, h\right)$ passes from negative to positive at a unique root $h_{\infty}=0.277 \cdots$. So for each $h>h_{\infty}$, we have $f\left(\mathbb{N}_{k}, h\right)-f\left(\mathbb{N}_{1}, h\right)>0$ for k sufficiently large (and similarly for the converse). This completes the proof of Theorem 1.

k	s_{k}	t_{k}	s_{k}^{\prime}	σ_{k}	h_{k}
2	1.11313	1.40678	1.39943	1.14037	1.04466
3	1.06861	1.23367	1.25922	1.09224	0.98213
4	1.04306	1.15231	1.17696	1.06206	0.93018
5	1.02761	1.104	1.12386	1.04231	0.89038
6	1.01795	1.07259	1.08784	1.02907	0.86146
7	1.01179	1.05125	1.06272	1.02007	0.84126
8	1.00779	1.0364	1.04493	1.0139	0.8276
9	1.00518	1.02594	1.03223	1.00964	0.8186
10	1.00346	1.0185	1.02312	1.0067	0.8128
11	1.00231	1.0132	1.01658	1.00466	0.80915
12	1.00155	1.00942	1.01187	1.00325	0.80689
13	1.00105	1.00672	1.00849	1.00226	0.80551
14	1.0007	1.00479	1.00607	1.00158	0.8047
15	1.00048	1.00341	1.00433	1.0011	0.8042
16	1.00032	1.00243	1.00309	1.00077	0.80391
17	1.00022	1.00173	1.0022	1.00053	0.80374
18	1.00015	1.00123	1.00157	1.00037	0.80365
19	1.0001	1.00087	1.00112	1.00026	0.80359
20	1.00007	1.00062	1.00079	1.00018	0.80356

2.1. Computations

For $k \leq 20$, we compute the unique roots σ_{k} and h_{k} of $P_{k}(s)-P(s)$ and $f\left(\mathbb{N}_{k}, h\right)-f\left(\mathbb{N}_{1}, h\right)$, respectively, as well as verify that the auxiliary parameters (as defined in Lemma 4) satisfy $s_{k}<\sigma_{k}<t_{k}<s_{k}^{\prime}$. We similarly compute the root of $1-f\left(\mathbb{N}_{1}, h\right)$ as $h_{\infty}=0.277 \cdots$.

In our computations, we express P_{k} in terms of P using the recursion in (3). In turn by Möbius inversion $P(s)=\sum_{m \geq 1}(\mu(m) / m) \log \zeta(m s)$, so P is obtained via well-known rapid computation of ζ. Finally, we compute $f\left(\mathbb{N}_{k}, h\right)$ from its integral form (1). The data are displayed in the table below, obtained using Mathematica (for technical convenience, we first compute $y_{k}=\log h_{k}$) ${ }^{1}$.

We believe a unique of root h_{k} exists as in Corollary 5 for all $k>20$ as well. This would enable a strengthening of Theorem 2 to $f\left(\mathbb{N}_{k}, h\right)>f\left(\mathbb{N}_{1}, h\right)$ for all values of $k>1, h \geq h_{2}$ (so far we only establish this for $\left\{1<k \leq 20, h \geq h_{2}\right\}$ or $\left\{k>1, h=h_{2}\right\}$). Uniqueness of h_{k} would follow if σ_{k} is unique, as in Lemma 4, for all k. In turn it would suffice to show $t_{k}<s_{k}^{\prime}$ for all k (note $s_{k}<t_{k}$ holds automatically by (4), (6)), though it is not clear how to establish such an inequality in general.

Moreover, it appears both h_{k} and σ_{k} are monotonically decreasing in k. This may be related to some empirical trends for $f\left(\mathbb{N}_{k}\right)$, found in a recent disproof of a conjecture of Banks-Martin, see $[1,6]$.

[^1]
3. Proof of Theorem 2

Proof. We have already verified the claim directly for $k \leq 20$, since in this case $h_{k} \leq h_{2}=1.04 \cdots$.
For $k>20$, the proof strategy is similar to that of [6, Theorem 5.5]. That is, the integral $f\left(\mathbb{N}_{k}, h\right)=\int_{1}^{\infty} P_{k}(s) e^{(1-s) h} \mathrm{~d} s$ has its mass concentrated near 1 as $k \rightarrow \infty$, so it suffices to truncate the integration to [1, 1.01] say, as a lower bound. Thus by (1),

$$
\begin{equation*}
f\left(\mathbb{N}_{k}, h_{2}\right)=\int_{1}^{\infty} P_{k}(s) e^{(1-s) h_{2}} \mathrm{~d} s>e^{-.01 h_{2}} \int_{1}^{1.01} P_{k}(s) \mathrm{d} s \tag{7}
\end{equation*}
$$

Next, we may lower bound $P_{k}(s)$ by $P(s)^{k} / k!$, which constitutes the first of the terms in the identity (2), one per partition of k. Note the terms of partitions built from small parts contribute the most mass. So by also including the terms for the partitions $k=1 \cdot(k-j)+j$ and $k=$ $1 \cdot(k-j-2)+2+j$ for $j \leq 6$, we shall obtain a sufficiently tight lower bound to deduce the result. Indeed, we have

$$
\begin{array}{rl}
\int_{1}^{1.01} P_{k}(s) \mathrm{d} s>\frac{1}{k!} \int_{1}^{1.01} P(s)^{k} & \mathrm{~d} s+\sum_{j=2}^{6} \frac{\int_{1}^{1.01} P(s)^{k-j} P(j s) \mathrm{d} s}{j(k-j)!} \\
& +\frac{\int_{1}^{1.01} P(s)^{k-4} P(2 s)^{2} \mathrm{~d} s}{2!^{2}(k-4)!}+\sum_{j=3}^{6} \frac{\int_{1}^{1.01} P(s)^{k-j-2} P(2 s) P(j s) \mathrm{d} s}{2 j(k-j-2)!} \tag{8}
\end{array}
$$

From [6, (5.10)], we have

$$
\begin{equation*}
0<P(s)-\log \left(\frac{\alpha}{s-1}\right)<1.4(s-1), \quad \text { for } s \in[1,2] \tag{9}
\end{equation*}
$$

where $\alpha=\exp \left(-\sum_{m \geq 2} P(m) / m\right)=.7292 \cdots$. Thus for every $k \geq 1$, since $\log (\alpha / .01)>4$,

$$
\begin{equation*}
\int_{1}^{1.01} P(s)^{k} \mathrm{~d} s>\int_{0}^{.01} \log \left(\frac{\alpha}{s}\right)^{k} \mathrm{~d} s=\alpha \int_{\log (\alpha / .01)}^{\infty} u^{k} e^{-u} d u>\alpha \Gamma(k+1,4)>.729 k! \tag{10}
\end{equation*}
$$

where $\Gamma(k+1,4)$ the incomplete Gamma function, and noting $\Gamma(k+1,4) / k$! is monotonically increasing in k. Also note

$$
\int_{0}^{1} s \log \left(\frac{\alpha}{s}\right)^{k} \mathrm{~d} s=\alpha^{2} \int_{0}^{\infty} u^{k} e^{-2 u} d u=\frac{\alpha^{2}}{2^{k+1}} k!
$$

Using the first order Taylor approximation $P(j s)>P(j)+P^{\prime}(j)(s-1)$ for $j \geq 2$,

$$
\begin{aligned}
\int_{1}^{1.01} P(s)^{k-j} P(j s) \mathrm{d} s & >P(j) \int_{0}^{.01} \log \left(\frac{\alpha}{s}\right)^{k-j} \mathrm{~d} s+P^{\prime}(j) \int_{0}^{1} s \log \left(\frac{\alpha}{s}\right)^{k-j} \mathrm{~d} s \\
& >.729(k-j)!\left(P(j)+\frac{\alpha P^{\prime}(j)}{2^{k-j}}\right)
\end{aligned}
$$

by (10). Similarly,

$$
\begin{aligned}
& \int_{1}^{1.01} P(s)^{k-j-2} P(2 s) P(j s) \mathrm{d} s \\
& \qquad \\
& \quad>P(2) P(j) \int_{0}^{.01} \log \left(\frac{\alpha}{s}\right)^{k-j-2} \mathrm{~d} s+\left[P^{\prime}(2) P(j)+P(2) P^{\prime}(j)\right] \int_{0}^{1} s \log \left(\frac{\alpha}{s}\right)^{k-j-2} \mathrm{~d} s \\
& \\
& >.729(k-j-2)!\left(P(2) P(j)+\frac{\alpha}{2^{k-j-1}}\left[P^{\prime}(2) P(j)+P(2) P^{\prime}(j)\right]\right)
\end{aligned}
$$

Hence plugging back into (8),

$$
f\left(\mathbb{N}_{k}, h_{2}\right) e^{.01 h_{2}}>\int_{1}^{1.01} P(s)^{k} \mathrm{~d} s>\ell_{k}
$$

for the explicit lower bound

$$
\begin{aligned}
\ell_{k}:=.729\left[1+\sum_{j=2}^{6} \frac{P(j)+\alpha P^{\prime}(j) / 2^{k-j}}{j}\right. & +\frac{1}{8}\left(P(2)^{2}+\frac{\alpha P(2) P^{\prime}(2)}{2^{k-4}}\right) \\
& \left.+\sum_{j=3}^{6} \frac{1}{2 j}\left(P(2) P(j)+\frac{\alpha}{2^{k-j-1}}\left[P^{\prime}(2) P(j)+P(2) P^{\prime}(j)\right]\right)\right]
\end{aligned}
$$

Note ℓ_{k} is clearly increasing in k (recall $\left.P^{\prime}(s)<0\right)$. Hence for $k>20$ we have

$$
\begin{equation*}
f\left(\mathbb{N}_{k}, h_{2}\right)>e^{-.01 h_{2}} \ell_{k}>e^{-.01 h_{2}} \ell_{20}>.98>0.91>f\left(\mathbb{N}_{1}, h_{2}\right) \tag{11}
\end{equation*}
$$

Here we compute $\ell_{20}=0.99069 \cdots$ and $f\left(\mathbb{N}_{1}, h_{2}\right)=0.908599 \cdots$. This completes the proof of Theorem 2.

Acknowledgments

The author thanks Paul Kinlaw and Carl Pomerance for helpful discussions.

References

[1] W. D. Banks, G. Martin, "Optimal primitive sets with restricted primes", Integers 13 (2013), article no. A69 (10 pages).
[2] H. Cohen, "High precision computation of Hardy-Littlewood constants", https://www.math.u-bordeaux.fr/ ~hecohen/.
[3] P. Erdős, "Note on sequences of integers no one of which is divisible by any other", J. Lond. Math. Soc. 10 (1935), p. 126-128.
[4] I. Laib, "Note on translated sum on primitive sequences", Notes Number Theory Discrete Math. 27 (2021), no. 3, p. 3943.
[5] I. Laib, A. Derbal, R. Mechik, "Somme translatée sur des suites primitives et la conjecture d'Erdős", C. R. Math. Acad. Sci. Paris 357 (2019), no. 5, p. 413-417.
[6] J. D. Lichtman, "Almost primes and the Banks-Martin conjecture", J. Number Theory 211 (2020), p. 513-529.
[7] ——, "Mertens' prime product formula, dissected", Integers 21A (2021), article no. A17 (15 pages).
[8] J. D. Lichtman, C. Pomerance, "The Erdős conjecture for primitive sets", Proc. Am. Math. Soc. 6 (2019), p. 1-14.
[9] Z. Zhang, "On a problem of Erdős concerning primitive sequences", Math. Comput. 60 (1993), no. 202, p. 827-834.

[^0]: * Corresponding author.

[^1]: ${ }^{1} \mathrm{P}\left[\mathrm{k}_{-}\right.$Integer, $\left.\mathrm{s}_{-}\right]:=$If $[\mathrm{k}==1$, PrimeZetaP[s], Expand [(Sum $[P[1, j * s] * P[k-j, s], j, 1, k-1]+P[1, k * s]) / k]]$

 FindRoot $\left[P[1, s]==(k!)^{\wedge}(1 /(k-1)), s, 1+1 / k \wedge 3\right]$
 FindRoot $\left[P[k, t] /\left(2^{\wedge}(-t)+3^{\wedge}(-t)\right)==1, t, 1+1 / k^{\wedge} 3\right]$
 FindRoot $\left[P[k-1, s 1]==1, s 1,1+1 / k^{\wedge} 3\right]$
 FindRoot[P[k, sigma] == P [1, sigma], sigma, $\left.\left.1+1 / k^{\wedge} 3\right]\right]$
 FindRoot[NIntegrate[(P[1, s] - P[k, s])/y^s,s,1,Infinity, WorkingPrecision->30, AccuracyGoal->13, PrecisionGoal->13], y, $\left.1+1 / k^{\wedge} 3\right]$

