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Abstract. We first present the natural definitions of the horizontal differential, the divergence (as an adjoint
operator) and a p-harmonic form on a Finsler manifold. Next, we prove a Hodge-type theorem for a Finsler
manifold in the sense that a horizontal p-form is harmonic if and only if the horizontal Laplacian vanishes.
This viewpoint provides a new appropriate natural definition of harmonic vector fields in Finsler geometry.
This approach leads to a Bochner–Yano type classification theorem based on the harmonic Ricci scalar.
Finally, we show that a closed orientable Finsler manifold with a positive harmonic Ricci scalar has zero Betti
number.

Résumé. Nous présentons d’abord les définitions naturelles de la différentielle horizontale, de la divergence
(comme opérateur adjoint) et d’une forme p-harmonique sur une variété finslérienne. Ensuite, nous prou-
vons un théorème de type Hodge pour une variété finslérienne dans le sens où une p-forme horizontale est
harmonique si et seulement si le Laplacien horizontal est nul. Ce point de vue fournit une nouvelle défini-
tion naturelle appropriée des champs de vecteurs harmoniques en géométrie finslérienne. Cette méthode
conduit à un théorème de classification de type Bochner–Yano basé sur le scalaire de Ricci harmonique. En-
fin, nous montrons qu’une variété finslérienne fermée et orientable, avec un scalaire de Ricci harmonique
positif, a un nombre de Betti nul.
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1. Introduction

The existence of harmonic vector fields on the Riemannian manifolds is directly related to the
sign of the Ricci tensor. Bochner and Yano have studied the non-existence of harmonic vector
fields on the compact Riemannian manifolds with positive Ricci curvature based on the Laplace–
Beltrami operator. Next, Bochner proved that if the Ricci curvature on a Riemannian manifold is
positive-definite, then all harmonic vector fields vanish [6]. Yano proved that a vector field X is
harmonic, if and only if the Laplacian of its corresponding 1-form vanishes [12, 13].

In Finsler geometry, Akbar-Zadeh introduced the divergence of horizontal and vertical 1-forms
on SM without defining the harmonic forms on a Finsler manifold, where SM :=⋃

x∈M Sx M and
Sx M := {y ∈ Tx M |F (y) = 1}, [1].

Harmonic forms in Finsler geometry are studied in [3, 4, 8, 14]. Recently, the second author
introduced a definition of harmonic vector fields on a Finsler manifold, which is slightly modified
here in the present work, see [9, 10], and Remark 10 in this article. Moreover some natural
extensions of Riemannian results, more or less linked to this question are studied in [5].

In the present work, the horizontal differential operator dH and the horizontal co-differential
operator δH, are defined as adjoint operators. The above operators provide a Finslerian version of
a well-known Hodge theorem on the Riemannian manifolds in the following sense.

Theorem 1. Let (M ,F ) be a closed Finsler manifold. If ω is a horizontal p-form on SM, then

∆H ω= 0 if and only if dH ω= 0, and δH ω= 0. (1)

We can thus define harmonic p-forms naturally on a Finsler manifold in the sense that, a
horizontal p-form is harmonic if and only if the horizontal Laplacian vanishes.

The definition of harmonic p-forms on SM will provide a new definition of a harmonic vector
field on a Finsler manifold in the sense that, a vector field on (M ,F ) is harmonic if and only if the
horizontal Laplacian vanishes.

Finally, we obtain a classification of harmonic vector fields based on the harmonic Ricci scalar
R̃ic defined by the equation (32).

Theorem 2. Let (M ,F ) be a closed Finsler manifold and X a harmonic vector field on M .

• If R̃ic = 0, then X is parallel.
• If R̃ic > 0, then X vanishes.

This theorem is an extension of a well-known result obtained by Bochner and Yano, see
Theorem 16. Finally, this brings us to the following fundamental results.

Theorem 3. Let (M ,F ) be a Finsler manifold. Every cohomology class H 1(M) contains a unique
harmonic representative.

Corollary 4. In a closed orientable Finsler manifold with a positive harmonic Ricci scalar R̃ic > 0,
the first Betti number vanishes.

In Section 2, the necessary tools, concepts and definitions of Finsler geometry using the
Cartan connection are stated. In Section 3, the definition of ΛH

p (SM) the space of horizontal
p-forms and the definition of dH the horizontal divergence operator on the unit fiber bundle
SM with an inner product ( · , · ) on ΛH

p (SM) are expressed. In Section 4, the definition of the
horizontal (co-differential) divergence, a horizontal Laplacian and a new type of harmonic p-
form are introduced using the horizontal Laplacian. Section 5 deals with harmonic vector fields
on Finsler manifolds where the proof of Theorem 2 is presented. In Section 6, we prove that a
closed orientable Finsler manifold with a positive harmonic Ricci scalar has zero Betti number.
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2. Preliminaries and notations

We first recall some Riemannian definitions of harmonic analysis. Let (M , g ) be a compact and
orientable Riemannian manifold of dimension n. A p-form on (M , g ) for 1 ≤ p ≤ n is given by

ϕ= 1

p !
ϕi1 ...ip dxi1 ∧·· ·∧dxip ,

where the indices i1, . . . , ip run over the range 1, . . . ,n and the coefficients are components of the
skew-symmetric tensor fields of type (0, p). The differential dϕ is a (p +1)−form given by

dϕ= 1

(p +1)!
(∇iϕi1 ...ip −∇i1

ϕi i2...ip −·· ·−∇ipϕi1 ...ip−1i )dxi ∧dxi1 ∧·· ·∧dxip ,

where the coefficients are components of the skew-symmetric tensor fields of type (0, p +1) and
∇ j are the components of Levi-Civita covariant derivative. The co-differential δϕ is a (p−1)−form
given by

δϕ=− 1

(p −1)!
g j i∇ jϕi i2 ...ip dxi2 ∧·· ·∧dxip ,

where the coefficients are components of the skew-symmetric tensor fields of type (0, p −1). The
co-differential of a scalar function is defined to be zero. It is easy to verify that d(dϕ) = 0 and
δ(δϕ) = 0, see for instance [13]. In Riemannian geometry a differential form ϕ is called harmonic
if it satisfies dϕ = 0 and δϕ = 0. A vector field X is said to be harmonic if its associated 1-form
is harmonic. It is well known that a necessary and sufficient condition for a p-form ϕ to be
harmonic is

∆ϕ= (δd+dδ)ϕ= 0, (2)

where ∆ is called Laplacian, see [13] for more details.
We then turn to the more general cases of Finsler manifolds. Let M be a connected differen-

tiable manifold, π : T M0 → M the bundle of non-zero tangent vector where T M0 = T M\0 is the
entire slit tangent bundle. A point of T M is denoted by z = (x, y), where x ∈ M and y ∈ Tx M . Let
(xi ) be a local chart with the domain U ⊆ M and (xi , y i ) the induced local coordinates on π−1(U ),
where y = y i ∂

∂xi ∈ Tπz M , and i running over the range 1,2, . . . ,n. A (globally defined) Finsler struc-
ture on M is a function F : T M −→ [0,∞) with the following properties; F is C∞ on the entire slit
tangent bundle T M\0; F (x,λy) = λF (x, y) ∀ λ> 0; the n ×n Hessian matrix (gi j ) = 1

2 ([F 2]y i y j ) is
positive-definite at every point of T M0. The pair (M , g ) is called a Finsler manifold, cf. [2]. De-
note by T T M0 and SM the tangent bundle of T M0 and the sphere bundle respectively, where
SM :=⋃

x∈M Sx M and Sx M := {y ∈ Tx M |F (y) = 1}.
Let us consider the natural projection p : SM → M which pulls back the tangent bundle T M

to an n-dimensional vector bundle p∗T M over the (2n − 1)−dimensional base SM . Given the
natural induced coordinates (xi , yi ) on T M , the coefficients of spray vector field are defined by
(cf. [11, p. 32])

G i := 1

4
g i h

(
∂2F 2

∂yh∂x j
y j − ∂F 2

∂xh

)
. (3)

The pair
{
δ
δxi , ∂

∂y i

}
forms a horizontal and vertical frame for T T M , where δ

δxi := ∂
∂xi −N j

i
∂
∂y j , and

N j
i := ∂G j

∂y i are called the coefficients of nonlinear connection. The tangent bundle T T M0 of T M0

can be split into the direct sum of the horizontal part HT M spanned by { δ
δxi } and the vertical part

V T M spanned by
{
∂
∂y i

}
. The dual basis of

{
δ
δxi , ∂

∂y i

}
is {dxi ,δy i }, where

δy i := dy i +N i
j dx j , (4)
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and we have the following Whitney sum cf. [11, p. 29].

T T M0 = HT M ⊕V T M = span

{
δ

δxi

}
⊕ span

{
∂

∂y i

}
,

T ∗T M0 = H∗T M ⊕V ∗T M = span{dxi }⊕ span{δy i }.
(5)

The Cartan connection is a natural extension of the Riemannian connection, which is metric
compatible and semi-torsion free. For a global approach to the Cartan connection one can refer
to [1]. According to the definition, the 1-forms of Cartan connection with respect to the dual basis
{dxi ,δy i } are given by

ωi
j := Γi

j k dxk +C i
j kδyk ,

where, Γi
j k and C i

j k are the horizontal and vertical coefficients of Cartan connection respectively
defined by

Γi
j k := 1

2
g i l (δ j glk +δk g j l −δl g j k ), C i

j k := 1

2
g i l ∂̇l g j k ,

and δi := δ
δxi , ∂̇i := ∂

∂y i . In local coordinates we have

∇k ∂̇ j = Γi
j k ∂̇ j , ∇̇k ∂̇ j =C i

j k ∂̇ j ,

∇kδ j = Γi
j kδi , ∇̇kδ j =C i

j kδi ,

where in, ∇k :=∇ δ

δxk
, ∇̇k :=∇ ∂

∂yk
.

Let us consider the components of an arbitrary (2,2)-tensor field T j k
i s on T M . The horizontal

and vertical components of the Cartan connection of T j k
i s in a local coordinates are given

respectively by

∇hT j k
i s = δhT j k

i s −T j k
ps Γ

p
i h −T j k

i p Γ
p
sh +T pk

i s Γ
j
ph +T j p

i s Γ
k
ph ,

∇̇hT j k
i s = ∂̇hT j k

i s −T j k
ps C p

i h −T j k
i p C p

sh +T pk
i s C j

ph +T j p
i s C k

ph .

The curvature tensor in Cartan connection is given by the hh-curvature, hv-curvature and vv-
curvature with the following components, cf. [1];

Rh
ki j = δiΓ

h
j k −δ jΓ

h
i k +Γl

j kΓ
h
i l −Γl

i kΓ
h
j l +R l

i j C h
lk ,

P h
ki j = ∂̇kΓ

h
ki −δi C h

k j +Γr
ki C h

r j −C r
k jΓ

h
r j + ∂̇ j N r

i C h
kr ,

Qh
ki j =C h

r j C r
ki −C h

r i C r
k j ,

respectively where

R i
j k =

δN i
j

δxk
− δN i

k

δx j
= ymR i

m j k . (6)

Trace of the hh-curvature of Cartan connection is denoted by Ri j := R l
i l j , which is not symmetric

in general.
Let (M ,F ) be a Finsler manifold, π : T M0 → M the bundle of non-zero tangent vectors and

π∗T M the pullback bundle. The tangent space Tx M , x ∈ M can be considered as a fiber of the
pullback bundle π∗T M . Therefore a section X on π∗T M is denoted by X = X i (x, y) ∂

∂xi . The Ricci
identity for Cartan connection is given by the following equation

∇k∇h X i −∇h∇k X i = X r R i
r kh −∇̇r X i Rr

kh , (7)

cf. [1]. Now we are in a position to define some basic notions on harmonic forms on Finsler
manifolds.
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3. The p-forms and horizontal operators

Here and everywhere in this paper, we assume the differential manifold M is compact and
without boundary or simply closed. Let (M ,F ) be a closed Finsler manifold, u : M → SM a unitary
vector field and ω= ui dxi the corresponding 1-form on M . A volume element on SM is given by

η= (−1)
n(n−1)

2

(n−1)! ω∧ (dω)n−1, cf. [1]. We denote the space of all horizontal p-forms on SM byΛH
p (SM)

or simplyΛH
p ,

ΛH
p (SM) :=

{
ϕi1 i2 ...ip (z)dxi1 ∧dxi2 ∧·· ·∧dxip

∣∣∣ϕi1 i2 ...ip ∈C∞(SM)
}

. (8)

Let π= ai (z)dxi be a horizontal 1-form on SM . The co-differential or divergence of π concerning
the Cartan connection is defined by

δπ=−(∇ j a j −a j∇0T j ), (9)

where, Tki j = Cki j = 1
2
∂gi j

∂yk , are the components of Cartan tensors and ∇0 = y i∇i cf. [1, p. 223].

Also, we have ∫
SM

δπ η=−
∫

SM
(∇ j a j −a j∇0T j )η=−

∫
SM

(∇ j a j −a j∇0T j )η= 0, (10)

where ai = g i j a j , cf. [1, p. 67]. Let us denote the horizontal part of the differential dπ by

Hdπ := 1

2
(∇i a j −∇ j ai )(z) dxi ∧dx j ,

cf. [1, p. 224]. According to the above discussion, we are in a position to define a horizontal
differential operator in the following sense.

Definition 5. Let (M ,F ) be a Finsler manifold and ϕ = 1
p !ϕi1 ...ip (z)dxi1 ∧ ·· · ∧ dxip ∈ ΛH

p a
horizontal p-form on SM. A horizontal differential operator is a differential operator on SM
given by

dH :ΛH
p →ΛH

p+1

ϕ→ dH ϕ,
(11)

where, for 1 ≤ i , ik ≤ n and 1 ≤ k ≤ p, we have

dH ϕ= 1

(p +1)!
(∇iϕi1 ...ip −∇i1

ϕi i2...ip −·· ·−∇ipϕi1 ...ip−1i )dxi ∧dxi1 ∧·· ·∧dxip . (12)

Let ϕ and π be the two arbitraries horizontal p-forms on SM with the components ϕi1 ...ip and
πi1 ...ip , respectively. We consider an inner product ( · , · ) onΛH

p as follows

(ϕ,π) :=
∫

SM

1

p !
ϕi1 ...ip πi1 ...ip η, (13)

where, ϕi1 ...ip = g i1 j1 . . . g ip jpϕ j1... jp .

4. The horizontal Laplacian and harmonic p-forms

Using the above concepts, we define the horizontal Laplacian. This definition of Laplacian is
different from those given in [1, 4] and [11].

Let (M ,F ) be a Finsler manifold and ψ a horizontal (p+1)-form on SM , given by

ψ= 1

(p +1)!
ψi i1 ...ip dxi ∧dxi1 ∧·· ·∧dxip .

We define the horizontal divergence (co-differential) of ψ by

(δH ψ) j1... jp :=− 1

p !
g i j (∇iψ j j1... jp −ψ j j1... jp∇0Ti ). (14)
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Remark 6. If ϕ is a horizontal 1-form on SM , then δH reduces to δ, and we have

δH ϕ= δϕ=−(∇ jϕ j −ϕ j∇0T j ). (15)

Definition 7. Let (M ,F ) be a Finsler manifold. A horizontal Laplacian on SM is defined by

∆H := dHδH +δH dH, (16)

where dH and δH are horizontal differential and horizontal co-differential operators on SM,
respectively.

Now we are able to show the basic equivalence relation

∆H ω= 0 if and only if dH ω= 0, and δH ω= 0, (17)

in the following theorem.

Proof of Theorem 1. It is clear that if δH = 0 and dHω= 0, then we have ∆H ω= 0. Conversely, Let
ϕ= 1

p !ϕi1 ...ip (z)dxi1 ∧·· ·∧dxip ∈ΛH
p be a horizontal p-form on SM andψ a horizontal (p+1)-form

on SM , given by

ψ= 1

(p +1)!
ψi i1 ...ip dxi ∧dxi1 ∧·· ·∧dxip .

Antisymmetric property of p-forms yield

∇ikϕi1...ik−1i ik+1...ipψ
i i1...ip =∇iϕi1...ik−1ik ik+1...ipψ

ik i1...ik−1i ik+1...ip

= (−1)k+(k−1)∇iϕi1...ik−1ik ik+1...ipψ
i i1...ik−1ik ik+1...ip

=−∇iϕi1...ik−1ik ik+1...ipψ
i i1...ik−1ik ik+1...ip .

Using the last equation and the inner product (13) we have

(dH ϕ,ψ) =
∫

SM

1

(p +1)!
(∇iϕi1 ...ip −·· ·−∇ipϕi1 ...ip−1i ) ψi i1 ...ip η

=
∫

SM

1

(p +1)!
(∇iϕi1 ...ip +·· ·+∇iϕi1 ...ip ) ψi i1 ...ip η

=
∫

SM

1

p !
∇iϕi1 ...ip ψ

i i1 ...ip η.

(18)

Letting ai =ϕi1...ipψ
i i1...ip , equation (10) yields∫

SM
∇i (ϕi1 ...ipψ

i i1 ...ip )η=
∫

SM
ϕi1 ...ipψ

i i1 ...ip∇0Tiη. (19)

Replacing (19) in (18) and using the metric compatibility of Cartan connection yields

p !(dH ϕ,ψ) =
∫

SM
∇i (ϕi1 ...ipψ

i i1 ...ip )η−
∫

SM
ϕi1 ...ip∇iψ

i i1 ...ipη

=
∫

SM
ϕi1 ...ipψ

i i1 ...ip∇0Tiη−
∫

SM
ϕi1 ...ip∇iψ

i i1 ...ipη

=−
∫

SM
(∇iψ

i i1 ...ip −ψi i1 ...ip∇0Ti )ϕi1 ...ipη

=−
∫

SM
g i j g i1 j1 . . . g ip jp (∇iψ j j1... jp −ψ j j1... jp∇0Ti )ϕi1 ...ipη.

(20)

Therefore (18) becomes

p !(dH ϕ,ψ) =
∫

SM
g i1 j1 . . . g ip jp (δHψ) j1... jp ϕi1 ...ip η

= p !(δH ψ,ϕ),
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which yields

(dH ϕ,ψ) = (ϕ,δH ψ). (21)

If ϕ=ω is a p-form and ψ= dHω, then the equation (21) yields

(dH ω,dH ω) = (ω,δHdH ω). (22)

If ϕ= δH ω and ψ=ω, using (21) we have

(dHδH ω,ω) = (δH ω,δH ω). (23)

Through the equations (22), (23) and (16) we have

(∆Hω,ω) = (dHδH ω,ω)+ (δHdHω,ω)

= (δH ω,δH ω)+ (dH ω,dH ω) ≥ 0.

If ∆H ω= 0, we conclude that δH ω= 0 and dH ω= 0 which completes the proof. □

4.1. Horizontal Laplacian of p-forms

Let ϕ be a horizontal p-form on SM , by definitions of horizontal differential and co-differential
we can easily see that

δH dH ϕ=− 1

p !

[
(g r s (∇r∇sϕi1 ...ip −∇sϕi1 ...ip∇0Tr )

− g r s (∇r∇i1
ϕsi2...ip −∇i1

ϕsi2...ip∇0Tr )

− g r s (∇r∇i2ϕi1 si3...ip −∇i2ϕi1 si3...ip∇0Tr )− . . .

− g r s (∇r∇ipϕi1 ...ip−1s −∇ipϕi1 ...ip−1s∇0Tr )
]

dxi1 ∧·· ·∧dxip ,

(24)

and

δH ϕ=− 1

(p −1)!
g r s (∇rϕsi2...ip −ϕsi2...ip∇0Tr )dxi2 ∧·· ·∧dxip .

On the other hand, by definition we have

dH δH ϕ=− 1

p !

[
g r s (∇i1

∇rϕsi2...ip −∇i1
(ϕsi2...ip∇0Tr ))

− g r s (∇i2∇rϕsi1 i3...ip −∇i2 (ϕsi1 i3...ip∇0Tr ))− . . .

− g r s (∇ip∇rϕsi2...ip−1i1
−∇ip (ϕsi2...ip−1i1

∇0Tr ))
]

dxi1 ∧·· ·∧dxip .

(25)

The equations (24) and (25) yield

(δH dH +dH δH )ϕ=− 1

p !

[
g r s (∇r∇sϕi1 ...ip −∇sϕi1 ...ip∇0Tr )

− g r s (∇r∇i1
ϕsi2...ip −∇i1

∇rϕsi2...ip )

− g r s (∇r∇i2ϕi1 si3...ip −∇i2∇rϕi1 si3...ip )− . . .

− g r s (∇r∇ipϕi1 ...ip−1s −∇ip∇rϕi1 ...ip−1s )

− g r s (ϕsi2...ip∇i1
∇0Tr +ϕi1 si3...ip∇i2∇0Tr

+·· ·+ϕi1 ...ip−1s∇ip∇0Tr )
]

dxi1 ∧·· ·∧dxip .

(26)

In particular for an arbitrary horizontal 1-form ϕ = ϕi (z)dxi on SM , the above equation
reduces to

(δH dH +dH δH)ϕ=−[
g r s (∇r∇sϕi −∇sϕi∇0Tr )

− g r s (∇r∇iϕs −∇i∇rϕs )

− g r s (ϕs∇i∇0Tr )
]
dxi .

(27)

This fact gives rise to a new definition of horizontal harmonic vector fields on Finsler manifolds.
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Definition 8. A horizontal p-form ϕ on SM is called horizontally harmonic if we have

∆H ϕ= 0.

The horizontal harmonic p-forms will be referred to in the following as h-harmonic p-forms or
simply h-harmonic.

Remark 9. C. Bertrand and A. Rauzy, using a horizontal lift of a p-form on M to SM have
defined the Laplacian on a Finsler manifold which is different from our point of view. More
intuitively, they construct a sub-elliptic operator on the associated unitary bundle and give a
lower bound for the first eigenvalue of this operator by using the horizontal Ricci tensor of the
Berwald connection, see [4].

5. The harmonic vector fields on Finsler manifolds

Recently, one of the present authors has introduced in a joint work a definition for harmonic
vector fields on Finsler manifolds using the Cartan and Berwald connections in the following
sense.

Remark 10. Let (M ,F ) be a closed Finsler manifold. A vector field X = X i ∂
∂X i on M is called

harmonic if its corresponding horizontal 1-form X = Xi (z)dxi on SM satisfies ∆X = 0 or dX = 0
and δX = 0, where

dX = 1

2
(Di X j −D j Xi )dxi ∧dx j − ∂Xi

∂y j
dxi ∧dy j ,

δX =−(∇ j X j −X j∇0T j ) =−g i j Di X j ,
(28)

and ∇ and D are the covariant derivatives of Cartan and Berwald connections, respectively,
cf. [9, 10].

The above definition of harmonic vector fields and the corresponding harmonic 1-forms have
some inconveniences. First, it could not be easily extended to the harmonic p-forms on Finsler
manifolds. In particular, the occurrence of the mixed terms of differential and co-differential
could not be readily established in the Finsler setting. Second, the both Berwald’s and Cartan’s
covariant derivatives must be considered in this calculations which needs more preliminaries for
this definition. Finally, contrary to the definition of harmonic vector fields on the Riemannian
manifolds, we do not have the following proper bilateral relation in general;

∆ϕ= dδϕ+δdϕ= 0 ⇐⇒ dϕ= 0 and δϕ= 0. (29)

The remedy lies in a slight modification of definition in the following sense. Let X = X i (x) ∂
∂xi be

a vector field on M . One can associate to X a 1-form X̃ on SM defined by

X̃ = Xi (z)dxi + Ẋi
δy i

F
,

where Ẋi = 1
F (∇0Xi − yi∇0(y j X j )F−2), and z ∈ SM [1]. The horizontal part of the associated 1-

form X̃ on SM is called associate horizontal 1-form and denoted by X = Xi (z)dxi .

Definition 11. Let (M ,F ) be a Finsler manifold. A vector field X = X i (x) ∂
∂xi on M is called

harmonic related to the Finsler structure F if the associate horizontal 1-form X = Xi (z)dxi is h-
harmonic on SM.

Remark 12. According to this definition of the Finslerian harmonic vector field, if X is a
harmonic vector field concerning the Finsler structure F , then the associate horizontal 1-form
X = Xi (z)dxi , is h-harmonic on SM , where Xi (z) is a real function on SM and z = (x, y) ∈ SM .
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Theorem 13. Let (M ,F ) be a closed Finsler manifold. A vector field ϕ=ϕi ∂
∂xi on M is harmonic if

and only if

g r s (∇r∇sϕi −∇sϕi∇0Tr ) =ϕt Rt i −∇̇tϕ
r R t

r i +ϕr∇i∇0Tr . (30)

Proof. The Ricci identity (7) yields

g r s (∇r∇iϕs −∇i∇rϕs ) =∇r∇iϕ
r −∇i∇rϕ

r

=ϕt Rr
tr i −∇̇tϕ

r R t
r i

=ϕt Rt i −∇̇tϕ
r R t

r i .

(31)

Substituting the last equation in (27) we get the result. □

A Finsler manifold (M ,F ) is called a Landsberg manifold if ∇0T = 0. We have the following
corollary.

Corollary 14. Let (M ,F ) be a closed Landsberg manifold. A vector field ϕ = ϕi ∂
∂xi on M is

harmonic if and only if

g r s∇r∇sϕi =ϕt Rt i −∇̇tϕ
r R t

r i .

If (M ,F ) is Riemannian, then the above equation reduces to the following well known form.

g r s∇r∇sϕi =ϕt Rt i .

Let X = X i (x) ∂
∂xi be a vector field on (M ,F ). Inspired by [9] and [10] and based on the Ricci

tensor, we define the harmonic Ricci scalar R̃ic as follows

R̃ic(X , X ) := X k X t Rtk −X k ∇̇r X j Rr
j k −X k∇k X j∇0T j . (32)

Furthermore, we obtain a classification result given in Theorem 2.

Proof of Theorem 2. Let X = X i (x) ∂
∂xi be a vector field on (M ,F ) and Y and Z two 1-forms on

SM defined at z ∈ SM by Y = (X k∇k Xi )(z)dxi and Z = (Xi∇ j X j )(z)dxi , respectively. Using (9) we
have

δY =−∇ j (X k∇k X j )+X k∇k X j∇0T j

=−∇ j X k∇k X j −X k∇ j∇k X j +X k∇k X j∇0T j ,
(33)

and similarly
δZ =−∇k X k∇ j X j −X k∇k∇ j X j +X k∇ j X j∇0Tk

=−∇k X k (∇ j X j −X k∇0Tk )−X k∇k∇ j X j

=∇k X kδX −X k∇k∇ j X j .

(34)

The difference of δZ and δY yields

δZ −δY =∇k X kδX +X k (∇ j∇k X j −∇k∇ j X j )+∇ j X k∇k X j −X k∇k X j∇0T j . (35)

On the other hand we have

dH X = 1

2
(∇i X j −∇ j Xi )d xi ∧d x j ,

from which

∥dH X ∥2 = 1

4
(∇i X j −∇ j Xi )(∇i X j −∇ j X i )

= 1

4
[(∇i X j )(∇i X j )− (∇i X j )(∇ j X i )− (∇ j Xi )(∇i X j )+ (∇ j Xi )(∇ j X i )]

= 1

2
[∥∇X ∥2 − (∇i X j )(∇ j X i )].

Therefore

∇ j X k∇k X j = ∥∇X ∥2 −2∥dH X ∥2. (36)
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Replacing (36) and (7) in (35) we obtain

δZ −δY =∇k X kδX +X k X t Rtk −X k ∇̇r X j Rr
j k +∥∇X ∥2 −2∥dH X ∥2 −X k∇k X j∇0T j . (37)

If X is a harmonic vector field, then by definition of R̃ic given by (32) the last equation becomes

δZ −δY = ∥∇X ∥2 + R̃ic.

By integration over SM and using (10), we obtain∫
SM

(R̃ic+∥∇X ∥2)η= 0. (38)

If R̃ic = 0, or

X k X t Rtk = X k ∇̇r X j Rr
j k +X k∇k X j∇0T j ,

then (38) yields the first assertion. If R̃ic > 0, that is, if we have

X k X t Rtk > X k ∇̇r X j Rr
j k +X k∇k X j∇0T j ,

then using the equation (38) we get the second assertion. □

Remark 15. For a closed Landsberg manifold and a harmonic vector field X on M , Theorem 2
reads

(1) If X k X t Rtk = X k ∇̇r X j Rr
j k , then X is parallel.

(2) If X k X t Rtk > X k ∇̇r X j Rr
j k , then X vanishes.

Recall that if the Finsler structure F is Riemannian, then Theorem 2 reduces to the following
famous theorem of Bochner and Yano.

Theorem 16 ([12,13]). Let (M , g ) be a closed Riemannian manifold and X a harmonic vector field
on M .

(1) If Ric(X , X ) = X k X t Rtk = 0, then X is parallel.
(2) If Ric(X , X ) = X k X t Rtk > 0, then X vanishes.

6. Cohomology class and Betti number

On a smooth manifold M the de Rham cohomology H 1
dR(M) := Z 1(M)/B 1(M), is an equivalence

class of the closed forms on M . The fact that a closed form is not exact indicates that the manifold
has a certain global topological structure that prevents the existence of any hole or twist. The de
Rham cohomology class is therefore, a way to understand, via the tangent bundle, the global
topology of a manifold.

On a compact Riemannian manifold, every equivalence class in H k
dR(M) contains exactly one

harmonic form. That is, every member ω of a given equivalence class of closed forms can be
written as ω=α+γ where α is exact and γ is harmonic, i.e. ∆γ= 0.

The dimension of the space of all harmonic forms of degree p on a manifold M is called the
pth Betti number of the manifold.

Due to Hodge theory, the first Betti number is equal to the dimension of the space of harmonic
1-forms on M , and this space is isomorphic to H 1

dR(M).
As mentioned earlier, on a Finsler manifold (M ,F ), a vector field is harmonic if X = Xi (x, y)dxi ,

the associate horizontal 1-form on SM , is h-harmonic. Hence the definition of a harmonic form
on (M ,F ) is closely related to the Finsler structure F .

The following theorem will be used in the sequel.

Theorem 17 ([7]). If A is a closed, nonempty, convex subset of a Hilbert space B, then for every y
in B there is a unique x in A that minimizes the distance from y to A.
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We are now able to prove Theorem 3.

Proof of Theorem 3. Uniqueness. Let (M ,F ) be a Finsler manifold, α(1) = α(1)
i (x)dxi and α(2) =

α(2)
i (x)dxi the two 1-forms on M such that the associate horizontal 1-forms α(1) = α(1)

i (x, y)dxi

and α(2) = α(2)
i (x, y)dxi on SM are h-harmonic and α(1)

i (x, y)dxi −α(2)
i (x, y)dxi = dH f for some

f ∈C∞(SM). Using the inner product (13) and the equation (21), we have

(α(1)
i (x, y)dxi −α(2)

i (x, y)dxi ,α(1)
i (x, y)dxi −α(2)

i (x, y)dxi ) (39)

= (α(1)
i (x, y)dxi −α(2)

i (x, y)dxi ,dH f )

= (δH (α(1)
i (x, y)dxi −α(2)

i (x, y)dxi ), f )

= (0, f ) = 0,

which yields α(1) =α(2).

Existence. B 1(SM) is closed in Z 1(SM) and it is convex [7].
Let θ = θi (x)dxi ∈ Z 1(M) such that θ = θi (x, y)dxi ∈ Z 1(SM) is the associate 1-form on SM .

Using Theorem 17, three is a unique minimizer, say f0 ∈C∞(SM) such that ∥θi (x, y)dxi −dH f0∥2

is minimized. For all f ∈C∞(SM) and t ∈R we have

d

dt
∥θi (x, y)dxi −dH f0 − tdH f ∥2

= d

dt
(θi (x, y)dxi −dH f0 − tdH f ,θi (x, y)dxi −dH f0 − tdH f )

= d

dt
[(θi (x, y)dxi −dH f0,θi (x, y)dxi −dH f0)−2t (θi (x, y)dxi −dH f0,dH f )+ t 2(dH f ,dH f )].

Since ∥θi (x, y)dxi −dH f0 − tdH f ∥2 has a unique minimum at t = 0, we deduce

(θi (x, y)dxi −dH f0,dH f ) = 0, (40)

for all f ∈C∞(SM). On the other hand

(θi (x, y)dxi −dH f0,dH f ) = (δH (θi (x, y)dxi −dH f0), f ). (41)

The equations (40) and (41) yield δH (θi (x, y)dxi −dH f0) = 0 and the proof is complete. □

We then prove the corollary.

Proof of Corollary 4. Let (M ,F ) be a closed orientable Finsler manifold and X a harmonic vector
field related to F . Assuming R̃ic > 0, the second part of Theorem 2 asserts that the harmonic
vector field X related to F vanishes identically. Theorem 3 yields that the dimension of the space
of all harmonic forms of degree one is the first Betti number of the manifold. Hence the first Betti
number is b1 = 0. □
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