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Abstract. In this note we study the Lp − Lq boundedness of Fourier multipliers of anharmonic oscillators,
and as a consequence also of spectral multipliers, for the range 1 < p ≤ 2 ≤ q < ∞. The underlying Fourier
analysis is associated with the eigenfunctions of an anharmonic oscillator in some family of differential
operators having derivatives of any order. Our analysis relies on a version of the classical Paley-type inequality,
introduced by Hörmander, that we extend in our nonharmonic setting.

Résumé. Dans cette note, nous étudions la Lp -Lq continuité des multiplicateurs de Fourier des oscillateurs
anharmoniques, et par conséquent des multiplicateurs spectraux également, pour 1 < p ≤ 2 ≤ q < ∞.
L’analyse de Fourier sous-jacente est associée aux fonctions propres d’un oscillateur anharmonique dans
certaines familles d’opérateurs différentiels ayant des dérivées d’ordre quelconque. Notre analyse s’appuie
sur une version de l’inégalité classique de type Paley, introduite par Hörmander, que nous étendons dans
notre cadre non harmonique.
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1. Introduction

The aim of this note is to study the Lp −Lq boundedness conditions for the Fourier and spectral
multipliers where the pertinent Fourier analysis is developed with respect to a member of the
family of anharmonic oscillators on Rn . Such operators were considered in [6] as “prototype” for
the spectral analysis that is performed there.
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The boundedness of Fourier multipliers is a central topic in harmonic analysis and its ori-
gin can be traced back to Hörmander’s seminal paper [10] in 1960. The results concerning
to the boundedness of multipliers are of Lp -type, or Lp − Lq -type. In the first case, Mihlin–
Hörmander [11] or Marcinkiewicz theorems [5] come into play providing conditions on the reg-
ularity of the symbol, while in the second case, the sharp decay of the spectral information is
analysed.

Regarding the Lp − Lq boundedness that we study here, let us recall Hörmander’s Fourier
multiplier theorem as in [10]: For 1 < p ≤ 2 ≤ q <∞, the Fourier multiplier Tσ : S (Rn) →S ′(Rn)
associated with symbol σ :Rn →C defined by

F
(
Tσ f

)
(ξ) =σ(ξ)F

(
f
)

(ξ)

for ξ ∈Rn , where F denotes the Euclidean Fourier transform of f , has a bounded extension from
Lp (Rn) to Lq (Rn) provided that the symbol satisfies the condition

sup
s>0

s

(∫
ξ∈Rn : |σ(ξ)|≥ s

dξ

) 1
p − 1

q <+∞ . (1)

The Lp − Lq boundedness of spectral and Fourier mutlipliers has been studied in different
settings; we refer for instance to the works [8] on symmetric spaces, and [1–3] on groups. In [2, 3]
the authors suggest an approach that is also effective for our purposes: to establish the Hausdorff–
Young–Paley inequality by interpolating between the Hausdorff–Young inequality and Paley-type
inequality. However, the machinery we use here differs from the one in [3] and relies on the
underlying Fourier analysis, and so on the spectral properties of our “model operator”, and on
the Sobolev estimates associated with it as acquired in [6].

Precisely, the Fourier analysis we present here is the natural analogue of the one developed
in [12] in the general setting of nonharmonic analysis associated with a “model operator”.
A concrete example of the latter is our choice of the anharmonic oscillator with a potential that
is a homogeneous polynomial of a certain degree, and with derivatives of any order; in particular
the operator we consider is of the form 1

(−∆)l +|x|2k +1, x ∈Rn ,

where l ,k ≥ 1 are some fixed integers, | · | stands for the Euclidean norm on Rn , and ∆ is the usual
Laplace operator onRn . Under such analysis a Fourier multiplier is Lp−Lq bounded if a condition
similar to (1) is satisfied for a symbol of the multiplier adapted to our setting.

2. Notation and preliminaries

In order to present our results, let us briefly recall the necessary notation and concepts involved
in our analysis. For a more detailed discussion on concepts related to the spectral analysis of the
anharmonic oscillator we refer to [6, 7], and for those related to the associated Fourier analysis
we refer to [7], or, for a more general consideration, to [12].

2.1. The anharmonic oscillator and its spectrum

The anharmonic oscillator is a differential operator on Rn that is served as a generalisation of
the harmonic oscillator. Here we consider an anharmonic oscillator in the family of operators
(Ak, l )k, l , for different values of the integer parameters k, l ≥ 1, defined as follows

Ak, l := (−∆)l +|x|2k +1, x ∈Rn .

1The addition of the constant 1 to the potential is required for the invertibility of the operator and for controlling the
lower bound of the spectrum of the operator.
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Here and thereafter we assume that the parameters k, l are fixed, and the notation will be
simplified to A := Ak, l .

The operator A is densely defined on its domain S (Rn) ⊂ L2(Rn) and admits a (unique) self-
adjoint extension on L2(Rn). Its spectrum is purely discrete and lies in the interval [1,∞). If we
keep the same notation for its self adjoint extension, then by the functional calculus we have, for
m ∈R,

Dom
(

Am)={
u ∈ L2 (

Rn)
:
∞∑

j=1
λ j

2m ∣∣〈u j ,u
〉

L2

∣∣2 <∞
}

,

where the set (u j ) j , with ‖u j ‖L2 = 1, is the set of normalized eigenfunctions of A, and (λ j ) j is the
corresponding set of eigenvalues. Thus, for u ∈ Dom (Am), we have

Amu =
∞∑

j=1
λm

j

〈
u j ,u

〉
L2 u j .

Despite the intensive research on the eigenvalue problem associated with the anhramonic oscil-
lator, the exact solution of it, even in the quartic case, is still explicitly unknown. We refer to [6]
for a recent exposition of the related works. Let us summarise the spectral information that is
known in the case of the anharmonic oscillator A: For the inverse operator A−1 we know that
A−1 ∈ Sr (L2(Rn)) for r > (k+l )n

2kl , where by Sr (L2(Rn)) we have denoted the r th Schatten–von Neu-
mann class of operators on the Hilbert space L2(Rn), see [6, Corollary 5.3]. As a consequence, for
the eigenvalue counting function N (λ) := #{ j :λ j <λ}, we get the following asymptotic estimate

N (λ).λn
( 1

2k + 1
2l

)
, as λ→∞ , (2)

where we have assumed that the eigenvalues (λ j ) j are arranged in the decreasing order; see [6,
Remark 5.7], or [9, Theorem 5.5].

2.2. Fourier analysis associated with the anharmonic oscillator

For the setup of this section we follow [12].
The space of functions

C∞
A

(
Rn)

:=∩∞
m=1 Dom

(
Am)

,

will be the domain of the Fourier operator FA in our setting. The space C∞
A is a Fréchet space if

endowed with the topology induced by the family of norms∥∥ f
∥∥

C m
A

:= max
k ≤m

∥∥∥Ak f
∥∥∥

L2(Rn )
, m ∈N0, f ∈C∞

A

(
Rn)

.

Then, defining the A-Fourier transform by(
FA f

)(
j
)

:=
∫
Rn

f (x)u j (x)d x ,

we see that FA(C∞
A ) ⊂S (N), where S (N) is the space of rapidly decreasing functions φ :N→ C,

i.e., for any N <∞, there exists a constant Cφ,N > 0 such that∣∣φ(
j
)∣∣≤Cφ, N

〈
j
〉−N for all j ∈N .

The Fréchet topology of S (N) is induced by the family of semi-norms {pr }r ∈N given by

pr
(
φ

)
:= sup

j ∈N

〈
j
〉r ∣∣φ(

j
)∣∣ .

With the topological structures as described above, the map FA becomes a bijective homeomor-
phism form C∞

A to S (N), and the Fourier inversion formula becomes available in our setting.
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Moreover, for f ∈ L2, the operator FA becomes a bijective isomorphism onto the Hilbert space l 2
A

defined as the space of sequences f = ( f j ) j ∈N under the norm

‖ f ‖l 2
A

:=
( ∑

j ∈N

∣∣ f j
∣∣2

) 1
2

.

The latter reads as the Plancherel identity in our setting, i.e., in symbols: ‖ f ‖L2 = ‖FA( f )‖l 2
A

.

3. Main results

The Hausdorff–Young inequality in our setting is derived verbatim as a particular case of the
Fourier analysis associated with a “model operator” [12]. The Paley-type inequality is more
involved and its proof can be found in the preprint [7, Theorem 4.1]. Then, by means of the
Stein–Weiss interpolation theorem, we can extend the Hausdorff–Young–Paley inequality in our
setting [7, Theorem 4.4] which is the key for proving our result on the boundedness of Fourier
multipliers as follows. We refer to [7] for the detailed proofs of the results below.

First, let us recall that Tσ is an A-Fourier multiplier, if it satisfies the identity

FA (Tσ)
(

j
)=σ(

j
)
FA f

(
j
)

, j ∈N,

whereσ :N→C is a function that can be served as the symbol of the multiplier Tσ for our analysis.

Theorem 1. Let 1 < p ≤ 2 ≤ q <∞. Let Tσ be a A-Fourier multiplier with symbol σ. Then we have

‖Tσ‖Lp (Rn )→Lq (Rn ) . sup
s>0

s

 ∑
j ∈N

|σ( j )|≥ s

∥∥u j
∥∥2

L∞(Rn )


1
p − 1

q

. (3)

Let us mention that (3) is well-defined since for the L∞-estimate of eigenfunctions we have:

‖u j ‖L∞ ≤C
√
λ j , for some C > 0 and for all j ; see [7, Lemma 2.2].

We note here that Theorem 1 can be thought as a particular case of the recently obtained
result [13, Theorem 4.8] in a more general setting of [12].

As a consequence of Theorem 1 and of the spectral decay of the anharmonic oscillator A in (2)
we derive the following result on the boundedness of the spectral multipliers in our setting.

Theorem 2. Let 1 < p ≤ 2 ≤ q < ∞, and let ϕ be any decreasing function on [1,∞) such that
limu→∞ϕ(u) = 0. Then, ∥∥ϕ(A)

∥∥
Lp (Rn )→Lq (Rn ) . sup

u≥1
ϕ(u)

(
u1+ (k+l )n

2kl

) 1
p − 1

q
.

Let us summarise some applications of Theorem 2.

Corollary 3. Let 1 < p ≤ 2 ≤ q <∞. Then, the operator A−m is bounded from Lp (Rn) to Lq (Rn) for
m ≥ (1+ (k+l )n

2kl )( 1
p − 1

q ).

Corollary 3 implies in particular that A−m is bounded from L2(Rn) to L2(Rn) for any m ≥ 0. This
is known in more generality by the general theory of pseudo-differential operators, see Beals [4,
Theorem 3.1], which gives us A−m ∈L (Lp ), for any m > 0, and for any p ∈ (1,∞). However, using
Corollary 3 we can study the Lp -Lq boundedness for p 6= q .

Corollary 4. If v = v(x, t ) is the solution to the heat equation associated to A, i.e., if we have

∂t v + Av = 0, v(0) = v0 ,
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then the time decay rate for v is estimated as:∥∥v(t , ·)∥∥Lq (Rn ) . t
−

(
1+ (k+l )n

2kl

)(
1
p − 1

q

)
‖v0‖Lq (Rn ) ,

where 1 < p ≤ 2 ≤ q <∞.

Corollary 5. Let 1 < p ≤ 2 ≤ q <∞. Then, for m ≥ (1+ (k+l )n
2kl )( 1

p − 1
q ) we obtain the Sobolev-type

estimate:
‖ f ‖Lq (Rn ) .

∥∥Am f
∥∥

Lp (Rn ) .
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