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Abstract. In this short note, we prove that for every bounded, planar and convex setΩ, one has

λ1(Ω)T (Ω)

|Ω| ≤ π2

12
·
(
1+p

π
r (Ω)p|Ω|

)2
,

where λ1, T , r and | · | are the first Dirichlet eigenvalue, the torsion, the inradius and the volume. The
inequality is sharp as the equality asymptotically holds for any family of thin collapsing rectangles.

As a byproduct, we obtain the following bound for planar convex sets

λ1(Ω)T (Ω)

|Ω| ≤ π2

12

(
1+ 2

√
2(6+π2)−π2

4+π2

)2

≈ 0.996613. . .

which improves Polyá’s inequality λ1(Ω)T (Ω)
|Ω| < 1 and is slightly better than the one provided in [3].

The novel ingredient of the proof is the sharp inequality

λ1(Ω) ≤ π2

4
·
(

1

r (Ω)
+

√
π

|Ω|
)2

,

recently proved in [8].
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1. Introduction

LetΩ be an open set in Rn with finite Lebesgue measure |Ω|. We denote

T (Ω) := sup
w∈H 1

0 (Ω)\{0}

(∫
Ωwdx

)2∫
Ω |∇w |2dx

the torsion of the setΩ, and

λ1(Ω) := inf
u∈H 1

0 (Ω)\{0}

∫
Ω |∇u|2dx∫
Ωu2dx

the fundamental frequency ofΩwhich corresponds to the first eigenvalue of the Laplace operator
with Dirichlet boundary condition of the setΩ.
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In 1951, G. Pólya [13] proved the following inequality:

λ1(Ω)T (Ω)

|Ω| ≤ 1,

which was recently improved by M. van den Berg et al. in [3], where the authors prove the
inequality

λ1(Ω)T (Ω)

|Ω| ≤ 1− 2nω2/n
n

n +2

T (Ω)

|Ω|1+ 2
n

, (1)

whereωn is the measure of the ball with radius 1 in Rn . They also show, by using homogenization
arguments, that the upper bound 1 is optimal in the class of open sets with finite measure, see [3,
Theorem 1.2], but is not optimal for the class of bounded, planar and convex sets. Indeed, in this
case they obtain the following improved estimate

λ1(Ω)T (Ω)

|Ω| ≤ 1− 1

11560
≈ 0.999913. . . (2)

see [3, Theorem 1.5]. The optimal upper bound is conjectured to be given by π2

12 , which is
asymptotically attained by any sequence of thin collapsing rectangles.

Let us now state the main results of the present note.

Theorem 1. We have for every bounded planar convex setΩ:

λ1(Ω)T (Ω)

|Ω| ≤ π2

12
·
(
1+p

π
r (Ω)p|Ω|

)2

. (3)

The inequality is sharp as it is asymptotically attained by any family of thin collapsing rectangles.
Moreover, for every sequence (Ωk ) of planar convex sets such that |Ωk | = 1 and limk→+∞ d(Ωk ) =
+∞, we have

limsup
k→+∞

λ1(Ωk )T (Ωk )

|Ωk |
≤ π2

12
.

As a byproduct, we obtain the following slight improvement of inequality (2):

Corollary 2. We have for every bounded planar convex setΩ:

λ1(Ω)T (Ω)

|Ω| ≤ π2

12

(
1+ 2

√
2(6+π2)−π2

4+π2

)2

≈ 0.996613. . . (4)

We provide the complete proofs of Theorem 1 and Corollary 2 in Section 2 and state some
comments in Section 3.

2. Proofs of The main results

2.1. Proof of Theorem 1

LetΩ be a bounded, planar and convex set. We combine the following inequality proved in [8]:

λ1(Ω) < π2

4
·
(

1

r (Ω)
+

√
π

|Ω|
)2

, (5)

with the following Makai’s inequality [11]:

T (Ω) < 1

3
|Ω|r (Ω)2.

We have

λ1(Ω)T (Ω)

|Ω| < 1

|Ω| ×
π2

4
·
(

1

r (Ω)
+

√
π

|Ω|
)2

× 1

3
|Ω|r (Ω)2 = π2

12
·
(
1+p

π
r (Ω)p|Ω|

)2

.
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The inequality is sharp as it is an asymptotically an equality for any family of thin vanishing
rectangles, see [2, Proposition 3.2].

Let us now consider (Ωk ) a sequence of planar convex sets such that |Ωk | = 1 and
limk→+∞ d(Ωk ) =+∞. We have for every k ∈N:

0 < r (Ωk )√|Ωk |
≤ 1√|Ωk |

2|Ωk |
P (Ωk )

≤ 2
√|Ωk |

2d(Ωk )
= 1

d(Ωk )
−→

k→+∞
0,

where we used the classical inequalities r (Ωk ) ≤ 2|Ωk |
P (Ωk ) (see [5]) and 2d(Ωk ) ≤ P (Ωk ).

We then conclude by using inequality (3) that

limsup
k→+∞

λ1(Ωk )T (Ωk )

|Ωk |
≤ π2

12
.

2.2. Proof of Corollary 2

Let us prove the inequality

λ1(Ω)T (Ω)

|Ω| < 1− π

π2

4

(p|Ω|
r (Ω) +

p
π
)2 +π

. (6)

We have by inequality (1) (see [3, Theorem 1.1]):

λ1(Ω)T (Ω)

|Ω| ≤ 1−πT (Ω)

|Ω|2 ,

which is equivalent to the inequality:

λ1(Ω)T (Ω)

|Ω| ≤ 1− π

|Ω|λ1(Ω)+π .

Indeed:
λ1(Ω)T (Ω)

|Ω| ≤ 1−πT (Ω)

|Ω|2 ⇐⇒ T (Ω)

|Ω|
(
λ1(Ω)+ π

|Ω|
)
< 1

⇐⇒ λ1(Ω)T (Ω)

|Ω| < λ1(Ω)

λ1(Ω)+ π
|Ω|

= 1− π

|Ω|λ1(Ω)+π .

Thus, by using the inequality (5), we obtain the inequality (6).
We then combine the inequalities (3) and (6) to conclude:

λ1(Ω)T (Ω)

|Ω| ≤ min

π2

12
·
(
1+p

π
r (Ω)p|Ω|

)2

,1− π

π2

4

(p|Ω|
r (Ω) +

p
π
)2 +π


≤ max

x∈
(
0, 1p

π

]min

(
π2

12
· (1+p

πx
)2

,1− π

π2

4

( 1
x +p

π
)2 +π

)

= π2

12

(
1+ 2

√
2(6+π2)−π2

4+π2

)2

.

The second inequality is a consequence of the estimate 0 < r (Ω)p|Ω| ≤
r (B)p|B | =

1p
π

, where B is any ball

of R2. Let us now detail the computations leading to the last equality. We introduce the functions
f : x 7−→ π2

12 ·
(
1+p

πx
)2 and g : x 7−→ 1− π

π2
4

( 1
x +

p
π
)2+π

. The function f is increasing on (0, 1p
π

] and g

is decreasing on (0, 1p
π

], moreover, limx→0+ f (x) = π2

12 < 1 = limx→0+ g (x) and f ( 1p
π

) = π2

3 > 1
1+π2 =

g ( 1p
π

). Thus the function x 7−→ min( f (x), g (x)) attains its maximum on (0, 1p
π

] at the point x0

such that f (x0) = g (x0) (see Figure 1). It remains then to solve the equation f (x) = g (x) on (0, 1p
π

].
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The equation f (x) = g (x) can be written in the algebraic form ax3+bx2+cx+d = 0, where a,b,c
and d are explicit constants. We then notice that− 1p

π
is a solution, which means that the equation

is equivalent to a(x+ 1p
π

)(x2+b′x+c ′) = 0, where b′ and c ′ are explicit constants. It remains then

to solve the second order equation x2 +b′x + c ′ = 0 that admits two solutions

x1 =− π3/2

4+π2 −
2
√

2(6+π2)
π

4+π2 < 0 and x0 =
2
√

2(6+π2)
π

4+π2 − π3/2

4+π2 ∈ (0,
1p
π

].

Thus

max
x∈(0, 1p

π
]
min( f (x), g (x)) = f (x0) = g (x0) = π2

12

(
1+ 2

√
2(6+π2)−π2

4+π2

)2

.

This ends the proof.

0 0.1 0.2 0.3 0.4 0.5

0.85

0.9

0.95

1

1.05

Figure 1. Graphs of the functions f and g .

3. Some comments

We close the paper by the following comments:

• The result of the paper is limited to the planar case because it mainly relies on the
inequality

λ1(Ω) < π2

4

(
1

r (Ω)
+

√
π

|Ω|
)2

,

which is obtained by combining the inequalities λ1(Ω) < π2

4 h(Ω)2 (proved in [12]), where

h is the Cheeger constant, and h(Ω) ≤ 1
r (Ω) +

√
π
|Ω| (proved in [8]). Up to our knowledge,

the last inequality is only known for the planar case and a generalization to higher
dimensions seems to be difficult as the proof relies on the explicit characterization of
the Cheeger constant of planar convex sets (see [9]).
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• Let us denote Br (Ω) a ball of radius r (Ω) inscribed inΩ. The inclusion Br (Ω) ⊂Ω combined
with the monotonicity of λ1 for the inclusion yield the inequality

λ1(Ω) ≤ j 2
01

r (Ω)2 , (7)

where j01 denotes the first zero of the first Bessel function. We note that even if inequal-
ity (7) is better than (5) for sets that are close to the ball (we refer to [8, Section 5.1.1] for
more details), it is not sufficient to improve the upper bound given in Theorem 2.

• We recall that the infimum of the functional λ1(Ω)T (Ω)
|Ω| on the class of open sets is zero

(see [2, Remark 2.4]. As for the class of bounded convex subsets of Rn (with n ≥ 2), it
is conjectured that the infimum is given by the constant π2

12
6

(n+1)(n+2) , see [1, Conjec-
ture 4.2]. In [3], the authors prove the following estimates

λ1(Ω)T (Ω)

|Ω| ≥
(π

2

)2 1

nn+2(n +2)
, for n ≥ 3,

and
λ1(Ω)T (Ω)

|Ω| ≥ π2

48
, for n = 2,

that have been improved in [6, Remark 4.1], where the authors provide the lower bound

λ1(Ω)T (Ω)

|Ω| ≥
(π

2

)2 1

n(n +2)
.

We also refer to [4, Theorems 1.4 & 1.5] for finer lower bounds in restricted classes of
convex planar sets.

• An interesting tool to visualize the inequalities relating three functionals is the Blaschke–
Santaló diagram. In our case, we are interested in the functionals: torsion T , fundamental
frequency λ1 and measure | · | in the case of planar convex sets, which leads to consider
set of points

D = {(λ1(Ω),T −1(Ω)) |Ω⊂R2 is convex and |Ω| = 1}.

We note that this diagram has been theoretically studied in [10] and we refer to [1,
7] for results in the case of open sets. In Figure 2, we plot an approximation of the
diagram D obtained by randomly generating 105 convex polygons (we used the algorithm
presented in [14]) for which we compute the involved functionals, we also plot the curves
corresponding to the best known inequalities relating the 3 functionals, namely:

– the Kohler-Jobin inequality

T (Ω)λ1(Ω)2 ≥ T (B)λ1(B)2,

– the Faber–Krahn inequality

|Ω|λ1(Ω) ≥ |B |λ1(B),

– the inequality (4)

λ1(Ω)T (Ω)

|Ω| ≤ π2

12

(
1+ 2

√
2(6+π2)−π2

4+π2

)2

≈ 0.996613. . .

We also plot in dashed line the curves corresponding to the conjectures

π2

24
< λ1(Ω)T (Ω)

|Ω| < π2

12
.
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Figure 2. Blaschke–Santaló diagram D and inequalities.
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