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1. Introduction and main result

Let Ω be a smooth bounded domain in RN , N ≥ 1, and 2∗ =
{

2N
N−2 , N ≥ 3,

+∞, N = 1,2.
We consider the

following Kirchhoff type boundary value problems−
(

a +b
∫
Ω
|∇u|2dx

)
∆u = g (x,u) inΩ,

u = 0 on ∂Ω,
(1)

where a > 0,b > 0 and g :Ω×R→R is a suitable continuous function.
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When N = 1,Ω= (0,L), a = 1 and g (x,u) = g (x), solutions of Eq. (1) are related to the stationary
states of the hyperbolic equation

∂2u

∂t 2 −
(
1+b

∫ L

0

∣∣∣∣∂u

∂x

∣∣∣∣2

dx

)
∂2u

∂x2 = g , u(0, t ) = u(L, t ) = 0,

which was proposed by Kirchhoff in 1883 to describe the small transversal oscillations of an
elastic clamped string. For this reason, Eq. (1) is often called Kirchhoff equation.

Over the past 20 years Eq. (1) has been extensively studied by using variational methods, see
for example, [1, 2, 6–10, 12] and the references therein. See also [11] and references therein for a
broad survey.

In particular, Ambrosetti and Arcoya investigated the following special case of Eq. (1)−
(

a +b
∫
Ω
|∇u|2dx

)
∆u = |u|p−2u in Ω,

u = 0 on ∂Ω,
(2)

where 2 < p < min{4,2∗}, and got that

(I) there exists γ0 > 0 such that for any b ∈ (0,γ0), Ib has a mountain pass critical point u1

with Ib(u1) > 0, as well as a global minimum u2 with Ib(u2) < 0, see [2, Theorem 4.4],
where Ib is the Euler functional associated with Eq. (2);

(II) if b is large, then Eq. (2) has no nontrivial solution, see [2, Remark 4.5(ii)].

Conclusions (I) and (II) motivate us to study bifurcation-type results on Eq. (2) as the param-
eter b varies. This is the object of this paper to which we give a positive answer.

Define

Sp = inf
u∈H\{0}

‖u‖2

|u|2p
.

where ‖u‖2 = ∫
Ω |∇u|2dx and |u|pp = ∫

Ω |u|p dx denote the usual norms of u in H := H 1
0 (Ω) and

Lp (Ω) respectively. Then ∫
Ω
|u|p dx ≤ Ap‖u‖p for all u ∈ H , (3)

where Ap = S
− p

2
p . Define

Λ= p −2

2
A

2
p−2
p

(
4−p

2a

) 4−p
p−2

.

By using the variational methods, we obtain the following bifurcation-type theorem.

Theorem 1. Suppose that a > 0,b > 0,2 < p < min{4,2∗}. Then

(i) Eq. (2) has no nontrivial solutions for any b >Λ;
(ii) Eq. (2) has at least two positive solutions for any b <Λ;

(iii) Eq. (2) has at least a positive solution for b =Λ.

According to Remark 7 below, we can give the rough graphs of the mountain pass value cb and
the local minimum value mb .

From [2] we know that for any b ∈ (0,γ0), Ib possesses a global minimum. But if b ∈ (0,Λ) is
close toΛ, then 0 is a global minimum. So we need to select an appropriate constraint in order to
obtain a local minimum.

The Euler functional associated with Eq. (2) is

Ib(u) = a

2
‖u‖2 + b

4
‖u‖4 − 1

p

∫
Ω
|u|p dx.

Obviously, Ib is of class C 1 and

〈I ′b(u), v〉 = (
a +b‖u‖2)∫

Ω
∇u ·∇vdx −

∫
Ω
|u|p−2uvdx

C. R. Mathématique — 2022, 360, 247-254
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Figure 1.

for all u, v ∈ H .

2. Proof of Theorem 1

To prove Theorem 1, five lemmas are in order.

Lemma 2. Suppose that b > 0 and 2 < p < min{4,2∗}. Then Ib is coercive on H.

Proof. From (3) we have

Ib(u) = a

2
‖u‖2 + b

4
‖u‖4 − 1

p

∫
Ω
|u|p dx

≥ a

2
‖u‖2 + b

4
‖u‖4 − Ap

p
‖u‖p .

Since 2 < p < min{4,2∗}, Ib is coercive on H . �

Lemma 3. Suppose that a > 0,0 < b <Λ,2 < p < min{4,2∗} and

Tb =
[

(p −2)Ap

2b

] 1
4−p

.

Then there exist tb ∈ (0,Tb) and t ′b ∈ (Tb ,+∞) such that all nontrivial solution of Eq. (2) belongs to
the set {u ∈ H : tb ≤ ‖u‖ ≤ t ′b}. Moreover, if 0 < b1 < b2 < Λ, then tb1 < tb2 and Mb2 ⊂ Mb1 , where
Mb := {u ∈ H : ‖u‖ ≥ tb}.

Proof. Suppose that u ∈ H is a nontrivial solution of Eq. (2). Then combining with (3) we have

a‖u‖2 +b‖u‖4 =
∫
Ω
|u|p dx ≤ Ap‖u‖p .

Thus
b‖u‖2 − Ap‖u‖p−2 +a ≤ 0.

For t > 0, define hb(t ) = bt 2 − Ap t p−2 +a. Then h′
b(Tb) = 2bTb − (p −2)Ap T p−3

b = 0, h′
b(t ) < 0 for

all t ∈ (0,Tb) and h′
b(t ) > 0 for all t ∈ (Tb ,+∞).

When b < Λ, hb(Tb) = T p−2
b (bT 4−p

b − Ap ) + a < 0. Combining with hb(0) = a > 0 and
limt→+∞ hb(t ) = +∞ implies that there exist tb ∈ (0,Tb) and t ′b ∈ (Tb ,+∞) such that hb(tb) =
hb(t ′b) = 0, hb(t ) > 0 for all t ∈ (0, tb)∪ (t ′b ,+∞) and hb(t ) < 0 for all t ∈ (tb , t ′b). So tb ≤ ‖u‖ ≤ t ′b .

If 0 < b1 < b2 <Λ, then hb1 (tb2 ) < hb2 (tb2 ) = 0. So there exists tb1 ∈ (0, tb2 ) such that hb1 (tb1 ) = 0
and hb1 (t ) > 0 for all t ∈ (0, tb1 ). Hence Mb2 ⊂ Mb1 . �

From Lemma 2, mb := infu∈Mb Ib(u) is well defined. We consider the constraint problem
mb = infu∈Mb Ib(u) in order to obtain a local minimum solution of Eq. (2).

C. R. Mathématique — 2022, 360, 247-254
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Lemma 4. Suppose that a > 0,0 < b <Λ and 2 < p < min{4,2∗}. Then Ib satisfies mountain pass
geometry, i.e., there exist αb > 0 and vb ∈ H such that ‖vb‖ > tb and inf‖u‖=tb Ib(u) ≥ αb > Ib(vb).
Moreover, Ib(vb) ≥ mb .

Proof. From (3) we have

inf
‖u‖=tb

Ib(u) = inf
‖u‖=tb

(
a

2
‖u‖2 + b

4
‖u‖4 − 1

p

∫
Ω
|u|p dx

)
≥ inf

‖u‖=tb

(
a

2
‖u‖2 + b

4
‖u‖4 − Ap

p
‖u‖p

)
= at 2

b

2
+ bt 4

b

4
−

Ap t p
b

p
.

For t > 0, define fb(t ) = at 2

2 + bt 4

4 − Ap t p

p . Then f ′
b(t ) = at +bt 3 − Ap t p−1 = thb(t ) > 0 for all t ∈

(0, tb)∪ (t ′b ,+∞) and f ′
b(t ) < 0 for all t ∈ (tb , t ′b). Thus fb(tb) > fb(0) = 0 and fb(tb) > fb(Tb) > fb(t )

for all t ∈ (Tb , t ′b].
The infimum Sp can be achieved by a positive function e ∈ H and

∫
Ω |e|p dx = Ap‖e‖p . Let

vb = Tb
‖e‖e. Then ‖vb‖ = Tb > tb and

Ib(vb) = aT 2
b

2
+ bT 4

b

4
−

Ap T p
b

p
= fb(Tb).

Hence inf‖u‖=tb Ib(u) ≥αb := fb(tb) > fb(Tb) = Ib(vb) ≥ mb . �

Lemma 5. Suppose that a > 0,0 < b <Λ and 2 < p < min{4,2∗}. Then there exists {un} ⊂ Mb such
that Ib(un) → mb and I ′b(un) → 0.

Proof. By Ekeland’s variational principle [5], there exists un ∈ Mb such that

mb ≤ Ib(un) ≤ mb +
1

n

and for any v ∈ Mb ,

Ib(v)− Ib(un) ≥− 1

n
‖un − v‖.

Thus Ib(un) → mb . From Lemma 4 we know that for n large enough, ‖un‖ > tb . For any h ∈ H and
‖h‖ = 1, let v = un + th for t small enough, we have

〈I ′b(un),h〉 = lim
t→0+

Ib(un + th)− Ib(un)

t
≥− 1

n
.

Similarly,

〈I ′b(un),−h〉 = lim
t→0+

Ib(un − th)− Ib(un)

t
≥− 1

n
.

Then

|〈I ′b(un),h〉| ≤ 1

n
= o(1).

According to the arbitrariness of h we have I ′b(un) → 0. �

Lemma 6. Suppose that a > 0,b > 0 and 2 < p < min{4,2∗}. If {un} satisfies supn Ib(un) <+∞ and
I ′b(un) → 0, then {un} contains a convergent subsequence.

C. R. Mathématique — 2022, 360, 247-254
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Proof. Since {un} satisfies supn Ib(un) <+∞, from Lemma 2 we have {un} is bounded in H . Then
there exists u ∈ H such that up to a subsequence, un * u in H , un → u in Lp (Ω) and un(x) → u(x)
a.e. in Ω. Combining with the Hölder inequality implies∣∣∣∣∫

Ω
|un |p−2un(un −u)dx

∣∣∣∣≤ ∫
Ω
|un |p−1|un −u|dx

≤ |un |p−1
p |un −u|p

= o(1).

Note that ∫
Ω
∇un ·∇udx =

∫
Ω
|∇u|2dx +o(1)

and

o(1) = 〈I ′b(un),un −u〉 = (a +b‖un‖2)
∫
Ω
∇un ·∇(un −u)dx −

∫
Ω
|un |p−2un(un −u)dx.

Thus ‖un‖→‖u‖. Therefore, un → u in H . �

Proof of Theorem 1.

Conclusion (i). Eq. (2) has no nontrivial solutions for any b >Λ.
Suppose that u ∈ H is a nontrivial solution of Eq. (2). Then using (3) and the Young inequality

we have
a‖u‖2 +b‖u‖4 =

∫
Ω
|u|p dx

≤ Ap‖u‖p

=
(

2a

4−p

) 4−p
2 ‖u‖4−p Ap

(
4−p

2a

) 4−p
2 ‖u‖2p−4

≤ 4−p

2

2a

4−p
‖u‖2 + p −2

2
A

2
p−2
p

(
4−p

2a

) 4−p
p−2 ‖u‖4

= a‖u‖2 + p −2

2
A

2
p−2
p

(
4−p

2a

) 4−p
p−2 ‖u‖4.

(4)

So b ≤Λ. Conclusion (i) holds.

Conclusion (ii). Eq. (2) has at least two positive solutions for any b <Λ.
From Lemma 5 and Lemma 6 we have that there exists u ∈ Mb such that Ib(u) = mb and

I ′b(u) = 0. Note that Ib(|u|) = Ib(u) = mb and ‖|u|‖ = ‖u‖ > tb . For any h ∈ H ,

〈I ′b(|u|),h〉 = lim
t→0+

Ib(|u|+ th)− Ib(|u|)
t

≥ 0

and

〈I ′b(|u|),−h〉 = lim
t→0+

Ib(|u|− th)− Ib(|u|)
t

≥ 0.

Then I ′b(|u|) = 0. That |u| > 0 follows from the strong maximum principle. In fact, |u| is a ground
state solution. Indeed, from Lemma 3 one has v ∈ Mb for any v ∈ {v ∈ H\{0} : I ′b(v) = 0} and then
Ib(v) ≥ mb = Ib(|u|).

According to Lemma 4, we define

cb = inf
γ∈Γb

max
t∈[0,1]

Ib(γ(t )),

where
Γb = {γ ∈C ([0,1], H) : γ(0) = 0,γ(1) = vb}.

Then cb ≥ αb > mb and combining with Lemma 6, we know that cb is a critical value by the
mountain pass lemma [3]. From Theorem 10 in [4] we want to state positivity property of the

C. R. Mathématique — 2022, 360, 247-254
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mountain pass solution. We take p(u) = |u| in [4, Theorem 10] and obtain a critical point u ≥ 0.
The strong maximum principle implies u > 0. Conclusion (ii) holds.

Conclusion (iii). Eq. (2) has at least a positive solution for b =Λ.
Because Sp can be achieved by some positive normalized function v ∈ H , i.e., Sp = ‖v‖2 and

|v |p = 1, S
1

p−2
p v is a positive solution of the following semi-linear elliptic equation{

−∆u = |u|p−2u in Ω,

u = 0 on ∂Ω.
(5)

By scaling the function w := ( 4−p
2a

) 1
2−p S

1
p−2
p v solves the following equation− 2a

4−p
∆u = |u|p−2u in Ω,

u = 0 on ∂Ω.

Moreover, by calculating one has a+b‖w‖2 = 2a
4−p . It shows that w is a positive solution of Eq. (2).

Conversely, if w is a positive solution of Eq. (2), then (a +b‖w‖2)
1

2−p w is the one of Eq. (5). Then
when the positive solution of Eq. (5) is unique, the one of Eq. (2) is also unique, for example, when
Ω is ball or p is close to 2. Conclusion (iii) holds. �

Remark 7. We prove some properties of critical values mb and cb .

(i) mb and cb are monotone increasing functions on (0,Λ);
(ii) mΛ := limb→Λ− mb and cΛ := limb→Λ− cb are critical values of Eq. (2) with b =Λ;

(iii) mΛ = cΛ = p−2
4p ( 2

4−p )
2

p−2 (aSp )
p

p−2 = IΛ(u) for all u ∈ {u ∈ H\{0} : I ′Λ(u) = 0};
(iv) limb→0+ mb =−∞ and c0 := limb→0+ cb > 0.

Proof of (i). For any b1,b2 ∈ (0,Λ) and b1 < b2, from Lemma 3 we have Mb2 ⊂ Mb1 . Then

mb1 = inf
u∈Mb1

Ib1 (u) ≤ inf
u∈Mb2

Ib1 (u) ≤ inf
u∈Mb2

Ib2 (u) = mb2 .

Fix b2 ∈ (0,Λ). For any γ ∈ Γb2 , max0≤t≤1 Ib2 (γ(t )) ≥ fb2 (tb2 ) > fb2 (Tb2 ) > fb2 (t ) for all t ∈
(Tb2 , t ′b2

], where the symbols are from Lemma 3 and 4. According to the definition of Tb , there
exists b1 ∈ (0,b2) such that Tb2 < Tb1 < t ′b2

. For any b ∈ (b1,b2), we define

γ̃(t ) =


γ(2t ), 0 ≤ t ≤ 1

2
,

[Tb2 + (2t −1)(Tb −Tb2 )]e

‖e‖ ,
1

2
≤ t ≤ 1.

Then γ̃ ∈ Γb , Tb2 ≤ Tb2 + (2t −1)(Tb −Tb2 ) ≤ Tb < Tb1 < t ′b2
for all t ∈ [ 1

2 ,1
]
. Thereby, one has

max
1
2 ≤t≤1

Ib2 (γ̃(t )) = max
1
2 ≤t≤1

fb2 (Tb2 + (2t −1)(Tb −Tb2 )) ≤ fb2 (Tb2 ) < max
0≤t≤1

Ib2 (γ(t ))

and then

max
0≤t≤1

Ib2 (γ(t )) = max
0≤t≤ 1

2

Ib2 (γ̃(t )) = max
0≤t≤1

Ib2 (γ̃(t )) > max
0≤t≤1

Ib(γ̃(t )) ≥ cb .

In view of the arbitrariness of γ, we have cb2 ≥ cb .

Proof of (ii). For any b ∈ (
Λ
2 ,Λ

)
, there exists a positive function ub ∈ H such that Ib(ub) = mb and

I ′b(ub) = 0. Combining with (3) implies

Λ

2
‖ub‖4 ≤ a‖ub‖2 +b‖ub‖4 =

∫
Ω
|ub |p dx ≤ Ap‖ub‖p .

C. R. Mathématique — 2022, 360, 247-254
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Thus ‖ub‖ ≤
( 2Ap

Λ

) 1
4−p . From

mb = Ib(ub) ≤ a

2
‖ub‖2 + Λ

4
‖ub‖4

it follows that mb has a upper bound on
(
Λ
2 ,Λ

)
. We set mΛ = supΛ

2 <b<Λmb . For any ε > 0, there

exists bε ∈
(
Λ
2 ,Λ

)
such that mΛ− ε < mbε ≤ mΛ. Take δ = Λ−bε. When Λ−δ < b < Λ, by using

the monotonicity we have mΛ − ε < mbε ≤ mb ≤ mΛ < mΛ + ε, i.e., mb is left continuous at Λ
(mΛ = limb→Λ− mb). Let {bn} ⊂ (

Λ
2 ,Λ

)
be an increasing sequence and bn → Λ. Then mbn → mΛ

and there exists a positive sequence {un} ⊂ H such that Ibn (un) = mbn and I ′bn
(un) = 0. So

‖un‖ ≤
( 2Ap

Λ

) 1
4−p and then

IΛ(un) = Ibn (un)+ Λ−bn

4
‖un‖4 = mbn +

Λ−bn

4
‖un‖4 → mΛ,

‖I ′Λ(un)‖∗ = sup
‖v‖=1

〈I ′Λ(un), v〉 = sup
‖v‖=1

(Λ−bn)‖un‖2
∫
Ω
∇un ·∇vdx → 0.

From Lemma 6, we know that there exists a nonnegative u ∈ H such that up to a subsequence,
un → u in H . Hence IΛ(u) = mΛ and I ′Λ(u) = 0. The strong maximum principle implies that u is
positive.

The case of cb is proved to be completely similar.

Proof of (iii). Let I ′Λ(u) = 0, then from (4) we have

a‖u‖2 +Λ‖u‖4 =
∫
Ω
|u|p dx = Ap‖u‖p .

Let h(t ) =Λt 2 − Ap t p−2 +a for t > 0. Then h′(T ) = 0, h′(t ) < 0 for all t ∈ (0,T ) and h′(t ) > 0 for all
t ∈ (T,+∞), where

T =
[

(p −2)Ap

2Λ

] 1
4−p

.

Since h(T ) = T p−2(ΛT 4−p −Ap )+a = 0, T is a unique positive solution of equationΛt 2−Ap t p−2+
a = 0. Thereby, for any u ∈ {u ∈ H\{0} : I ′Λ(u) = 0} we have ‖u‖ = T and

IΛ(u) = IΛ(u)− 1

p
〈I ′Λ(u),u〉

= (p −2)a

2p
T 2 − (4−p)Λ

4p
T 4

= p −2

4p

(
2

4−p

) 2
p−2

(aSp )
p

p−2 .

Then

mΛ = cΛ = p −2

4p

(
2

4−p

) 2
p−2

(aSp )
p

p−2 .

Proof of (iv). From Lemma 3 we know that tb is a monotone increasing function on (0,Λ). Fix
w ∈ H , ‖w‖ = 1. For any L > 0 there exists B > t Λ

2
such that

I0(B w) = aB 2

2
‖w‖2 − B p

p

∫
Ω
|w |p dx <−L−1.

Then there exists b0 ∈
(
0, Λ2

)
such that

Ib0 (B w) = I0(B w)+ b0B 4

4
‖w‖4 <−L.
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So for any b ∈ (0,b0), we have ‖B w‖ = B > t Λ
2
> tb0 > tb and then

mb = inf
u∈Mb

Ib(u) ≤ Ib(B w) ≤ Ib0 (B w) <−L,

i.e., limb→0+ mb =−∞.
Since cb is a monotone increasing function on (0,Λ) and cb > 0 for all b ∈ (0,Λ), we obtain

that limb→0+ cb exists. In the following, we prove c0 := limb→0+ cb > 0. We adopt the symbols of

Lemma 3 and Lemma 4. Define t0 = ( a
Ap

) 1
p−2 . Then t0 < Tb and hb(t0) = bt 2

0 > 0. Since tb < Tb ,

hb(tb) = 0 and h′
b(t ) < 0 for all t ∈ (0,Tb), we have t0 < tb . Combining with f ′

b(t ) > 0 for all t ∈ (0, tb)
implies fb(tb) > fb(t0). Then we get

inf
‖u‖=tb

Ib(u) ≥αb = fb(tb) > fb(t0) ≥ t 2
0

(
a

2
− Ap

p
t p−2

0

)
= p −2

2p

a
p

p−2

A
2

p−2
p

> 0.

Thereby cb ≥αb ≥ p−2
2p

a
p

p−2

A
2

p−2
p

. Hence c0 ≥ p−2
2p

a
p

p−2

A
2

p−2
p

> 0.
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