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Abstract. We consider a one-dimensional stochastic differential equation driven by a Wiener process, where
the diffusion coefficient depends on an ergodic fast process. The averaging principle is satisfied: it is well-
known that the slow component converges in distribution to the solution of an averaged equation, with
generator determined by averaging the square of the diffusion coefficient.

We propose a new version of the averaging principle, where the solution is interpreted as the sum of two
terms: one depending on the average of the diffusion coefficient, the other giving fluctuations around that
average. Both the average and fluctuation terms contribute to the limit, which illustrates why it is required to
average the square of the diffusion coefficient to find the limit behavior.
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1. Introduction

Multiscale and stochastic systems are ubiquitous in all fields of science and engineering. Averag-
ing and homogenization techniques [16] are popular methods to derive lower dimensional prob-
lems, which are easier to understand and simulate. In this article, we focus on the averaging prin-
ciple for the following class of stochastic differential equations (SDEs)

dX ε(t ) =σ(
X ε(t ),m(t/ε)

)
dβ(t ), (1)

where ε¿ 1 is the time scale separation parameter, β is a standard real-valued Brownian motion,
and the diffusion coefficient σ is a smooth function. See Section 2.1 for precise assumptions. The
fast component of the system is given by an ergodic Markov process

(
m(t )

)
t≥0, evolving at the

time scale t/ε. The averaging principle states that one can eliminate the fast process when ε→ 0,
precisely the slow component X ε converges (in distribution) to the solution X of an autonomous
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266 Charles-Edouard Bréhier

evolution equation called the averaged equation. In the case of the system (1), the averaged
equation is a SDE of the type

d X (t ) =Σ(X (t ))dβ(t ), (2)

where

Σ2( · ) =σ2( · ) =
∫
σ( · ,m)2dµ(m),

and µ denotes the invariant probability distribution of the fast ergodic process
(
m(t )

)
t≥0.

In this article, we revisit this problem, and propose an original point of view which explains
why the limit equation is not given by simply averaging the diffusion coefficient σ, which would
give

dX (t ) =σ(X (t ))dβ(t ).

Note that one has Σ2 = σ2 ≥ σ2, thus the averaging principle may be interpreted as exhibiting
enhanced diffusion. The approach used in this article can be explained as follows: we introduce
a decomposition X ε = Y ε+Z ε of the slow component, where{

dY ε(t ) =σ(Y ε(t )+Z ε(t ))dβ(t )

dZ ε(t ) = (
σ(Y ε(t )+Z ε(t ),mε(t ))−σ(Y ε(t )+Z ε(t ))

)
dβ(t ).

(3)

Observe that Y ε is defined in terms ofσ, and thus may be interpreted as an average term, whereas
Z ε may be interpreted as a fluctuation term. The reason behind the expression of the averaged
equation (2) in terms ofσ2 is the fact that Z ε converges to a non-trivial limit when ε→ 0. Precisely,
the main result of this article, Theorem 3, states that (Y ε(T ), Z ε(T )) converges in distribution,
when ε→ 0, to (Y (T ), Z (T )), for all T ≥ 0, given by{

dY (t ) =σ(Y (t )+Z (t ))dβ1
t

dZ (t ) = 〈σ〉(Y (t )+Z (t ))dβ2
t ,

(4)

where
(
β1

t

)
t≥0 and

(
β2

t

)
t≥0 are two independent standard real-valued Wiener processes, and

〈σ〉2 = (σ−σ)2. It is then straightforward to retrieve the standard version of the averaging
principle: X ε(T ) = Y ε(T ) + Z ε(T ) → Y (T ) + Z (T ), and one checks that Y (T ) + Z (T ) is equal
to X (T ) in distribution. That identity is due to the following observation: one has σ2 + 〈σ〉2 =
σ2. The decomposition into average and fluctuation terms then clearly explains the diffusion
enhancement in the averaged equation (2).

The main result of this article has an elementary formulation. Even if the averaging principle
has been extensively studied by many authors, to the best of our knowledge, it seems that the
point of view proposed in this article is original and that Theorem 3 is a new result in the
mathematical literature. The analysis is performed for a simple one-dimensional SDE, it may
be generalized to more complicated problems.

Let us review the literature concerning the averaging principle for SDEs. The list of references
is not exhaustive. We refer to the seminal article [11] by Hasminkskii and to the standard mono-
graph [8] (in particular Chapter 7). See also [16] (in particular Chapter 17) for a recent overview of
the averaging and homogenization techniques for SDEs. Let us also mention [19], and the recent
works [17,18]. In the last decade, the averaging principle has been extensively studied for systems
of stochastic partial differential equations, see for instance [4,5], contributions of the author [1,2]
and references therein. Recently Hairer and Li [9] have extended the averaging principle for SDE
systems of the type (1) where the standard Brownian motion β is replaced by a fractional Brow-
nian motion βH with Hurst index H > 1/2: in Section 4 below we explain how the point of view
developped in the present article is related to that generalization. Finally, numerical methods for
systems of the type (1) which are efficient when ε¿ 1 have been studied: see for instance the het-
erogeneous multiscale method proposed in [7] and the asymptotic preserving schemes proposed
in [3].
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The proof of the main result Theorem 3 employs two standard tools when studying the
behavior of multiscale stochastic systems: solutions of Kolmogorov and Poisson equations. We
refer for instance to [12] and to the series of articles [13–15] for similar computations. See
also [1, 2] where weak error estimates in the averaging principle for SPDEs are proved using
such techniques, and [17, 18]. An original feature of the proof of Theorem 3 below is to consider
the solutions of two Poisson equations (one related to the average behavior, one related to
the fluctuations), whereas the standard approach to the averaging principle only requires a
single Poisson equation. This may be surprising since the system (1) only depends on two time
scales t and t/ε. The use of two Poisson equations is standard in homogenization or diffusion
approximation problems, where three time scales t , t/ε and t/ε2 appear, see for instance [6, 10]
and [13–15]. The list of references is not exhaustive.

This article is organized as follows. Section 2 is devoted to state the assumptions (Section 2.1)
and the main result (Section 2.2) of this article. The proof of Theorem 3 is provided in Section 3.
Concluding remarks and perspectives for future works are given in Section 4.

2. Setting and main result

Let
(
β(t )

)
t≥0 be a standard real-valued Wiener process. Let ε ∈ (0,1) denote the time-scale

separation parameter. We consider the following SDE on the one-dimensional torus T

dX ε(t ) =σ(
X ε(t ),mε(t )

)
dβ(t ), (5)

with initial condition X ε
0 = x0 ∈ T (assumed to be deterministic and independent of ε for

simplicity). Assumptions for the diffusion coefficient σ and the fast process mε are given in
Section 2.1 below.

Working in the one-dimensional torusT simplifies the presentation, however one may replace
T by R with minor modifications in the setting. Generalization to higher dimensional problems
is mentioned in Section 4.

2.1. Assumptions

The diffusion coefficient σ is assumed to satisfy the following conditions.

Assumption 1. The mapping σ : T×R → R is of class C 4, with bounded derivatives of order
1,2,3,4. In addition, assume that for all x ∈T, the mapping σ(x, · ) is not constant.

In particular, note that σ is Lipschitz continuous, this ensures the global well-posedness of (5)
for all ε> 0.

The fast process mε is assumed to satisfy the following conditions:

Assumption 2. For all ε ∈ (0,1) and all t ≥ 0, one has mε(t ) = m(t/ε), where
(
m(t )

)
t≥0 is

a real-valued ergodic Markov process which is independent of β. We assume that the initial
condition m(0) = m0 is a given deterministic real number. Assume that there exists q ≥ 0 such
that supt≥0E[|m(t )|q+2] <∞.

Let µ denote the unique invariant probability distribution of the process
(
m(t )

)
t≥0, and let L

denote its infinitesimal generator. One has
∫ |m|q+2dµ(m) <∞.

Define, for all x ∈T, 
σ(x) =

∫
σ(x,m)dµ(m)

〈σ〉(x) =
√∫ (

σ(x,m)−σ(x)
)2dµ(m).

(6)
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We assume that for all x ∈R, the Poisson equations{−Lψ1(x, · ) =σ(x, · )−σ(x)

−Lψ2(x, · ) = (
σ(x, · )−σ(x)

)2 −〈σ〉(x)2 (7)

admit solutions ψ1, ψ2 – without loss of generality one assumes that for all x ∈ T one has∫
ψ1(x,m)dµ(m) = ∫

ψ2(x,m)dµ(m) = 0 – and that the solutionsψ1,ψ2 are of class C 4 onT×R. In
addition, the derivatives of order 1,2,3,4 of ψ1 and ψ2 are assumed to grow at most polynomially
with respect to m: for i = 1,2, one has

sup
1≤k+`≤4

sup
(x,m)∈T×R

|∂k
x∂

`
mψi (x,m)|

1+|m|q <∞.

Note that the mappings σ and 〈σ〉2 inherit the regularity properties from the mapping σ with
respect to the x-variable: in particular they are of class C 4 on the torus T. Recall that for all x ∈T
the mapping σ(x, · ) is not constant (owing to Assumption 1), thus one has 〈σ〉2(x) > 0 for all
x ∈T. As a consequence, 〈σ〉 then inherits the regularity properties from 〈σ〉2, in particular it is of
class C 4.

Note that the solvability of the Poisson equations (7) is possible since the right-hand sides
satisfy the required centering conditions by definitions (6) of σ and 〈σ〉2. Observe also that for all
x ∈T one has

σ(x)2 +〈σ〉2(x) =σ2(x) =
∫
σ(x,m)2dµ(m). (8)

Let us provide a standard example for the fast process:
(
m(t )

)
t≥0 can be the solution of the

SDE

dm(t ) =−V ′(m(t ))dt +p
2dW (t ),

with appropriate assumptions on the potential V : R→ R – for instance V (x) = x2/2, which gives
an Ornstein–Uhlenbeck process. In that example the fast process

(
mε(t )

)
t≥0 solves the SDE

dmε(t ) =−V ′(mε(t ))

ε
dt +

p
2p
ε

dW (t ),

and the invariant distribution µ is given by

dµ(m) = Z−1 exp(−V (m))dm

with the normalization constant Z = ∫
exp(−V (m))dm. In that example, it is straightforward to

check that the conditions in Assumption 2 are satisfied (with appropriate regularity and growth
assumptions on V ′).

2.2. Main result

The objective of this article is to propose a version of the averaging principle with an original
point of view. First, recall that the standard version states that when ε→ 0, the solution X ε of (5)
converges in distribution to the solution X of the averaged equation

dX (t ) =Σ(X (t ))dβ(t ) (9)

with initial condition X (0) = x0, where

Σ(x) =
√
σ2(x).

Note that Σ(x) > σ(x), owing to the identity (8) and Assumption 1. We refer for instance to [16,
Chapter 17] (and the other references mentioned in Section 1).
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The version of the averaging principle studied in this article requires to introduce two auxiliary
processes Y ε and Z ε as follows: we consider the system{

dY ε(t ) =σ(Y ε(t )+Z ε(t ))dβ(t )

dZ ε(t ) = (
σ(Y ε(t )+Z ε(t ),mε(t ))−σ(Y ε(t )+Z ε(t ))

)
dβ(t )

(10)

with initial conditions Y ε(0) = 0 and Z ε(0) = x0. Observe that by construction, one has the identity

X ε(t ) = Y ε(t )+Z ε(t )

for all t ≥ 0.
The main result of this article is the convergence in distribution of (Y ε(T ), Z ε(T )) to

(Y (T ), Z (T )), where the process
(
Y (t ), Z (t )

)
t≥0 is defined as follows:{

dY (t ) =σ(Y (t )+Z (t ))dβ1
t

dZ (t ) = 〈σ〉(Y (t )+Z (t ))dβ2
t ,

(11)

where
(
β1

t

)
t≥0 and

(
β2

t

)
t≥0 are two independent standard real-valued Wiener processes, and the

initial values are Y (0) = 0 and Z (0) = x0.
We are now in position to state the refined version of the averaging principle.

Theorem 3. For all T ∈ (0,∞), one has the convergence in distribution

(Y ε(T ), Z ε(T )) →
ε→0

(Y (T ), Z (T )).

Note that the standard version of the averaging principle is a straightforward corollary of
Theorem 3. On the one hand, one has the almost sure equality X ε(T ) = Y ε(T )+ Z ε(T ). On the
other hand, set X (t ) = Y (t )+Z (t ), then one has

dX (t ) =σ(X (t ))dβ1
t +〈σ〉(X (t ))dβ2

t .

The associated infinitesimal generator is given by

1

2

(
σ(x)2 +〈σ〉(x)2)∂2

xx = 1

2
σ2(x)∂2

xx = 1

2
Σ(x)2∂2

xx ,

owing to the identity (8). As a consequence X and X are Markov processes with the same
infinitesimal generator, and X (0) = X (0) = x0: we thus obtain the equality X (T ) = X (T ) in
distribution. Finally, Theorem 3 implies

X ε(T ) = Y ε(T )+Z ε(T ) →
ε→0

Y (T )+Z (T ) = X (T )

where the convergence and the equalities are understood to hold in distribution.
The refined version is an explanation of the well-known fact that Σ(x) > σ(x) – which is often

justified by the observation that one needs to average the infinitesimal generator of the process
instead of its coefficients. It also illustrates why the convergence only holds in distribution. To the
best of our knowledge, Theorem 3 is a new result.

Let us present a simplified case to illustrate Theorem 3: assume that σ(x,m) = σ(m) only
depends on m. In that case, σ and 〈σ〉 are constants, the system (10) is rewritten as{

dY ε(t ) =σdβ(t )

dZ ε(t ) = (
σ(mε(t ))−σ)

dβ(t ).

In particular, the distribution of Y ε(T ) is N (0,σ2) and does not depend on ε. Owing to Theorem 3,
Z ε(T ) converges in distribution to Z (T ) ∼ N (0,〈σ〉2T ). In fact, more precisely (Y ε(T ), Z ε(T ))
converges in distribution to the non-degenerate Gaussian distribution N (0,Q) with diagonal
covariance matrix Q, such that Q11 = σ2T , Q22 = 〈σ〉2T . Finally, Y ε(T ) + Z ε(T ) converges in
distribution to N (0,σ2T ), since σ2 + 〈σ〉2 = σ2. This confirms how Theorem 3 is a refinement
of the standard averaging principle in the simplified case.
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3. Proof of Theorem 3

The objective of this section is to give the proof of Theorem 3. Before proceeding, let us first
introduce some of the main arguments of the proof.

Assume that ϕ :T2 →R is a mapping of class C 4. We prove below that the weak error satisfies∣∣E[ϕ(Y ε(T ), Z ε(T ))]−E[ϕ(Y (T ), Z (T ))]
∣∣≤C (T,ϕ, x0)ε (12)

for some C (T,ϕ, x0) ∈ (0,∞). By a standard approximation argument, the weak error estimate (12)
implies that one has

E[ϕ(Y ε(T ), Z ε(T ))] →
ε→0

E[ϕ(Y (T ), Z (T ))]

for all continuous mappings ϕ : T2 → R, which means the convergence in distribution stated in
Theorem 3. It thus suffices to establish the weak error estimate (12) to prove Theorem 3.

To prove the weak error estimate (12), it is convenient to introduce two auxiliary mappings u
andΦ from [0,T ]×T2×R to R. First, u is the solution of the Kolmogorov equation associated with
the SDE system (11) for

(
Y (t ), Z (t )

)
t≥0:

∂t u(t , y, z) = 1

2
σ(y + z)2∂2

y y u(t , y, z)+ 1

2
〈σ〉(y + z)2∂2

zz u(t , y, z), (13)

with initial condition u(0, y, z) =ϕ(y, z) for all (y, z) ∈T2. Using Assumption 1 and (6), one checks
that u is of class C 4 with respect to (y, z) and of class C 1 with respect to t .

Second, for all t ≥ 0, (y, z) ∈T2 and m ∈R, set

Φ(t , y, z,m) =σ(y + z)∂2
y z u(T − t , y, z)ψ1(y, z,m)+ 1

2
∂2

zz u(T − t , y, z)ψ2(y, z,m). (14)

One checks that Φ is of class C 1 with respect to t , and of class C 2 with respect to (y, z,m).
In addition, Φ and its derivatives have at most polynomial growth with respect to m owing to
Assumption 2.

Proof of Theorem 3. Recall that (Y ε
0 , Z ε

0 ) = (0, x0) = (Y0, Z0) for all ε ∈ (0,1). Expressing the weak
error in terms of the solution u of the Kolmogorov equation (13), and applying Itô’s formula, one
obtains

E[ϕ(Y ε
T , Z ε

T )]−E[ϕ(YT , ZT )]

= E[u(0,Y ε
T , Z ε

T )]−E[u(T,Y ε
0 , Z ε

0 )]

=
∫ T

0
E
[−∂t u(T − t ,Y ε

t , Z ε
t )

]
dt

+ 1

2

∫ T

0
E
[
σ(Y ε

t +Z ε
t )2∂y y u(T − t ,Y ε

t , Z ε
t )

]
dt

+
∫ T

0
E
[
σ(Y ε

t +Z ε
t )

(
σ(Y ε

t +Z ε
t ,mε

t )−σ(Y ε
t +Z ε

t )
)
∂2

y z u(T − t ,Y ε
t , Z ε

t )
]
dt

+ 1

2

∫ T

0
E
[(
σ(Y ε

t +Z ε
t ,mε

t )−σ(Y ε
t +Z ε

t )
)2
∂2

zz u(T − t ,Y ε
t , Z ε

t )
]
dt

=
∫ T

0
E
[
σ(Y ε

t +Z ε
t )

(
σ(Y ε

t +Z ε
t ,mε

t )−σ(Y ε
t +Z ε

t )
)
∂2

y z u(T − t ,Y ε
t , Z ε

t )
]

dt

+ 1

2

∫ T

0
E
[((
σ(Y ε

t +Z ε
t ,mε

t )−σ(Y ε
t +Z ε

t )
)2 −〈σ〉(Y ε

t +Z ε
t )2

)
∂2

zz u(T − t ,Y ε
t , Z ε

t )
]

dt ,

where the last line comes from replacing ∂t u using the Kolmogorov equation (13).
Observe that the two terms in the right-hand side above have a nice form, since the factors in

parenthesis are centered with respect to the invariant distribution µ in the m variable, and the
other factors do not depend on m. Recall that the auxiliary functions ψ1 and ψ2 are defined as

C. R. Mathématique — 2022, 360, 265-273



Charles-Edouard Bréhier 271

solutions of the Poisson equations (7). As a consequence, by the definition (14) of the auxiliary
functionΦ, the weak error satisfies the identity

E[ϕ(Y ε
T , Z ε

T )]−E[ϕ(YT , ZT )] =−
∫ T

0
E[LΦ(t ,Y ε

t , Z ε
t ,mε

t )]dt . (15)

Applying Itô’s formula, one has

E
[
Φ(T,Y ε

T , Z ε
T ,mε

T )
]

= E[Φ(0,Y ε
0 , Z ε

0 ,mε
0)]+

∫ T

0
E
[
AΦ(t ,Y ε

t , Z ε
t ,mε

t )
]
dt + 1

ε

∫ T

0
E[LΦ(t ,Y ε

t , Z ε
t ,mε

t )]dt ,

where the auxiliary differential operator A is given by

A = ∂t + 1

2
σ(y + z)2∂2

y y +σ(y + z)
(
σ(y + z,m)−σ(y + z)

)
∂2

y z +
1

2

(
σ(y + z,m)−σ(y + z)

)2
∂2

zz .

Note that owing to the polynomial growth condition from Assumption 2 and by the Lipschitz
continuity of σ with respect to m (Assumption 1), one has

sup
(t ,y,z,m)∈[0,T ]×T2×R

|AΦ(t , y, z,m)|
1+|m|q+2 <∞. (16)

Finally, the weak error estimate satisfies

E[ϕ(Y ε
T , Z ε

T )]−E[ϕ(YT , ZT )] = ε(E[Φ(0,Y ε
0 , Z ε

0 ,mε
0)]−E[Φ(T,Y ε

T , Z ε
T ,mε

T )]
)

+ε
∫ T

0
E
[
AΦ(t ,Y ε

t , Z ε
t ,mε

t )
]
dt

= O(ε)

using the regularity properties ofΦ and the moment estimate

sup
ε∈(0,1)

sup
t≥0

E[|mε(t )|q+2] = sup
t≥0

E[|m(t )|q+2] <∞

owing to Assumption 2.
This concludes the proof of the weak error estimate (12) and of Theorem 3. �

Observe that the proof of Theorem 3 requires to exploit the solutions ψ1 and ψ2 of two
auxiliary Poisson equation. On the one hand, the proof of the standard averaging principle
exploits the solution ψ of a single Poisson equation, namely

−Lψ(x, · ) =σ2(x, · )−σ2(x).

On the other hand, using the solutions of two Poisson equations is standard in homogenization
theory, where the infinitesimal generator has an expansion of the form L ε =L0 +ε−1L1 +ε−2L

– whereas it is of the form L ε =L0+ε−1L in the averaging regime we consider. The two Poisson
equation appears to deal with different scales ε0 and ε−1 in that problem.

4. Discussion

In this article, we have revisited the averaging principle for the class of stochastic differential
equations given by (1). Contrary to the standard approach, we propose to decompose X ε =
Y ε+Z ε (see (10)), where Y ε is defined in terms of the average σ (with respect to the fast variable)
of the diffusion coefficient, and Z ε represents fluctuations around the average. Our main result,
Theorem 3, states that (Y ε, Z ε) converges in distribution to a non-trivial limit (Y , Z ). The key
observation is that Z is not equal to 0, this explains why the limit X for X ε is defined in terms of
the averageσ2 of the square of the diffusion coefficient. Note thatσ2 ≥σ2 by the Cauchy–Schwarz
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inequality (see (8)), i.e. diffusion is enhanced in the averaging procedure, and the behavior of the
fluctuation term Z ε quantifies the increase in the diffusion.

The approach to prove Theorem 3 is based on a classical strategy when studying multiscale
stochastic systems: weak error estimates are proved using solutions of the Kolmogorov equation
associated with the limit, and of Poisson equations associated with the behavior of the fast
component. The solvability of the Poisson equations requires centering conditions to be satisfied,
which identify limit. The proof of Theorem 3 is original since we employ the solutions of two
Poisson equations, instead of only one in the standard proof of the averaging principle.

Our study is limited to one-dimensional SDEs. It is expected that generalizing the result to
higher-dimensional SDEs and SPDEs is possible. This may be studied in future works. Note also
that it would be straightforward to include drift terms in the SDE (1): since for those terms one
would only need to average the drift term, one would only need to modify the definition of the
average term Y ε, whereas the definition of the fluctuation term Z ε would not be modified.

The main result of this article, Theorem 3, states a convergence in distribution for
(Y ε(T ), Z ε(T )), for arbitrary times T . It may be possible to study the convergence in distri-
bution of the processes (Y ε( · ), Z ε( · )), in the space C ([0,T ],T2), for arbitrary T . The proof would
require two additional steps: proving convergence of finite dimensional distributions and prov-
ing a tightness property. This extension needs to use extra technical arguments (instead of the
Kolmogorov equation approach exhibited in this work), and is left for future work.

To conclude this article, let us mention that recently the averaging principle was proved
for stochastic differential equations driven by a fractional Brownian motion with Hurst index
H > 1/2, see [9]:

dX ε
t (t ) =σ(

X ε(t ),m(t/ε)
)
dβH (t ).

The expression of the averaged equation is different from (9): it is of the type

dX H (t ) =σ(X H (t ))dβH (t )

i.e. one simply needs to average the diffusion coefficient. In that case, the decomposition X ε =
Y ε+ Z ε would give Z ε → 0 when ε→ 0, i.e. the fluctuation term does not contribute to the limit
if H > 1/2 – in the same way as it does not contribute for drift terms. Our result thus illustrates
the differences in the averaging principle between the standard and fractional Brownian motion
cases. Note that, to the best of our knowledge, the validity and expression of the averaging
principle if the Hurst index satisfies H < 1/2 is not known. The approach introduced in this article
may be suitable to investigate this challenging question in future works.
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