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Abstract. Roughly speaking, the monodromy conjecture for a singularity states that every pole of its motivic
Igusa zeta function induces an eigenvalue of its monodromy. In this note, we determine both the motivic
Igusa zeta function and the eigenvalues of monodromy for a space monomial curve that appears as the
special fiber of an equisingular family whose generic fiber is a plane branch. In particular, this yields a proof
of the monodromy conjecture for such a curve.

Résumé. En gros, la conjecture de la monodromie pour une singularité dit que chaque pôle de sa fonction
zêta d’Igusa motivique induit une valeur propre de sa monodromie. Dans cette note, nous déterminons la
fonction zêta d’Igusa motivique ainsi que les valeurs propres de la monodromie pour une courbe d’espace
monomiale qui apparaît comme fibre spéciale d’une famille équisingulière dont la fibre générique est une
branche plane. En particulier, il en résulte une démonstration de la conjecture de la monodromie pour une
telle courbe.
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Introduction

The monodromy conjecture for ideals predicts a relation between two invariants associated with
an ideal, one originating from number theory and the other from differential topology. More pre-
cisely, it states that every pole L−s0 of the motivic Igusa zeta function of an ideal I ⊂C[x0, . . . , xn]
induces an eigenvalue of monodromy e2πi s0 associated with I . To date, this conjecture has only
been proven in full generality for ideals in two variables [13]. In higher dimension, there exist
various partial results for one polynomial (see for instance the introduction of [2] for a list of ref-
erences), while for multiple polynomials, the most general result so far is a proof for monomial
ideals [4].

The motivic Igusa zeta function for a polynomial f ∈ C[x0, . . . , xn] was introduced by Denef
and Loeser [3] in analogy with the p-adic Igusa zeta function. Roughly speaking, it counts
the C[t ]/(t m+1)-points on the hypersurface X = { f = 0} and is defined in terms of the jet
schemes of X . In a straightforward way, this definition can be generalized to any ideal I ⊂
C[x0, . . . , xn] with associated subscheme X in Cn+1. Furthermore, the motivic Igusa zeta function
is a rational function with poles of the form L−s0 , where L denotes the class of the affine line in
the Grothendieck ring of complex varieties and s0 ∈Q.

The eigenvalues of monodromy were originally introduced for one polynomial f ∈C[x0, . . . , xn]
as follows. Assume that f (0) = 0 and consider f as a function f : Cn+1 → C. Take a point
x ∈ X = f −1(0) and a small ball B in Cn+1 with center x. Milnor [7] showed that the restriction f |B
is a smooth locally trivial fibration over a small enough pointed disc D∗ = D \ {0} in Cwith center
0. The corresponding fiber is called the (local) Milnor fiber Fx of f at x. The lifting of a loop in
D∗ going once around the origin counterclockwise induces well-defined automorphisms on the
cohomologies H m(Fx ,C), which are called the (local) monodromy transformations of f at x. An
eigenvalue of monodromy or a monodromy eigenvalue of f is an eigenvalue of such a monodromy
action at some point x ∈ X . Although the notion of local Milnor fiber is not well-defined for a
general ideal I ⊂ C[x0, . . . , xn], there is an abstract construction of Verdier [14] in this setting,
yielding Verdier monodromy eigenvalues. Furthermore, A’Campo [1] showed an expression for the
monodromy eigenvalues of a polynomial f in terms of an embedded resolution of singularities of
f , which can be generalized to an ideal I by using a principalization of I , see [13]. It is also well-
known that all eigenvalues of monodromy are roots of unity, or thus, of the form e2πi s0 for some
s0 ∈Q.

This note investigates the monodromy conjecture for the class of binomial ideals in arbitrary
dimension defining so-called space monomial curves Y ⊂ Cg+1 with g ≥ 1. These curves arise
as the special fibers of equisingular families of curves whose generic fibers are isomorphic to
some plane branch. After introducing these curves in more detail, we show the results, without
proofs, obtained in [10]; by studying the jet schemes of a space monomial curve Y ⊂Cg+1, we are
able to compute the motivic Igusa zeta function and to determine its poles, see Theorem 3 and
Theorem 4, respectively. Then, we explain the approach of [6], again without proofs, to reduce
the problem of studying the monodromy eigenvalues associated with Y ⊂Cg+1 by considering Y
as a Cartier divisor on a generic embedding surface S. This way, we can use an A’Campo formula
in terms of an embedded Q-resolution of Y ⊂ S to compute the monodromy zeta function of Y ,
see Theorem 8. Finally, we combine all results to conclude the monodromy conjecture for a space
monomial curve Y ⊂Cg+1 in Theorem 10.

1. Space monomial curves with a plane semigroup

We start this note with introducing the type of singularities we are interested in. They are defined
by binomial equations and arise as (equisingular) deformations of irreducible plane branches.
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More precisely, let C := { f = 0} ⊂ (C2,0) be the germ at the origin of a complex plane curve defined
by an irreducible series f ∈C[[x0, x1]] satisfying f (0) = 0, and let

νC :
C[[x0, x1]]

( f )
\ {0} −→N : h 7→ dimC

C[[x0, x1]]

( f ,h)

be its associated valuation. The semigroup Γ(C ) of C is the image of this valuation and
can be generated by a unique minimal set of generators (β0, . . . ,βg ) with β0 < ·· · <βg and
gcd(β0, . . . ,βg ) = 1 (gcd being the greatest common divisor), see for instance [15]. In terms of these
generators, we define (Y ,0) ⊂ (Cg+1,0) as the image of the monomial map

M : (C,0) → (Cg+1,0) : t 7→ (t β̄0 , t β̄1 , . . . , t β̄g ).

This is an irreducible (germ of a) curve which is smooth outside the origin and which has the
“plane” semigroup Γ(C ) as semigroup [12]. We call Y the monomial curve associated with C .

The curve Y can be seen as a deformation of C as follows. Firstly, we put ei := gcd(β0, . . . ,βi )
for i = 0, . . . , g , and ni := ei−1/ei for i = 1, . . . , g . These are positive integers satisfying β0 = e0 >
e1 > ·· · > eg = 1 and ni ≥ 2. Secondly, every niβi for i = 1, . . . , g belongs to the semigroup
generated by β0, . . . ,βi−1, or thus, there exist non-negative integers bi j for 0 ≤ j < i such that
niβi = bi 0β0 + ·· · + bi (i−1)βi−1. These integers are unique if we require that bi j < n j for j 6= 0.
For notational reasons, we put n0 := b10. Thirdly, we can identify a minimal generating sequence
(x0, . . . , xg ) of the valuation νC , consisting of elements xi ∈ C[[x0, x1]] for i = 0, . . . , g such that
νC (xi ) =βi and which satisfy equations of the form

xi+1 = xni
i − ci xbi 0

0 . . . x
bi (i−1)

i−1 − ∑
γ=(γ0,...,γi )

ci ,γxγ0
0 . . . xγi

i , i = 0, . . . , g ,

where xg+1 = 0,ci ∈ C \ {0},ci ,γ ∈ C, 0 ≤ γ j < n j for 1 ≤ j ≤ i , and
∑i

j=0γ jβ j > niβi . We refer
to [9], [11] and [12] for more details. Finally, we can modify these equations a bit by involving an
extra variable v ∈C:

v xi+1 = xni
i − ci xbi 0

0 . . . x
bi (i−1)

i−1 − ∑
γ=(γ0,...,γi )

ci ,γv xγ0
0 . . . xγi

i , i = 0, . . . , g .

For every v in (C,0), these new equations define a germ of a curve in (Cg+1,0) with semigroup
Γ(C ). Even more, for v 6= 0, they are all isomorphic to C , while for v = 0, we get the curve
defined by xni

i − ci xbi 0
0 . . . x

bi (i−1)

i−1 = 0 for i = 1, . . . , g . Hence, all these branches together define
an equisingular family η : (χ,0) ⊂ (Cg+1 ×C,0) → (C,0) with generic fiber isomorphic to C and
special fiber given by the latter equations, in which the coefficients ci are needed to see that
any irreducible plane branch is a (equisingular) deformation of a such a curve. By changing the
coordinates x0, . . . , xg if necessary, we can always assume that every ci = 1; these are the binomial
equations defining the monomial curve (Y ,0) ⊂ (Cg+1,0) associated with C .

Clearly, the equations defining (Y ,0) in (Cg+1,0) can also be considered in Cg+1; from now on,
we define a (space) monomial curve Y ⊂Cg+1 as the global curve defined by

f1 := xn1
1 − xn0

0 = 0

f2 := xn2
2 − xb20

0 xb21
1 = 0

...

fg := x
ng
g − x

bg 0

0 x
bg 1

1 . . . x
bg (g−1)

g−1 = 0.

(1)

This is still an irreducible curve which is smooth outside the origin. Furthermore, it is a complete
intersection curve given by the regular sequence f1, . . . , fg ∈C[x0, . . . , xg ].

C. R. Mathématique, 2020, 358, n 2, 177-187
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2. The motivic Igusa zeta function of a space monomial curve

In this section, we explain the main results of [10], in which the motivic Igusa zeta function of a
space monomial curve Y ⊂Cg+1 is calculated by determining the structure of the jet schemes of
Y . The motivic Igusa zeta function of Y ⊂Cg+1 can be written as

Z mot
Y (T ) = 1− 1−T

T
JY (T ),

where JY (T ) is the Poincaré series

JY (T ) := ∑
m≥0

[Ym](L−(g+1)T )m+1 ∈MC[[T ]].

Here, Ym ⊂C(g+1)(m+1) is the m-th jet scheme of Y , which is defined as the C-scheme such that

{points of Ym with coordinates in C} = {points of Y with coordinates in C[t ]/(t m+1)},

and [Ym] is its class in the Grothendieck ring K0(VarC) of complex varieties. By L we denote the
class of the affine line in K0(VarC) and by MC := K0(VarC)[L−1] the localization with respect to L.
We further let πm,p : Ym → Yp for all m ≥ p be the natural morphism induced by the truncation
morphism C[t ]/(t m+1) → C[t ]/(t p+1) and we put πm := πm,0 : Ym → Y0 = Y . More details can be
found for instance in [10, Section 2].

2.1. Structure of the jet schemes

Because Y0 = Y and πm induces a trivial fibration over Y \ {0} with fiber isomorphic to Cm , it
remains to investigate the fibers π−1

m (0) for m ≥ 1. Because these fibers for g = 1 have already
been determined in [8, Corollary 4.4], we assume that g ≥ 2. For this purpose, we stratify each
fiberπ−1

m (0)r ed with its reduced structure as follows. Let l ∈Nbe such that ln0n1 < m ≤ (l+1)n0n1.
Then

π−1
m (0)r ed =

(
l⊔

k=1
Dm,k

)
tBm , (2)

where

Dm,k :=π−1
m,kn0n1

({x(0)
0 = x(1)

0 = ·· · = x(kn1−1)
0 = 0}∩ {x(kn1)

0 6= 0})r ed ,

Bm :=π−1
m,ln0n1

({x(0)
0 = x(1)

0 = ·· · = x(l n1)
0 = 0})r ed .

To explain the structure of these strata, we introduce some notation. First, we denote by [a/b] the
integer part of a rational number a/b. Second, for k ≥ 1, let j (k) ∈N be defined by

j (k) :=
{

2 if n2 - k
maxl∈N{n2 . . .nl−1 | k} otherwise.

Note that 2 ≤ j (k) ≤ g +1. Third, for 1 ≤ i < j (k) and for m ∈N satisfying

kniβi

e1
≤ m < kni+1βi+1

e1
,

where βg+1 :=+∞ by convention, we define

ci ,k (m) := k(n0 +n1)+
i∑

l=2

kβl

e1
+

i∑
l=1

(
m − knlβl

e1
+1

)
+

g∑
l=i+1

([
m

nl

]
+1

)
.

Finally, let Y i for i = 1, . . . , g be the complete intersection curve defined in Ci+1 by the first i
equations f1, . . . , fi of the defining equations (1) of Y .
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Proposition 1. Consider m ≥ 1 and let l ∈ N be such that l n0n1 < m ≤ (l +1)n0n1. We have the
following.

(1) Let 1 ≤ k ≤ l . If there exists some i ∈ N such that 1 ≤ i < j (k) and kni β̄i
e1

≤ m < kni+1β̄i+1
e1

,
then the stratum Dm,k is isomorphic to

(Y i \ {0}) × C(g+1)(m+1)−ci ,k (m)−1 ' (C\ {0}) × C(g+1)(m+1)−ci ,k (m)−1.

In particular, Cm,k := Dm,k is irreducible and its codimension in C(g+1)(m+1) is equal to

ci ,k (m). If m ≥ kn j (k)β̄ j (k)

e1
, then Dm,k =;.

(2) If m 6= (l +1)n0n1, then

Bm 'C(g+1)(m+1)−∑g
i=0([ m

ni
]+1)

is irreducible with codimension g +1+∑g
i=0[m/ni ] in C(g+1)(m+1). If m = (l +1)n0n1, then

Bm ' {x((l+1)n0)n1

1 −x((l+1)n1)n0

0 = 0}×C(g+1)(m+1)−(l+1)(n0+n1)−∑g
i=2([

(l+1)n0n1
ni

]+1)

is irreducible with codimension g + (l +1)(n0 +n1)+∑g
i=2[(l +1)n0n1/ni ] in C(g+1)(m+1).

This result implies that the stratification (2) induces a decomposition

π−1
m (0)r ed =

(
l⋃

k=1
Cm,k

)
∪Bm

into irreducible closed subvarieties with Cm,k =; if m ≥ kn j (k)β̄ j (k)

e1
. The next theorem tells us that

this is a decomposition into irreducible components.

Theorem 2. Consider m ≥ 1 and let l ∈ N be such that ln0n1 < m ≤ (l +1)n0n1. The irreducible

components of π−1
m (0)r ed are Cm,k = Dm,k for k = 1, . . . , l such that m < kn j (k)β̄ j (k)

e1
and Bm . Further-

more, Bm is a component of maximal dimension.

2.2. Formula for the motivic Igusa zeta function and its poles

With the structure of the jet schemes following from Proposition 1 for g ≥ 2 and from [8,
Corollary 4.4] for g = 1, we can compute the motivic Igusa zeta function of Y ⊂Cg+1.

Theorem 3. Consider a space monomial curve Y ⊂Cg+1 defined by the equations (1). Let Ni and
νi for i = 1, . . . , g be the positive integers defined as

Ni := lcm
(βi

ei
,ni , . . . ,ng

)
, νi := Ni

(
1

niβi

( i∑
l=0

βl −
i−1∑
l=1

nlβl

)
+ (i −1)+

g∑
l=i+1

1

nl

)
,

where lcm denotes the least common multiple. The motivic Igusa zeta function associated with
Y ⊂Cg+1 is given by

Z mot
Y (T ) = 1− (1−T )

(
(L−1)L−(g+1)

1−L−g T
+ L−(g+1)

1−L−ν1 T N1

N1−1∑
r=0

L
−

g∑
i=0

[ r
ni

]
T r

+
g−1∑
i=1

(L−1)Zi (T )

(1−L−νi T Ni )(1−L−νi+1 T Ni+1 )
+ (L−1)L−(νg +g+1)T Ng

(1−L−g T )(1−L−νg T Ng )

)
.
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Here, Zi (T ) for i = 1, . . . , g −1 are polynomials with coefficients in Z[L,L−1]. More precisely,

Z1(T ) :=
N1

n0n1
−1∑

r=0

e2 N2
β̄2∑

r ′=1

∑
m∈I (r ′)

1,r ′+r

L−(c1,r ′+r (m)+1)T m ,

Zi (T ) :=
ei Ni
ni β̄i

−1∑
r=0

ei+1 Ni+1
β̄i+1∑
r ′=1

∑
m∈I (r ′)

i ,(r ′+r )n2...ni

L
−(ci ,(r ′+r )n2...ni

(m)+1)T m , i = 2, . . . , g −1,

where I (p)
i ,k for i = 1, . . . , g −1 and k, p ∈N is the interval

I (p)
i ,k :=

[
kniβi

e1
+ (p −1)

(ni+1βi+1

ei
− niβi

ei

)
,

kniβi

e1
+p

(ni+1βi+1

ei
− niβi

ei

)[
∩N.

This expression immediately yields a complete list of g +1 candidate poles of Z mot
Y (T ):

Lg , L
νi
Ni , i = 1, . . . , g .

Using residues and the related topological Igusa zeta function, we are able to show that all these
candidates are actual poles.

Theorem 4. A complete list of the poles of the motivic Igusa zeta function associated with a space
monomial curve Y ⊂Cg+1 is given by

Lg , L
νi
Ni , i = 1, . . . , g ,

and all these poles have order 1.

Examples 5.

(1) The irreducible plane curve defined by (x2
1 − x3

0)2 − x5
0 x1 = 0 has (4,6,13) as minimal

generating set of its semigroup and induces the space monomial curve Y1 ⊂ C3 given
by {

x2
1 − x3

0 = 0
x2

2 − x5
0 x1 = 0.

From Theorem 3, one can compute that

Z mot
Y1

(T ) = (L−1)P1(T )

L47(1−L−2T )(1−L−8T 6)(1−L−37T 26)

where P1(T ) is a concrete polynomial in T of degree 31 with coefficients in Z[L], see [6,

Example 4.1]. We see that all three candidate poles, Lg = L2,L
ν1
N1 = L 8

6 and L
ν2
N2 = L 37

26 , are
actual poles of order 1.

(2) Consider the space monomial curve Y2 ⊆C4 associated with the polynomial ((x2
1 −x3

0)2 −
x5

0 x1)2−x10
0 (x2

1−x3
0). Its semigroup is minimally generated by (8,12,26,53) and its defining

equations are 
x2

1 − x3
0 = 0

x2
2 − x5

0 x1 = 0
x2

3 − x10
0 x2 = 0.

For this curve, Theorem 3 gives

Z mot
Y2

(T ) = (L−1)P2(T )

L299(1−L−3T )(1−L−11T 6)(1−L−50T 26)(1−L−235T 106)
,

for a concrete polynomial P2(T ) of degree 137 with coefficients inZ[L]. Again, we see that

Z mot
Y2

(T ) has indeed poles Lg = L3,L
ν1
N1 = L 11

6 ,L
ν2
N2 = L 50

26 , and L
ν3
N3 = L 235

106 .
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3. The monodromy zeta function of a space monomial curve

This section provides an overview of the strategy in [6] to study the monodromy eigenvalues of
a space monomial curve Y ⊂Cg+1 by considering Y as a Cartier divisor on a generic embedding
surface and computing an embedded Q-resolution of this situation. Because the monodromy
conjecture is already well-known in the case where g = 1 (a monomial curve Y ⊂C2 of the above
type is just a cusp), we assume that g ≥ 2. The starting point is the following generalization
of A’Campo’s formula to express the monodromy eigenvalues associated with Y in terms of a
principalization ϕ : X̃ → Cg+1 of its defining ideal I = ( f1, . . . , fg ). Denote by E j for j ∈ J the
irreducible components of ϕ−1(Y ) and put E◦

j := E j \∪i 6= j (Ei ∩E j ) for every j ∈ J . Let N j and

ν j −1 be the multiplicity of E j in the divisor on X̃ of ϕ∗I and ϕ∗(d x1 ∧ ·· ·∧d xn), respectively.
Consider the blow-up σ : X ′ →Cg+1 of Cg+1 along Y with exceptional divisor E ′ :=σ−1(Y ). By the
universal property of the blow-up, there exists a unique morphismψ : X̃ → X ′ such thatσ◦ψ=ϕ.
It was proven in [13] that a complex number is a monodromy eigenvalue associated with Y if and
only if it is a zero or pole of the monodromy zeta function at a point e ∈ E ′ given by

Z mon
Y ,e (t ) = ∏

j∈J
(1− t N j )

χ(E◦
j ∩ψ−1(e))

, (3)

where χ is the topological Euler characteristic. For a more elaborate introduction to eigenvalues
of monodromy and this formula, see for instance [6, Section 2]. In other words, to know the
monodromy eigenvalues of Y , we need to compute these zeta functions. For example, it is not
hard to show that the formula (3) for an arbitrary point e ∈ E ′\σ−1(0) gives Z mon

Y ,e (t ) = 1−t , yielding
the trivial monodromy eigenvalue 1. It thus remains to study the monodromy zeta functions at
points in σ−1(0).

3.1. Monodromy via a generic embedding surface

To reduce the problem of investigating the monodromy zeta functions at points in σ−1(0), we
introduce a generic embedding surface of Y in terms of its defining equations f1, . . . , fg . For every
set (λ2, . . . ,λg ) of g − 1 non-zero complex numbers, we define an affine scheme S(λ2, . . . ,λg ) in
Cg+1 given by the equations 

f1 + λ2 f2 = 0
f2 + λ3 f3 = 0

...
fg−1 + λg fg = 0.

(4)

The curve Y is contained in every such scheme as a Cartier divisor defined by a single equation
fi = 0 for some i ∈ {1, . . . , g }. For generic coefficients (λ2, . . . ,λg ) (i.e., the point (λ2, . . . ,λg ) is
contained in the non-empty complement of a specific closed subset of (C\{0})g−1), one can show
that S(λ2, . . . ,λg ) is a normal surface which is smooth outside the origin [6, Proposition 4.1]. We
call such S(λ2, . . . ,λg ) a generic (embedding) surface of Y and, to simplify the notation, we put
S := S(λ2, . . . ,λg ).

Because Sing(S) = Sing(Y ) = {0}, we can apply the original formula of A’Campo [1] to compute
the monodromy zeta function Z mon

Y ,0 (t ) of Y ⊂ S at the origin in terms of an embedded resolution
of singularities of Y = { f1 = 0} on S. To see the link between the latter formula and the eigenvalues
associated with Y ⊂ Cg+1, we consider the strict transform S′ = σ−1(S \ Y ) of S under the blow-
up σ. By the properties of the blow-up, we know that S′ is isomorphic to S with Y ′ := S′ ∩ E ′

isomorphic to Y . In particular, the intersection S′∩σ−1(0) consists of a single point. We denote
this point by p and refer to it as the generic point associated with S. It turns out that the
monodromy zeta function Z mon

Y ,p (T ) of Y ⊂Cg+1 at the generic point p is equal to the monodromy
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zeta function Z mon
Y ,0 (t ) of Y ⊂ S at the origin. As the next theorems shows, this result is true for a

larger class of ideals. Hence, it could be possibly useful for studying the monodromy eigenvalues
of other ideals in this class.

Theorem 6. Consider a complete intersection curve Y =V (I ) ⊂Cg+1 whose ideal I = ( f1, . . . , fg )
is generated by a regular sequence f1, . . . , fg ∈C[x0, . . . , xg ], and whose singular set is Sing(Y ) = {0}.
Let S = S(λ2, . . . ,λg ) be a generic embedding surface of Y defined by the equations (4). Denote by
σ : X ′ →Cg+1 the blow-up of Cg+1 with center Y and by S′ the strict transform of S under σ. Then,
the monodromy zeta function Z mon

Y ,p (t ) of Y considered in Cg+1 at the generic point p = S′∩σ−1(0)
is equal to the monodromy zeta function Z mon

Y ,0 (t ) of Y considered as a Cartier divisor on S at the
origin.

We will see later on that the monodromy zeta function Z mon
Y ,p (t ) of Y ⊂ Cg+1 at the generic

point p suffices to recover all non-trivial candidate monodromy eigenvalues coming from the
poles of the motivic Igusa zeta function of Y . We will refer to Z mon

Y ,p (t ) as the monodromy zeta
function of Y . By the previous theorem, we can find this zeta function by considering Y on a
generic surface S.

3.2. Monodromy via an embeddedQ-resolution

To compute the monodromy zeta function at the origin of Y considered as a Cartier divisor on
a generic embedding surface S, we make use of another generalization of A’Campo’s formula
using an embedded Q-resolution of Y ⊂ S. Roughly speaking, an embedded Q-resolution is a
resolution in which we allow the final ambient space to have abelian quotient singularities and
can be constructed as a sequence of weighted blow-ups. With the formula shown in [5], the
monodromy zeta function of Y ⊂ S at the origin can be written in terms of an embedded Q-
resolution ϕ : Ŝ → S as

Z mon
Y ,0 (t ) = ∏

1≤ j≤r
t∈T

(
1− t m j ,t

)χ(E◦
j ,t )

,

where {E j ,t } j=1,...,r,t∈T is a finite stratification of the exceptional varieties E1, . . . ,Er of ϕ such that
the multiplicity m j ,t of E j along each E j ,t is constant. Here, the multiplicity m j ,t is defined as m/d
where d is the order of the small group µd acting at a general point q in E j ,t and xm :C2/µd →C

is the local equation of E j at q . More information on abelian quotient singularities, embedded
Q-resolutions, weighted blow-ups and this A’Campo formula can be found for instance in [6,
Section 3].

In [6, Section 5], the computation of g weighted blow-ups in higher dimension yields an
embedded Q-resolution of Y ⊂ S with dual graph a tree as in Figure 1. After each blow-up, one
variable can be eliminated so that the new situation is very similar to the one before the blow-
up, but with one equation in Y and S less. Therefore, the last step coincides with the resolution
of a cusp in a Hirzebruch–Jung singularity of type 1

d (1, q) by one weighted blow-up. It is worth
mentioning that this process is similar to the resolution of an irreducible plane curve with g
Puiseux pairs; after each weighted blow-up, the number of Puiseux pairs is lowered by one so that
the last step coincides with the resolution of an irreducible plane curve with one Puiseux pair.
However, our resolution is more complicated as the strict transform of Y intersects in general
the singular locus of the ambient space. For instance, the computations of the numerical data
of the resolution, such as the multiplicity of the exceptional divisor in each step, its number of
irreducible components and its Euler characteristic, give rise to interesting arithmetic challenges.
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Theorem 7. Let Y ⊂Cg+1 be a space monomial curve defined by the equations (1) with g ≥ 2 and
consider Y as a Cartier divisor on a generic surface S = S(λ2, . . . ,λg ) ⊂Cg+1 given by (4). There exists
an embedded Q-resolution ϕ = ϕ1 ◦ · · · ◦ϕg : Ŝ → S of Y ⊂ S which is a composition of g weighted
blow-ups ϕk with exceptional divisor Ek such that the pull-back of Y is given by

ϕ∗Y = Ŷ + ∑
1≤k≤g
1≤ j≤rk

NkEk j ,

where Ek = Ek1+·· ·+Ekrk
is the decomposition of Ek into rk = ek /lcm(nk+1, . . . ,ng ) if k = 1, . . . , g−2

and rg−1 = rg = 1 irreducible components, and Nk = lcm(βk /ek ,nk , . . . ,ng ) is the multiplicity of Ek .
Furthermore, each divisor Ek for k = 2, . . . , g−1 only intersects Ek−1 and Ek+1, and Eg only intersects
Eg−1. Finally, for every k = 2, . . . , g , the intersections of Ek−1 and Ek are equally distributed; each
of the components Ek j of Ek intersects precisely rk−1/rk components of Ek−1, each component
E(k−1) j of Ek−1 is intersected by only one of the components of Ek , and each non-empty intersection
between two components Ek j and E(k−1) j ′ consists of a single point. In particular, the dual graph
of the resolution is a tree as in Figure 1.

· · ·

· · ·

· · · · · · · · ·

· · ·

· · · · · ·

· · ·

· · ·

· · ·· · ·

· · ·

· · ·· · ·

· · ·

E1

E2

E3

Eg−2

Eg−1

Eg
Ŷ

Figure 1. Dual graph of the resolution of Y ⊂ S. Graphe dual de la résolution de Y ⊂ S.

3.3. Formula for the monodromy zeta function

By stratifying the exceptional divisor of the embeddedQ-resolution of Y ⊂ S from Theorem 7 and
computing the Euler characteristic of these strata, we can compute the monodromy zeta function
Z mon

Y ,0 (t ) of Y ⊂ S at the origin, which is equal to the monodromy zeta function of Y by Theorem 6.
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Theorem 8. Let Y ⊂Cg+1 be a space monomial curve defined by the equations (1) with g ≥ 2 and
consider a generic embedding surface S = S(λ2, . . . ,λg ) ⊂ Cg+1 given by (4). Denote by σ : X ′ →
Cg+1 the blow-up of Cg+1 with center Y and by S′ the strict transform of S under σ. Then, the
monodromy zeta function of Y considered in Cg+1 at the generic point p = S′∩σ−1(0) is given by

Z mon
Y ,p (t ) =

g∏
k=0

(1− t Mk )
β̄k
Mk

g∏
k=1

(1− t Nk )
nk β̄k

Nk

,

where Mk := lcm(βk /ek ,nk+1, . . . ,ng ) for k = 0, . . . , g , and Nk := lcm(βk /ek ,nk , . . . ,ng ) for k =
1, . . . , g .

Example 9. Recall the two space monomial curves from Example 5.

(1) For the space monomial curve Y1 ⊂C3, we find with Theorem 8 that

Z mon
Y1,p1

(t ) = (1− t 2)2(1− t 6)(1− t 13)

(1− t 6)2(1− t 26)
= (1− t 2)2(1− t 13)

(1− t 6)(1− t 26)
.

Every pole L−s0 of the motivic Igusa zeta function of Y1 induces a monodromy eigenvalue
e2πi s0 : e−4πi is a zero of Z mon

Y1,p1
(t ), while e−8πi /3 and e−37πi /13 are poles of Z mon

Y1,p1
(t ).

(2) A simple computation for the space monomial curve Y2 ⊆C4 gives

Z mon
Y2,p2

(T ) = (1− t 2)4(1− t 6)2(1− t 26)(1− t 53)

(1− t 6)4(1− t 26)2(1− t 106)
= (1− t 2)4(1− t 53)

(1− t 6)2(1− t 26)(1− t 106)
,

from which it is easy to check that all four poles of the motivic zeta function induce a
monodromy eigenvalue.

4. The monodromy conjecture for a space monomial curve

By combining the results of the previous two sections, we can show the monodromy conjecture
for a space monomial curve Y ⊂Cg+1 with g ≥ 2.

Theorem 10. Let Y ⊂Cg+1 be a space monomial curve defined by the equations (1) with g ≥ 2 and
denote byσ : X ′ →Cg+1 the blow-up ofCg+1 with center Y . Every pole L−s0 of the motivic Igusa zeta
function associated with Y induces a monodromy eigenvalue e2πi s0 of Y at a point in σ−1(Y ).

In [6, Section 7], it is shown that the pole Lg and poles L
νk
Nk for k ∈ {1, . . . , g } with νk /Nk ∈ N

induce the trivial monodromy eigenvalue 1, while every other candidate monodromy eigenvalue
e−2πiνk /Nk is a pole of the monodromy zeta function Z mon

Y ,p (t ) of Y .

Remark 11. The structure of the jet schemes can also be used to compute the local motivic Igusa
zeta function of a space monomial curve Y ⊂ Cg+1, see [10, Section 4]. In particular, this local
version has the same poles as the global one. Hence, the monodromy conjecture also holds for
the local motivic zeta function: every pole L−s0 of the local motivic Igusa zeta function associated
with a space monomial curve Y ⊂Cg+1 induces a monodromy eigenvalue e2πi s0 of Y at a point in
σ−1(B ∩Y ) for B a small ball around 0. Likewise, one can state and conclude the monodromy
conjecture for the related global/local topological and p-adic Igusa zeta function, which are
specializations of the global/local motivic Igusa zeta function, see [6, Section 7].
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