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Abstract. We continue the study of the space BV α(Rn ) of functions with bounded fractional variation in Rn

and of the distributional fractional Sobolev space Sα,p (Rn ), with p ∈ [1,+∞] and α ∈ (0,1), considered in the
previous works [27,28]. We first define the space BV 0(Rn ) and establish the identifications BV 0(Rn ) = H1(Rn )
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1. Introduction

1.1. Fractional operators and related spaces

In [27,28], for a parameterα ∈ (0,1), the third and fourth authors introduced the space of functions
with bounded fractional variation

BV α(Rn) := {
f ∈ L1(Rn) : |Dα f |(Rn) <+∞}

,

where

|Dα f |(Rn) := sup

{∫
Rn

f divαϕdx :ϕ ∈C∞
c (Rn ;Rn), ‖ϕ‖L∞(Rn ;Rn ) ≤ 1

}
(1)

for all f ∈ L1(Rn), and the distributional fractional Sobolev space

Sα,p (Rn) := {
f ∈ Lp (Rn) : ∃∇α f ∈ Lp (Rn ;Rn)

}
(2)

for all p ∈ [1,+∞] (see Section 2.2 for a precise definition). Here and in the following,

∇α f (x) :=µn,α

∫
Rn

(y −x)( f (y)− f (x))

|y −x|n+α+1 dy, x ∈Rn , (3)

and

divαϕ(x) :=µn,α

∫
Rn

(y −x) · (ϕ(y)−ϕ(x))

|y −x|n+α+1 dy, x ∈Rn , (4)

are respectively the fractional gradient and the fractional divergence operators, where

µn,α := 2απ− n
2
Γ

( n+α+1
2

)
Γ

( 1−α
2

) . (5)

These two operators are dual, in the sense that∫
Rn

f divαϕdx =−
∫
Rn
ϕ ·∇α f dx

for all sufficiently regular functions f and vector fieldsϕ. For an account on the existing literature
related to these operators, we refer the reader to [13, 14, 27, 28, 41, 60, 63–70] and to the references
therein.

While the first paper [28] was focused on some geometric aspects of BV α functions, the sub-
sequent work [27] was inspired by the celebrated Bourgain–Brezis–Mironescu formula [16] and
the Γ-convergence result of Ambrosio–De Philippis–Martinazzi [3] and dealt with the asymptotic
behavior of the fractional α-variation as α → 1−. As already announced in [27], the main aim
of present paper is to study the asymptotic behavior of the fractional α-variation as α→ 0+, in
analogy with the asymptotic result of Maz′ya–Shaposhnikova [49, 50].

1.2. Asymptotic behavior of fractional operators

The asymptotic behavior of the standard fractional seminorm [ · ]W α,p (Rn ) was completely under-
stood since the groundbreaking work of Bourgain–Brezis–Mironescu [16] and the subsequent de-
velopments of Dávila [29] and Maz′ya–Shaposhnikova [49, 50]. Here and in the following,

W α,p (Rn) =
{

f ∈ Lp (Rn) : [ f ]p
W α,p (Rn ) =

∫
Rn

∫
Rn

| f (x)− f (y)|p
|x − y |n+pα dx dy <+∞

}
is the well-known Sobolev–Slobodeckij space of parametersα ∈ (0,1) and p ∈ [1,+∞) (see [31] for
an introduction and the related literature). Precisely, for p ∈ [1,+∞),

lim
α→1−

(1−α) [ f ]p
W α,p (Rn ) = An,p ‖∇ f ‖p

Lp (Rn ;Rn ) (6)

for all f ∈W 1,p (Rn), while
lim
α→0+

α [ f ]p
W α,p (Rn ) = Bn,p ‖ f ‖p

Lp (Rn ) (7)
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for all f ∈ ⋃
α∈(0,1) W α,p (Rn). Here An,p ,Bn,p > 0 are two constants depending uniquely on n

and p. When p = 1, the limit in (6) holds for the more general class of BV functions, that is,

lim
α→1−

(1−α) [ f ]W α,1(Rn ) = An,1 |D f |(Rn) (8)

for all f ∈ BV (Rn).
The limits in (6) and in (8) can be recognized as special consequences of the celebrated

Bourgain–Brezis–Mironescu (BBM, for short) formula

lim
k→+∞

∫
Rn

∫
Rn

| f (x)− f (y)|p
|x − y |p %k (|x − y |)dx dy =

{
Cn,p ‖∇ f ‖p

Lp (Rn ) for p ∈ (1,+∞),

Cn,1 |D f |(Rn) for p = 1,
(9)

where Cn,p > 0 is a constant depending only on n and p, and (%k )k∈N ⊂ L1
loc([0,+∞)) is a sequence

of non-negative radial mollifiers such that∫
Rn
%k (|x|)dx = 1 for all k ∈N

and

lim
k→+∞

∫ +∞

δ
%k (r )r n−1 dr = 0 for all δ> 0.

Since its appearance, the BBM formula (9) has deeply influenced the development of the asymp-
totic analysis in the fractional framework. On the one hand, the limit in (9) has led to several
important applications, such as Brezis’ celebrated work [19] on how to recognize constant func-
tions, new characterizations of Sobolev and BV functions and Γ-convergence results [6–8, 11, 18,
46,47,52–54,59], approximation of Sobolev norms and image processing [21,23–25], and last but
not least fractional Hardy and Poincaré inequalities [17, 37, 58]. On the other hand, the BBM for-
mula (9) has inspired an alternative route to fractional asymptotic analysis by means of inter-
polation techniques [51, 61]. Recently, the BBM formula in (9) has been revisited in terms of a.e.
pointwise convergence by Brezis–Nguyen [22] and in connection with weak Lp quasi-norms [26],
where the now-called Brezis–Van Schaftingen–Yung space

BSY α,p (Rn) =
 f ∈ L1

loc(Rn) :

∥∥∥∥∥ | f (x)− f (y)|
|x − y | n

p +α

∥∥∥∥∥
L

p
w (Rn×Rn )

<+∞
,

defined for α ∈ (0,1] and p ∈ [1,+∞), has offered a completely new and promising perspective in
the field [32].

The limits (6)–(9) have been linked to variational problems [10], generalized to various func-
tion spaces, such as Besov spaces [42, 76], Orlicz spaces [2, 34, 35] and magnetic and anisotropic
Sobolev spaces [44, 55–57, 71], and extended to several ambient spaces, such as compact con-
nected Riemannian manifolds [43], the flat torus [5], Carnot groups [12, 48] and complete dou-
bling metric-measure spaces supporting a local Poincaré inequality [30].

The asymptotic behavior of the fractional gradient ∇α as α→ 1− was fully discussed in [27]
(see also [14, Theorem 3.2] for a different proof of (10) below for the case p ∈ (1,+∞) via Fourier
transform). Precisely, if f ∈W 1,p (Rn) for some p ∈ [1,+∞), then f ∈ Sα,p (Rn) for all α ∈ (0,1) with

lim
α→1−

‖∇α f −∇ f ‖Lp (Rn ;Rn ) = 0. (10)

If f ∈ BV (Rn) instead, then f ∈ BV α(Rn) for all α ∈ (0,1) with

Dα f *D f in M (Rn ;Rn) and |Dα f |* |D f | in M (Rn) as α→ 1−

and

lim
α→1−

|Dα f |(Rn) = |D f |(Rn). (11)

C. R. Mathématique — 2022, 360, 589-626
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We underline that, differently from the limits (6) and (8), the renormalizing factor (1−α)
1
p does

not appear in (10) and (11). This is motivated by the fact that the constant µn,α encoded in the
definition (3) of the operator ∇α satisfies

µn,α ∼ 1−α
ωn

as α→ 1−.

Concerning the asymptotic behavior of ∇α asα→ 0+, at least for sufficiently regular functions,
the fractional gradient in (3) is converging to the operator

∇0 f (x) =µn,0

∫
Rn

(y −x)( f (y)− f (x))

|y −x|n+1 dy, x ∈Rn . (12)

Here and in the following, µn,0 is simply the limit of the constant µn,α defined in (5) as α→ 0+

(thus, in this case, no renormalization factor has to be taken into account). The operator in (12)
is well defined at least for all f ∈ C∞

c (Rn) and, actually, coincides (possibly up to a minus sign,
see Section 2.1 below) with the well-known vector-valued Riesz transform R f , see [39,72,73]. The
formal limit ∇α → R as α→ 0+ can be also motivated either by the asymptotic behavior of the
Fourier transform of ∇α as α→ 0+ or by the fact that ∇α =∇I1−α→∇I1 = R for α→ 0+, where

Iα f (x) := 2−απ− n
2
Γ

( n−α
2

)
Γ

(
α
2

) ∫
Rn

f (y)

|x − y |n−α dy, x ∈Rn ,

stands for the Riesz potential of order α ∈ (0,n). In a similar fashion, the fractional α-divergence
in (4) is converging as α→ 0+ to the operator

div0ϕ(x) =µn,0

∫
Rn

(y −x) · (ϕ(y)−ϕ(x))

|y −x|n+1 dy, x ∈Rn ,

which is well defined at least for all ϕ ∈C∞
c (Rn ;Rn).

As a natural target space for the study of the limiting behavior of ∇α asα→ 0+, in analogy with
the fractional variation (1), we introduce the space BV 0(Rn) of functions f ∈ L1(Rn) such that the
quantity

|D0 f |(Rn) := sup

{∫
Rn

f div0ϕdx :ϕ ∈C∞
c (Rn ;Rn), ‖ϕ‖L∞(Rn ;Rn ) ≤ 1

}
is finite. As for the BV α space, it is not difficult to see that a function f ∈ L1(Rn) belongs to
BV 0(Rn) if and only if there exists a vector-valued Radon measure D0 f ∈ M (Rn ;Rn) with finite
total variation such that∫

Rn
f div0ϕdx =−

∫
Rn
ϕ · dD0 f for all ϕ ∈C∞

c (Rn ;Rn).

Surprisingly, it turns out that D0 f ¿ L n for all f ∈ BV 0(Rn), in contrast with what is known for
the fractional α-variation in the case α ∈ (0,1], see [28, Theorem 3.30]. More precisely, we prove
that

f ∈ BV 0(Rn) ⇐⇒ f ∈ H 1(Rn), with D0 f = R f L n in M (Rn ;Rn), (13)

where

H 1(Rn) = {
f ∈ L1(Rn) : R f ∈ L1(Rn ;Rn)

}
is the well-known (real) Hardy space.

Having the identification (13) at disposal, we can rigorously establish the validity of the
convergence ∇α→ R as α→ 0+. For p = 1, we prove that

lim
α→0+

‖∇α f −R f ‖L1(Rn ;Rn ) = 0 (14)

for all f ∈ H 1(Rn) ∩⋃
α∈(0,1) W α,1(Rn). For p ∈ (1,+∞) instead, since the Riesz transform (12)

extends to a linear continuous operator R : Lp (Rn) → Lp (Rn ;Rn), the natural target space for the

C. R. Mathématique — 2022, 360, 589-626
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study of the limiting behavior of the fractional gradient is simply Lp (Rn ;Rn). In this case, we prove
that

lim
α→0+

‖∇α f −R f ‖Lp (Rn ;Rn ) = 0 (15)

for all f ∈⋃
α∈(0,1) Sα,p (Rn).

The limits in (14) and (15) can be considered as the counterparts of (7) in our fractional setting.
However, differently from (7), in (14) and in (15) we obtain strong convergence. This improvement
can be interpreted as a natural consequence of the fact that, generally speaking, the Lp -norm of
the fractional gradient ∇α allows for more cancellations than the W α,p -seminorm.

Since the Riesz transform (12) extends to a linear continuous operator R : H 1(Rn) →
H 1(Rn ;Rn), the limit in (14) can be improved. Precisely, we prove that

lim
α→0+

‖∇α f −R f ‖H 1(Rn ;Rn ) = 0 (16)

for all f ∈⋃
α∈(0,1) HS1,α(Rn). Here

HSα,1(Rn) = {
f ∈ H 1(Rn) : ∇α f ∈ H 1(Rn ;Rn)

}
is (an equivalent definition of) the fractional Hardy–Sobolev space, see [74] and below for a more
detailed presentation. One can recognize that

H 1(Rn)∩ ⋃
α∈(0,1)

W α,1(Rn) = ⋃
α∈(0,1)

HSα,1(Rn),

so that (16) is indeed a reinforcement of (14).
Naturally, if f ∉ H 1(Rn), then we cannot expect that ∇α f → R f in L1(Rn ;Rn) as α → 0+.

Instead, as suggested by the limit in (7), we have to consider the asymptotic behavior of the
rescaled fractional gradient α∇α f as α→ 0+. In this case, we prove that

lim
α→0+

α

∫
Rn

|∇α f (x)|dx = nωnµn,0

∣∣∣∣∫
Rn

f (x)dx

∣∣∣∣. (17)

for all f ∈ ⋃
α∈(0,1) W α,1(Rn). Note that (17) is consistent with both (7) and (14). Indeed, on the

one side, by simply bringing the modulus inside the integral in the definition (3) of ∇α, we can
estimate ∫

Rn
|∇α f (x)|dx ≤µn,α[ f ]W α,1(Rn )

for all f ∈W α,1(Rn) (see also [28, Theorem 3.18]), so that, by (7), we can infer

limsup
α→0+

α

∫
Rn

|∇α f (x)|dx ≤µn,0 lim
α→0+

α [ f ]W α,1(Rn ) =µn,0Bn,1‖ f ‖L1(Rn )

for all f ∈⋃
α∈(0,1) W α,1(Rn). On the other side, if f ∈ H 1(Rn), then∫

Rn
f (x)dx = 0

(see [73, Chapter III, Section 5.4(c)] for example), and thus for all f ∈ H 1(Rn)∩⋃
α∈(0,1) W α,1(Rn)

the limit in (17) reduces to

lim
α→0+

α

∫
Rn

|∇α f (x)|dx = 0,

in accordance with the strong convergence (14).

C. R. Mathématique — 2022, 360, 589-626
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1.3. Fractional interpolation inequalities

While (17) is proved by a direct computation, the limits (14), (15) and (16) follow from some new
fractional interpolation inequalities.

Let α ∈ (0,1) be fixed. In the standard fractional framework, by a simple splitting argument, it
is not difficult to estimate the W β,1-seminorm of a function f ∈W α,1(Rn) as

[ f ]W β,1(Rn ) ≤ Rα−β [ f ]W α,1(Rn ) + cn
R−β

β
‖ f ‖L1(Rn ) (18)

for all R > 0 and β ∈ (0,α), where cn > 0 is a dimensional constant. If we choose R =
‖ f ‖1/α

L1(Rn )
[ f ]−1/α

W α,1(Rn )
, then (18) gives

[ f ]W β,1(Rn ) ≤
(
1+ cn

β

)
‖ f ‖1− β

α

L1(Rn )
[ f ]

β
α

W α,1(Rn )
(19)

for all β ∈ (0,α). Inequality (19) implies the bound

[ f ]W β,1(Rn ) =O

(
1

β

)
for β→ 0+, (20)

in agreement with (7).
In a similar fashion (but with a more delicate analysis), an interpolation inequality of the

form (19) has been recently obtained by the third and the fourth author for the fractional
gradient ∇α. Precisely, if f ∈ BV α(Rn), then

[ f ]BV β(Rn ) ≤ cn,α,β ‖ f ‖1− β
α

L1(Rn )
[ f ]

β
α

BV α(Rn ) (21)

for all β ∈ (0,α), where cn,α,β > 0 is a constant such that

cn,α,β ∼ 1 for β→α− (22)

and

cn,α,β =O

(
1

β

)
for β→ 0+, (23)

see [27, Proposition 3.12] (see [27, Proposition 3.2] also for the case α = 1). Here and in the
following, we denote by [ f ]BV α(Rn ) the total fractional variation (1) of f ∈ BV α(Rn). Thanks to (23),
inequality (21) implies the bound

[ f ]BV β(Rn ) =O

(
1

β

)
for β→ 0+, (24)

coherently with (17).
Although strong enough to settle the asymptotic behavior of the fractional gradient ∇β when

β→ α− thanks to (22), because of (24) inequality (21) is of no use for the study of the strong L1-
limit ∇β → R as β→ 0+. To achieve this convergence, we thus have to control the interpolation
constant cn,α,β in (21) with a new interpolation constant cn,α > 0 independent of β ∈ (0,α), at the
price of weakening (21) by replacing the L1-norm with a bigger norm.

This strategy is in fact motivated by the non-optimality of the bound (24) since, in view of the
limit in (17), we can still expect some cancellation effect of the fractional gradient for a subclass
of L1-functions having zero average. Note that this approach cannot be implemented to stabilize
the standard interpolation inequality (19), since the bound in (20) is in fact optimal due to (7).

At this point, our idea is to exploit the cancellation properties of the fractional gradient ∇β by
rewriting its non-local part in terms of a convolution kernel. In more precise terms, recalling the
definition in (3), for R > 0 we can split

∇β f =∇β<R f +∇β≥R f (25)

C. R. Mathématique — 2022, 360, 589-626
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with

∇β≥R f (x) =µn,β

∫
Rn

f (y)Kβ,R (y −x)dy, x ∈Rn , (26)

for all Schwartz functions f ∈ S (Rn), where the convolution kernel Kβ,R is a smoothing of the
function

y 7→ y

|y |n+β+1
χ[R,+∞)(|y |).

By the Calderón–Zygmund Theorem, we can extend the functional defined in (26) to a linear
continuous mapping ∇β≥R : H 1(Rn) → L1(Rn ;Rn) whose operator norm can be estimated as

‖∇β≥R‖H 1→L1 ≤ cnR−β for all R > 0, (27)

for some dimensional constant cn > 0. By combining the splitting (25) with the bound (27) and
arguing as in [27], we get that

[ f ]BV β(Rn ) ≤ cn,α ‖ f ‖
α−β
α

H 1(Rn )
[ f ]

β
α

BV α(Rn ) (28)

for allβ ∈ [0,α) and all f ∈ H 1(Rn)∩BV α(Rn), wheneverα ∈ (0,1]. Exploiting (28) together with an
approximation argument, we thus just need to establish (14) for all sufficiently regular functions,
in which case we can easily conclude by a direct computation.

To achieve the limit in (15) for p ∈ (1,+∞) and the stronger convergence in (16) for the
case p = 1, we adopt a slightly different strategy. Instead of splitting the fractional gradient as
in (25), we rewrite it as

∇β = R (−∆)
β
2 , (29)

where

(−∆)
β
2 f (x) := νn,β

∫
Rn

f (x + y)− f (x)

|y |n+β dy, x ∈Rn ,

is the usual fractional Laplacian with renormalizing constant given by

νn,β := 2βπ− n
2

Γ
(

n+β
2

)
Γ

(
−β

2

) .

Since the Riesz transform extends to a linear continuous operator on Lp (Rn) and H 1(Rn) as
mentioned above, to achieve (15) and (16) we just have to study the continuity properties of

(−∆)
β
2 . To this aim, we rewrite (−∆)

β
2 as

(−∆)
β
2 = Tmα,β ◦ (Id+(−∆)

α
2 ) (30)

where

Tmα,β f := f ∗F−1(mα,β), f ∈S (Rn), (31)

F is the Fourier transform, and

mα,β(ξ) := |ξ|β
1+|ξ|α , ξ ∈Rn .

Exploiting the good decay properties of the derivatives of mα,β (uniform with respect to the
parameters 0 ≤ β ≤ α ≤ 1), by the Mihlin–Hörmander Multiplier Theorem the convolution
operator in (31) can be extended to two linear operators continuous from Lp (Rn) to itself and
from H 1(Rn) to itself, respectively. Going back to (29) and (30), we can exploit the continuity
properties of the (extensions of) the operator Tmα,β to deduce two new interpolation inequalities.
On the one hand, given p ∈ (1,+∞), there exists a constant cn,p > 0 such that

‖∇β f ‖Lp (Rn ;Rn ) ≤ cn,p ‖∇γ f ‖
α−β
α−γ
Lp (Rn ;Rn ) ‖∇α f ‖

β−γ
α−γ
Lp (Rn ;Rn ) (32)
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for all 0 ≤ γ ≤ β ≤ α ≤ 1 and all f ∈ Sα,p (Rn). In the particular case γ = 0, thanks to the Lp -
continuity of the Riesz transform, we also have

‖∇β f ‖Lp (Rn ;Rn ) ≤ cn,p ‖ f ‖
α−β
α

Lp (Rn ) ‖∇α f ‖
β
α

Lp (Rn ;Rn ) (33)

for all 0 ≤ β ≤ α≤ 1 and all f ∈ Sα,p (Rn). On the other hand, there exists a dimensional constant
cn > 0 such that

‖∇β f ‖H 1(Rn ;Rn ) ≤ cn ‖∇γ f ‖
α−β
α−γ
H 1(Rn ;Rn )

‖∇α f ‖
β−γ
α−γ
H 1(Rn ;Rn )

(34)

for all 0 ≤ γ ≤ β ≤ α ≤ 1 and all f ∈ HSα,1(Rn). Again, in the particular case γ = 0, thanks to the
H 1-continuity of the Riesz transform, we also have

‖∇β f ‖H 1(Rn ;Rn ) ≤ cn ‖ f ‖
α−β
α

H 1(Rn )
‖∇α f ‖

β
α

H 1(Rn ;Rn )
(35)

for all 0 ≤ β ≤ α ≤ 1 and all f ∈ HSα,1(Rn). Having the interpolation inequalities (33) and (35) at
disposal, as before we just need to establish (15) and (16) for all sufficiently regular functions, in
which case we can again conclude by a direct computation.

As the reader may have noticed, in the above line of reasoning we can infer the validity of (32)
and (34) only if we are able to prove the identifications

f ∈ Sα,p (Rn) ⇐⇒ f ∈ (Id−∆)−
α
2 (Lp (Rn)) ⇐⇒ f ∈ Lp (Rn)∩ Iα(Lp (Rn)), (36)

for p ∈ (1,+∞), and

f ∈ HSα,1(Rn) ⇐⇒ f ∈ (Id−∆)−
α
2 (H 1(Rn)) ⇐⇒ f ∈ H 1(Rn)∩ Iα(H 1(Rn)), (37)

respectively, with equivalence of the naturally associated norms, where (Id−∆)−
α
2 is the standard

Bessel potential. While (37) follows by a plain approximation argument building upon the results
of [74], the identification in (36) is more delicate and, actually, answers an equivalent question left
open in [28], that is, the density of C∞

c (Rn) functions in Sα,p (Rn), see Appendix A for the proof. In
other words, the equivalence (36) allows to identify the Bessel potential space

Lα,p (Rn) := (Id−∆)−
α
2 (Lp (Rn)) =

{
f ∈S ′(Rn) : (Id−∆)

α
2 f ∈ Lp (Rn)

}
with the distributional fractional Sobolev space Sα,p (Rn) in (2). Thanks to the identification
Lα,p (Rn) = Sα,p (Rn), many of the results established in [13, 14] and in [66, 67] can be proved in
a simpler and more direct way. See also Appendix B for other consequences of this identification.

1.4. Complex interpolation and open problems

To achieve the interpolation inequalities (28) and (32)–(35), we essentially relied on a direct
approach exploiting the precise structure of the fractional gradient in (3). Adopting the point of
view of [51, 61], a possible alternative route to the above fractional inequalities may follow from
complex interpolation techniques.

According to [15, Theorem 6.4.5(7)] and thanks to the aforementioned identification
Lα,p (Rn) = Sα,p (Rn), for all α,ϑ ∈ (0,1) and p ∈ (1,+∞) we have the complex interpolation

(Lp (Rn),Sα,p (Rn))[ϑ]
∼= Sϑα,p (Rn). (38)

Here and in the following, we write A ∼= B to emphasize the fact that the spaces A and B are the
same with equivalence (and thus, possibly, not equality) of the relative norms. As a consequence,
(38) implies that, for all 0 <β<α< 1 and p ∈ (1,+∞), there exists a constant cn,α,β,p > 0 such that

‖ f ‖Sβ,p (Rn ) ≤ cn,α,β,p ‖ f ‖
α−β
α

Lp (Rn ) ‖ f ‖
β
α

Sα,p (Rn ) (39)
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for all f ∈ Sα,p (Rn). In a similar way (we omit the proof because beyond the scopes of the present
paper), for all α,ϑ ∈ (0,1) one can also establish the complex interpolation

(H 1(Rn), HSα,1(Rn))[ϑ]
∼= HSϑα,1(Rn), (40)

and thus, for some constant cn,α,β > 0,

‖ f ‖HSβ,1(Rn ) ≤ cn,α,β ‖ f ‖
α−β
α

H 1(Rn )
‖ f ‖

β
α

HSα,1(Rn )
(41)

for all f ∈ HSα,1(Rn).
Inequalities (39) and (41) suggest that, in order to obtain (33) and (35) with complex interpo-

lation methods, one essentially should prove that the identifications (38) and (40) hold uniformly
with respect to the interpolating parameter. We believe that this result may be achieved but, since
we do not need this level of generality for our aims, we preferred to prove (32)–(35) in a more di-
rect and explicit way.

We do not know if also inequality (28) can be achieved by complex interpolation methods. In
fact, we do not even know if the spaces (H 1(Rn),BV (Rn))[ϑ] and BV ϑ(Rn) are somehow linked for
ϑ ∈ (0,1) (for a related discussion, see also [66, Section 1.1]). By [15, Theorems 3.5.3 and 6.4.5(1)],
we have the real interpolations

(L1(Rn),W 1,1(Rn))ϑ,p
∼= (L1(Rn),BV (Rn))ϑ,p

∼= Bϑ
1,p (Rn)

for all ϑ ∈ (0,1) and p ∈ [1,+∞], where Bϑ
p,q (Rn) denotes the Besov space as usual (see [15,

Section 6.2] or [45, Chapter 14] for the definition). By [15, Theorem 4.7.1], we know that

(H 1(Rn),BV (Rn))ϑ,1 ⊂ (H 1(Rn),BV (Rn))[ϑ] ⊂ (H 1(Rn),BV (Rn))ϑ,∞

for all ϑ ∈ (0,1). Since H 1(Rn) ⊂ L1(Rn) continuously, on the one side we have

(H 1(Rn),BV (Rn))ϑ,1 ⊂ (L1(Rn),BV (Rn))ϑ,1
∼= Bϑ

1,1(Rn) ∼=W ϑ,1(Rn)

and, on the other side,

(H 1(Rn),BV (Rn))ϑ,∞ ⊂ (L1(Rn),BV (Rn))ϑ,∞ ∼= Bϑ
1,∞(Rn),

for all ϑ ∈ (0,1). On the one hand, the continuous inclusion W α,1(Rn) ⊂ BV α(Rn) is strict for
all α ∈ (0,1) by [28, Theorem 3.31]. On the other hand, the inclusion BV α(Rn) ⊂ Bα

1,∞(Rn) holds
continuously for all α ∈ (0,1) as a consequence of [28, Proposition 3.14], but it also holds strictly
when n ≥ 2, see Theorem 32.

1.5. Organization of the paper

We conclude this introduction by briefly presenting the organization of the present paper. Sec-
tion 2 provides the main notation, recalls the needed properties of the fractional operators ∇α
and divα and, finally, deals with the properties of the space HSα,1(Rn). Section 3 is devoted to the
proof of the identification BV 0(Rn) = H 1(Rn), together with some useful consequences about the
relation between H 1(Rn) and W α,1(Rn). In Sections 4 and 5, the core of our work, we detail the
proof of the interpolation inequalities (28), (32) and (34) and, consequently, we prove both the
strong convergence of the fractional gradient ∇α as α→ 0+ given by (15), (16) and the limit (17).
We close our work with three appendices: in Appendix A we prove the density of C∞

c (Rn) func-
tions in Sα,p (Rn); in Appendix B we state some properties of Sα,p -functions; in Appendix C we
establish some continuity properties of the map α 7→ ∇α.
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2. Preliminaries

We start with a brief description of the main notation used in this paper. In order to keep the
exposition as reader-friendly as possible, we retain the same notation adopted in the previous
works [27, 28].

2.1. General notation

We let L n and H α be the n-dimensional Lebesgue measure and the α-dimensional Hausdorff
measure on Rn respectively, with α ≥ 0. A measurable set is a L n-measurable set. We also use
the notation |E | = L n(E). All functions we consider in this paper are Lebesgue measurable.
We let Br (x) be the standard open Euclidean ball with center x ∈ Rn and radius r > 0. We set
Br = Br (0). Recall that ωn := |B1| = π

n
2 /Γ

( n+2
2

)
and H n−1(∂B1) = nωn , where Γ is the Euler’s

Gamma function, see [9].
For m ∈N, the total variation onΩ of the m-vector-valued Radon measure µ is defined as

|µ|(Ω) := sup

{∫
Ω
ϕ ·dµ :ϕ ∈C∞

c (Ω;Rm), ‖ϕ‖L∞(Ω;Rm ) ≤ 1

}
.

We thus let M (Ω;Rm) be the space of m-vector-valued Radon measure with finite total variation
on Ω.

For k ∈N0∪{+∞} and m ∈N, we let C k
c (Ω;Rm) and Lipc (Ω;Rm) be the spaces of C k -regular and,

respectively, Lipschitz-regular, m-vector-valued functions defined on Rn with compact support
in the open set Ω⊂Rn .

For m ∈ N, we let S (Rn ;Rm) be the space of m-vector-valued Schwartz functions on Rn . For
k ∈N0 ∪ {+∞} and m ∈N, let

Sk (Rn ;Rm) :=
{

f ∈S (Rn ;Rm) :
∫
Rn

xa f (x)dx = 0 for all a ∈Nn
0 with |a| ≤ k

}
,

where xa := xa1
1 · . . . · xan

n for all multi-indices a ∈ Nn
0 . See [39, Section 2.2] for instance. We let

S ′(Rn ;Rm) be the dual of S (Rn ;Rm) and we call it the space of tempered distributions. See [39,
Sections 2.2 and 2.3] for instance.

For any exponent p ∈ [1,+∞], we let Lp (Ω;Rm) be the space of m-vector-valued Lebesgue p-
integrable functions on Ω.

We let

F ( f )(ξ) :=
∫
Rn

f (x)e−iξ·x dx, ξ ∈Rn ,

be the Fourier transform of the function f ∈ L1(Rn ;Rm). As it is well known, the Fourier transform
maps S (Rn ;Rm) onto itself and may be extended to S ′(Rn ;Rm) (see [39, Sections 2.2 and 2.3] for
instance).

We let
W 1,p (Ω;Rm) := {

u ∈ Lp (Ω;Rm) : [u]W 1,p (Ω;Rm ) := ‖∇u‖Lp (Ω;Rnm ) <+∞}
be the space of m-vector-valued Sobolev functions on Ω, see for instance [45, Chapter 10] for its
precise definition and main properties. We denote by

BV (Ω;Rm) := {
u ∈ L1(Ω;Rm) : [u]BV (Ω;Rm ) := |Du|(Ω) <+∞}

the space of m-vector-valued functions of bounded variation onΩ, see for instance [4, Chapter 3]
or [33, Chapter 5] for its precise definition and main properties.

For α ∈ (0,1) and p ∈ [1,+∞), we let

W α,p (Ω;Rm) :=
{

u ∈ Lp (Ω;Rm) : [u]W α,p (Ω;Rm ) :=
(∫
Ω

∫
Ω

|u(x)−u(y)|p
|x − y |n+pα dx dy

) 1
p <+∞

}
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be the space of m-vector-valued fractional Sobolev functions on Ω, see [31] for its precise
definition and main properties. For α ∈ (0,1) and p =+∞, we simply let

W α,∞(Ω;Rm) :=
{

u ∈ L∞(Ω;Rm) : sup
x,y∈Ω, x 6=y

|u(x)−u(y)|
|x − y |α <+∞

}
,

so that W α,∞(Ω;Rm) =C 0,α
b (Ω;Rm), the space of m-vector-valued boundedα-Hölder continuous

functions onΩ.
Given α ∈ (0,n), let

Iα f (x) := 2−απ− n
2
Γ

( n−α
2

)
Γ

(
α
2

) ∫
Rn

f (y)

|x − y |n−α dy, x ∈Rn , (42)

be the Riesz potential of order α ∈ (0,n) of f ∈ C∞
c (Rn ;Rm). We recall that, if α,β ∈ (0,n) satisfy

α+β< n, then we have the following semigroup property

Iα(Iβ f ) = Iα+β f (43)

for all f ∈C∞
c (Rn ;Rm). In addition, if 1 < p < q <+∞ satisfy

1

q
= 1

p
− α

n
,

then there exists a constant Cn,α,p > 0 such that the operator in (42) satisfies

‖Iα f ‖Lq (Rn ;Rm ) ≤Cn,α,p‖ f ‖Lp (Rn ;Rm ) (44)

for all f ∈ C∞
c (Rn ; Rm). As a consequence, the operator in (42) extends to a linear continuous

operator from Lp (Rn ;Rm) to Lq (Rn ;Rm), for which we retain the same notation. For a proof of (43)
and (44), we refer the reader to [72, Chapter V, Section 1] and to [40, Section 1.2.1].

Given α ∈ (0,1), we also let

(−∆)
α
2 f (x) := νn,α

∫
Rn

f (x + y)− f (x)

|y |n+α dy, x ∈Rn , (45)

be the fractional Laplacian (of order α) of f ∈ Lipb(Rn ;Rm), where

νn,α = 2απ− n
2
Γ

( n+α
2

)
Γ

(−α
2

) , α ∈ (0,1).

For α ∈ (0,1) and p ∈ (1,+∞), let

Lα,p (Rn ;Rm) : = (Id−∆)−
α
2 (Lp (Rn ;Rm))

=
{

f ∈S ′(Rn ;Rm) : (Id−∆)
α
2 f ∈ Lp (Rn ;Rm)

} (46)

be the m-vector-valued Bessel potential space with norm

‖ f ‖Lα,p (Rn ;Rm ) = ‖(Id−∆)
α
2 f ‖Lp (Rn ;Rm ), f ∈ Lα,p (Rn ;Rm), (47)

see [1, Sections 7.59-7.65] for its precise definition and main properties. We also refer to [62,
Section 27.3], where the authors prove that the space in (46) can be equivalently defined as the
space

Lp (Rn ;Rm)∩ Iα(Lp (Rn ;Rm)) =
{

f ∈ Lp (Rn ;Rm) : (−∆)
α
2 f ∈ Lp (Rn ;Rm)

}
, (48)

see [62, Theorem 27.3]. In particular, the function

f 7→ ‖ f ‖Lp (Rn ;Rm ) +‖(−∆)
α
2 f ‖Lp (Rn ;Rm ), f ∈ Lα,p (Rn ; Rm), (49)

defines a norm on Lα,p (Rn ; Rm) equivalent to the one in (47) (and so, unless otherwise stated,
we will use both norms (47) and (49) with no particular distinction). We recall that C∞

c (Rn) is
a dense subset of Lα,p (Rn ;Rm), see [1, Theorem 7.63(a)] and [62, Lemma 27.2]. Note that the
space Lα,p (Rn ;Rm) can be defined also for any α≥ 1 by simply using the composition properties
of the Bessel potential (or of the fractional Laplacian), see [1, Section 7.62]. All the properties
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stated above remain true also for α≥ 1 and, moreover, Lk,p (Rn ;Rm) =W k,p (Rn ;Rm) for all k ∈N,
see [1, Theorem 7.63(f)].

For m ∈N, we denote by

H 1(Rn ;Rm) := {
f ∈ L1(Rn ;Rm) : R f ∈ L1(Rn ;Rmn)

}
the m-vector-valued (real) Hardy space endowed with the norm

‖ f ‖H 1(Rn ;Rm ) := ‖ f ‖L1(Rn ;Rm ) +‖R f ‖L1(Rn ;Rmn )

for all f ∈ H 1(Rn ;Rm), where R f denotes the Riesz trasform of f ∈ H 1(Rn ;Rm), componentwise
defined by

R fi (x) :=π− n+1
2 Γ

(
n +1

2

)
lim
ε→0+

∫
{|y |>ε}

y fi (x + y)

|y |n+1 dy, x ∈Rn , i = 1, . . . ,m. (50)

We refer the reader to [40, Sections 2.1 and 2.4.4], [72, Chapter III, Section 1] and [73, Chapter III]
for a more detailed exposition. We warn the reader that the definition in (50) agrees with the
one in [73] and differs from the one in [40, 72] for a minus sign. We also recall that the Riesz
transform (50) defines a continuous operator R : Lp (Rn ;Rm) → Lp (Rn ;Rmn) for any given p ∈
(1,+∞), see [39, Corollary 5.2.8], and a continuous operator R : H 1(Rn ;Rm) → H 1(Rn ;Rmn),
see [73, Chapter III, Section 5.25].

In the sequel, in order to avoid heavy notation, if the elements of a function space F (Ω;Rm)
are real-valued (i.e. m = 1), then we will drop the target space and simply write F (Ω).

2.2. Overview of ∇α and divα and the related function spaces

We recall the definition (and the main properties) of the non-local operators ∇α and divα,
see [27, 28, 69] and the monograph [60, Section 15.2].

Let α ∈ (0,1) and set

µn,α := 2απ− n
2
Γ

( n+α+1
2

)
Γ

( 1−α
2

) .

We denote by

∇α f (x) :=µn,α lim
ε→0+

∫
{|y |>ε}

y f (x + y)

|y |n+α+1 dy

the fractional α-gradient of f ∈ Lipc (Rn) at x ∈Rn . We also let

divαϕ(x) :=µn,α lim
ε→0+

∫
{|y |>ε}

y ·ϕ(x + y)

|y |n+α+1 dy

be the fractional α-divergence of ϕ ∈ Lipc (Rn ;Rn) at x ∈Rn . The non-local operators ∇α and divα

are well defined in the sense that the involved integrals converge and the limits exist. Moreover,
since ∫

{|z|>ε}

z

|z|n+α+1 dz = 0, ∀ ε> 0,

it is immediate to check that ∇αc = 0 for all c ∈R and

∇α f (x) =µn,α

∫
Rn

(y −x)( f (y)− f (x))

|y −x|n+α+1 dy, ∀ x ∈Rn ,

for all f ∈ Lipc (Rn). Analogously, we also have

divαϕ(x) =µn,α

∫
Rn

(y −x) · (ϕ(y)−ϕ(x))

|y −x|n+α+1 dy, ∀ x ∈Rn ,

for all ϕ ∈ Lipc (Rn).
Thanks to [28, Proposition 2.2], given α ∈ (0,1) we can equivalently write

∇α f =∇I1−α f = I1−α∇ f and divαϕ= div I1−αϕ= I1−αdivϕ (51)

C. R. Mathématique — 2022, 360, 589-626



Elia Bruè, Mattia Calzi, Giovanni E. Comi and Giorgio Stefani 601

for all f ∈ Lipc (Rn ;Rn) and ϕ ∈ Lipc (Rn ;Rn), respectively.
The fractional operators ∇α and divα are dual in the sense that∫

Rn
f divαϕdx =−

∫
Rn
ϕ ·∇α f dx (52)

for all f ∈ Lipc (Rn) andϕ ∈ Lipc (Rn ;Rn), see [68, Section 6] and [28, Lemma 2.5]. In addition, given
f ∈ Lipc (Rn) and ϕ ∈ Lipc (Rn ;Rn), we have

∇α f ∈ Lp (Rn) and divαϕ ∈ Lp (Rn ;Rn) (53)

for all p ∈ [1,+∞], see [28, Corollary 2.3]. The above results and identities hold also for functions
f ∈S (Rn) and ϕ ∈S (Rn ;Rn).

Given α ∈ (0,1) and p ∈ [1,+∞], inspired by the integration-by-parts formula (52), we say that
a function f ∈ Lp (Rn) has bounded fractional α-variation if

|Dα f |(Rn) := sup

{∫
Rn

f divαϕdx :ϕ ∈C∞
c (Rn ;Rn), ‖ϕ‖L∞(Rn ;Rn ) ≤ 1

}
<+∞, (54)

see [28, Section 3] for the case p = 1 and the discussion in [27, Section 3.3] for the case p ∈ (1,+∞].
Note that the above notion of fractional α-variation is well posed thanks to the integrability
property (53). Following the strategy outlined in [28, Section 3.2], the reader can verify that the
linear space

BV α,p (Rn) := {
f ∈ Lp (Rn) : |Dα f |(Rn) <+∞}

endowed with the norm

‖ f ‖BV α,p (Rn ) := ‖ f ‖Lp (Rn ) +|Dα f |(Rn), f ∈ BV α,p (Rn),

is a Banach space and that the fractional variation defined in (54) is lower semicontinuous with
respect to Lp -convergence. In the sequel, we also use the notation [ f ]BV α,p (Rn ) = |Dα f |(Rn) for a
given f ∈ BV α,p (Rn).

In the case p = 1, we simply write BV α,1(Rn) = BV α(Rn). The space BV α(Rn) resembles the
classical space BV (Rn) from many points of view and we refer the reader to [28, Section 3] for a
detailed exposition of its main properties.

Again motivated by (52) and in analogy with the classical case, given α ∈ (0,1) and p ∈
[1,+∞] we define the weak fractional α-gradient of a function f ∈ Lp (Rn) as the function ∇α f ∈
L1

loc(Rn ;Rn) satisfying ∫
Rn

f divαϕdx =−
∫
Rn

∇α f ·ϕdx

for all ϕ ∈C∞
c (Rn ;Rn). We notice that, in the case f ∈ Lipc (Rn) (or f ∈S (Rn)), the weak fractional

α-gradient of f coincides with the one defined above, thanks to (52). As above, the reader can
verify that the distributional fractional Sobolev space

Sα,p (Rn) := {
f ∈ Lp (Rn) : ∃ ∇α f ∈ Lp (Rn ;Rn)

}
(55)

endowed with the norm

‖ f ‖Sα,p (Rn ) := ‖ f ‖Lp (Rn ) +‖∇α f ‖Lp (Rn ;Rn ) f ∈ Sα,p (Rn), (56)

is a Banach space.
In the case p = 1, starting from the very definition of the fractional gradient ∇α, one can

check that W α,1(Rn) ⊂ Sα,1(Rn) ⊂ BV α(Rn) with both strict continuous embeddings, see [28,
Theorems 3.18, 3.25, 3.26, 3.30 and 3.31], and that C∞

c (Rn) is a dense subset of Sα,1(Rn), see [28,
Theorem 3.23].

In the case p ∈ (1,+∞), the density of the set of test functions in the space Sα,p (Rn) was left as
an open problem in [28, Section 3.9]. More precisely, defining

Sα,p
0 (Rn) :=C∞

c (Rn)
‖·‖Sα,p (Rn )
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endowed with the norm in (56), it is immediate to see that Sα,p
0 (Rn) ⊂ Sα,p (Rn) with continuous

embedding. The space (Sα,p
0 (Rn),‖ ·‖Sα,p (Rn )) was introduced in [66] (with a different, but equiva-

lent, norm) and, in fact, it satisfies
Sα,p

0 (Rn) = Lα,p (Rn)

for all α ∈ (0,1) and p ∈ (1,+∞), see [66, Theorem 1.7]. In Theorem 25 in the appendix, we
positively solve the problem of the density of C∞

c (Rn) in the space Sα,p (Rn). As a consequence,
we obtain the following result.

Corollary 1 (Identification Sα,p = Lα,p ). Let α ∈ (0,1) and p ∈ (1,+∞). We have Sα,p (Rn) =
Lα,p (Rn).

According to Corollary 1, in the sequel we will also use the symbol Sα,p to denote the Bessel
potential space Lα,p . In addition, consistently with the asymptotic behavior of the fractional
gradient ∇α as α → 1− established in [27], we will sometimes denote the Sobolev space W 1,p

as S1,p for p ∈ [1,+∞).
Thanks to the identification given by Corollary 1, we can prove the following result.

Proposition 2 (S0 is dense in Sα,p ). Let α ∈ (0,1) and p ∈ (1,+∞). The set S0(Rn) is dense in
Sα,p (Rn).

Proof. By Corollary 1, we equivalently have to prove that the set S0(Rn) is dense in Lα,p (Rn). To
this aim, let us consider the functional M : (S (Rn),‖·‖Lp (Rn )) →R defined as

M( f ) =
∫
Rn

f (x)dx, f ∈S (Rn).

Clearly, the linear functional M cannot be continuous and thus its kernel S0(Rn) must be dense
in S (Rn) with respect to the Lp -norm. Since the Bessel potential

(Id−∆)−
α
2 : (S (Rn),‖ ·‖Sα,p (Rn )) → (S (Rn),‖ ·‖Lp (Rn ))

is an isomorphism, the conclusion follows. �

2.3. The fractional Hardy–Sobolev space HSα,1(Rn)

Following the classical approach of [74], for α ∈ [0,1] let

HSα,1(Rn) : = (I −∆)−
α
2 (H 1(Rn))

=
{

f ∈ H 1(Rn) : (I −∆)
α
2 f ∈ H 1(Rn)

}
be the (real) fractional Hardy–Sobolev space endowed with the norm

‖ f ‖HSα,1(Rn ) = ‖(I −∆)
α
2 f ‖H 1(Rn ), f ∈ H 1,α(Rn). (57)

In particular, HS0,1(Rn) = H 1(Rn) coincides with the (real) Hardy space and H 1,1(Rn) is the
standard (real) Hardy–Sobolev space. As remarked in [74, p. 130], HSα,1(Rn) can be equivalently
defined as

H 1(Rn)∩ Iα(H 1(Rn)) =
{

f ∈ H 1(Rn) : (−∆)
α
2 f ∈ H 1(Rn)

}
.

In particular, the function

f 7→ ‖ f ‖H 1(Rn ) +‖(−∆)
α
2 f ‖H 1(Rn ), f ∈ HSα,1(Rn), (58)

defines a norm on HSα,1(Rn) equivalent to the one in (57) (and so, unless otherwise stated, we
will use both norms (57) and (58) with no particular distinction). In particular, the operator

(−∆)
α
2 : HSα,1(Rn) → H 1(Rn)

is well defined and continuous.
For the reader’s convenience we briefly prove the following density result.
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Lemma 3 (Approximation by S∞ functions in HSα,1). Let α ∈ (0,1). The set S∞(Rn) is dense in
HSα,1(Rn).

Proof. Since the set S∞(Rn) is dense in H 1(Rn) by [73, Chapter III, Section 5.2(a)], the set
(I −∆)−

α
2 (S∞(Rn)) is dense in HSα,1(Rn). Since clearly (I −∆)−

α
2 (S∞(Rn)) ⊂ S∞(Rn), the set

S∞(Rn) is dense (and embeds continuously) in HSα,1(Rn). Thus the conclusion follows. �

Exploiting Lemma 3, for α ∈ (0,1), the space HSα,1(Rn) can be equivalently defined as the
space {

f ∈ H 1(Rn) : ∇α f ∈ H 1(Rn ;Rn)
}

endowed with the norm
f 7→ ‖ f ‖H 1(Rn ) +‖∇α f ‖H 1(Rn ;Rn ).

Indeed, if f ∈ S∞(Rn), then, by exploiting Fourier transform techniques, we can write ∇α f =
R (−∆)

α
2 f , so that there exists a dimensional constant cn > 0 such that

c−1
n ‖(−∆)

α
2 f ‖H 1(Rn ) ≤ ‖∇α f ‖H 1(Rn ;Rn ) ≤ cn‖(−∆)

α
2 f ‖H 1(Rn ) (59)

for all f ∈S∞(Rn), thanks to the H 1-continuity property of the Riesz transform and the fact that
n∑

j=1
R2

j =−I on S (Rn).

By Lemma 3, the validity of (59) extends to all f ∈ HSα,1(Rn) and the conclusion follows. As a
consequence, note that HSα,1(Rn) ⊂ Sα,1(Rn) for all α ∈ (0,1) with continuous embedding.

We note that the well-posedness and the equivalence of the definitions of HSα,1(Rn) given
above and the stated results hold for any α ≥ 0 thanks to the composition properties of the
operators involved. We leave the standard verifications to the interested reader.

3. The BV 0(Rn) space

3.1. Definition of BV 0(Rn) and Structure Theorem

Somehow naturally extending the definitions given in (51) to the case α= 0, for f ∈ Lipc (Rn) and
ϕ ∈ Lipc (Rn ;Rn) we define

∇0 f := I1∇ f and div0ϕ := I1 divϕ.

It is immediate to check that the integration-by-parts formula∫
Rn

f div0ϕdx =−
∫
Rn
ϕ ·∇0 f dx (60)

holds for all given f ∈ Lipc (Rn) and ϕ ∈ Lipc (Rn ;Rn). Hence, in analogy with [28, Definition 3.1],
we are led to the following definition.

Definition 4 (The space BV 0(Rn)). A function f ∈ L1(Rn) belongs to the space BV 0(Rn) if

sup

{∫
Rn

f div0ϕdx :ϕ ∈C∞
c (Rn ;Rn), ‖ϕ‖L∞(Rn ;Rn ) ≤ 1

}
<+∞.

The proof of the following result is very similar to the one of [28, Theorem 3.2] and is omitted.

Theorem 5 (Structure Theorem for BV 0 functions). Let f ∈ L1(Rn). Then, f ∈ BV 0(Rn) if and
only if there exists a finite vector-valued Radon measure D0 f ∈M (Rn ;Rn) such that∫

Rn
f div0ϕdx =−

∫
Rn
ϕ · dD0 f (61)

for all ϕ ∈C∞
c (Rn ;Rn). In addition, for all open sets U ⊂Rn it holds

|D0 f |(U ) = sup

{∫
Rn

f div0ϕdx :ϕ ∈C∞
c (U ;Rn), ‖ϕ‖L∞(U ;Rn ) ≤ 1

}
. (62)
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3.2. The identification BV 0(Rn) = H 1(Rn)

As already announced in [27], the space BV 0(Rn) actually coincides with the Hardy space H 1(Rn).
More precisely, we have the following result.

Theorem 6 (The identification BV 0 = H 1). We have BV 0(Rn) = H 1(Rn), with

D0 f = R f L n in M (Rn ;Rn)

for every f ∈ BV 0(Rn).

Proof. We prove the two inclusions separately.

Proof of H 1(Rn) ⊂ BV 0(Rn). Let f ∈ H 1(Rn) and assume f ∈ Lipc (Rn). By (60), we immediately
get that D0 f = R f L n in M (Rn ;Rn) with R f = ∇0 f in L1(Rn ;Rn), so that f ∈ BV 0(Rn). Now let
f ∈ H 1(Rn). By [73, Chapter III, Section 5.2(b)], we can find ( fk )k∈N ⊂ H 1(Rn)∩C∞

c (Rn) such that
fk → f in H 1(Rn) as k →+∞. Hence, given ϕ ∈C∞

c (Rn ;Rn), we have∫
Rn

fk div0ϕdx =−
∫
Rn
ϕ ·R fk dx

for all k ∈N. Passing to the limit as k →+∞, we get∫
Rn

f div0ϕdx =−
∫
Rn
ϕ ·R f dx

so that f ∈ BV 0(Rn) with D0 f = R f L n in M (Rn ;Rn) according to (62).

Proof of BV 0(Rn) ⊂ H 1(Rn). Let f ∈ BV 0(Rn). Since f ∈ L1(Rn), R f is well defined as a (vector-
valued) distribution, see [73, Chapter III, Section 4.3]. Thanks to (61), we also have that

〈
R f ,ϕ

〉=〈
D0 f ,ϕ

〉
for all ϕ ∈C∞

c (Rn ;Rn), so that R f = D0 f in the sense of distributions. Now let (%ε)ε>0 ⊂
C∞

c (Rn) be a family of standard mollifiers (see e.g. [28, Section 3.2]). We can thus estimate

‖R f ∗%ε‖L1(Rn ;Rn ) = ‖D0 f ∗%ε‖L1(Rn ;Rn ) ≤ |D0 f |(Rn)

for all ε> 0, so that f ∈ H 1(Rn) by [73, Chapter III, Section 4.3, Proposition 3], with D0 f = R f L n

in M (Rn ;Rn). �

3.3. Relation between W α,1(Rn) and H 1(Rn)

Thanks to the identification established in Theorem 6, we can prove the following result. See
also [28, Lemma 3.28] and [27, Lemma 3.11].

Proposition 7. Let α ∈ (0,1). The following hold.

(i) If f ∈ H 1(Rn), then u := Iα f ∈ BV α, n
n−α (Rn) with Dαu = R f L n in M (Rn ;Rn).

(ii) If u ∈W α,1(Rn), then f := (−∆)α/2u ∈ H 1(Rn) with

‖ f ‖L1(Rn ) ≤µn,−α[u]W α,1(Rn ) and R f =∇αu a.e. in Rn .

Proof. We prove the two statements separately.

Proof of (i). Let f ∈ H 1(Rn). By the Stein–Weiss inequality (see [65, Theorem 2] for instance), we
know that u := Iα f ∈ L

n
n−α (Rn). To prove that |Dαu|(Rn) < +∞, we exploit Theorem 6 and argue

as in the proof of [28, Lemma 3.28]. Indeed, for all ϕ ∈C∞
c (Rn ;Rn), we can write∫

Rn
f div0ϕdx =

∫
Rn

f Iαdivαϕdx =
∫
Rn

u divαϕdx

by Fubini’s Theorem, since f ∈ L1(Rn) and Iα|divαϕ| ∈ L∞(Rn), being

Iα|divαϕ| = Iα|I1−αdivϕ| ≤ IαI1−α|divϕ| = I1|divϕ| ∈ L∞(Rn)

thanks to the semigroup property (43) of the Riesz potentials. This proves that Dαu = D0 f =
R f L n in M (Rn ;Rn), again thanks to Theorem 6.
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Proof of (ii). Let u ∈W α,1(Rn). Then f := (−∆)α/2u satisfies

‖ f ‖L1(Rn ) =µn,−α
∫
Rn

∣∣∣∣∫
Rn

u(y)−u(x)

|y −x|n+α dy

∣∣∣∣ dx ≤µn,−α[u]W α,1(Rn ).

To prove that f ∈ H 1(Rn), we exploit Theorem 6 again. For all ϕ ∈C∞
c (Rn ;Rn), we can write∫

Rn
u divαϕdx =

∫
Rn

u (−∆)
α
2 div0ϕdx =

∫
Rn

f div0ϕdx

by Fubini’s Theorem, since u ∈ L1(Rn) and div0ϕ ∈ Lipb(Rn ;Rn), proving that D0 f = Dαu
in M (Rn ;Rn). Since Dαu = ∇αu L n with ∇αu ∈ L1(Rn ;Rn) by [28, Theorem 3.18] and D0 f =
R f L n by Theorem 6, we see that f = (−∆)α/2u ∈ H 1(Rn) and R f =∇αu L n-a.e., concluding the
proof. �

We end this section with the following consequence of Proposition 7.

Corollary 8. The following statements hold.

(i) H 1(Rn)∩⋃
α∈(0,1) W α,1(Rn) =⋃

α∈(0,1) HSα,1(Rn).
(ii)

⋃
α∈(0,1) Sα,p (Rn) =⋃

α∈(0,1) W α,p (Rn) for all p ∈ [1,+∞).

Proof. We prove the two statements separately.

Proof of (i). On the one hand, we have H 1(Rn) ∩ W α,1(Rn) ⊂ HSα,1(Rn) for all α ∈ (0,1) by
Proposition 7(ii) in virtue of the discussion made in Section 2.3. On the other hand, HSα,1(Rn) ⊂
H 1(Rn)∩Sα,1(Rn) for all α ∈ (0,1) as remarked at the end of Section 2.3. Since we already know
that Sα,1(Rn) ⊂W α′,1 for all 0 <α′ <α< 1 by [28, Theorems 3.25 and 3.32], this proves (i).

Proof of (ii). Since Lα+ε,p (Rn) ⊂ W α,p (Rn) ⊂ Lα−ε,p (Rn) for all α ∈ (0,1), p ∈ (1,+∞) and 0 < ε <
min{α,1−α} by [1, Theorem 7.63(g)], thanks to the identification established in Corollary 1 we
immediately deduce the validity of (ii) for all p ∈ (1,+∞). If p = 1, then (ii) is a consequence
of [28, Proposition 3.24(i) and Theorems 3.25 and 3.32]. �

4. Interpolation inequalities

4.1. The case p = 1 via the Calderón–Zygmund Theorem

Here and in the rest of the paper, let (ηR )R>0 ⊂C∞
c (Rn) be a family of cut-off functions defined as

ηR (x) = η
( |x|

R

)
, for all x ∈Rn and R > 0, (63)

where η ∈C∞
c (R) satisfies

0 ≤ η≤ 1, η= 1 on

[
−1

2
,

1

2

]
, suppη⊂ [−1,1] Lip(η) ≤ 3. (64)

For α ∈ (0,1) and R > 0, let Tα,R : S (Rn) →S ′(Rn ;Rn) be the linear operator defined by

Tα,R f (x) :=
∫
Rn

f (y +x)
y (1−ηR (y))

|y |n+α+1 dy, x ∈Rn , (65)

for all f ∈ S (Rn). In the following result, we prove that Tα,R is a Calderón–Zygmund operator
mapping H 1(Rn) to L1(Rn ;Rn).

Lemma 9 (Calderón–Zygmund estimate for Tα,R ). There is a dimensional constant τn > 0 such
that, for any given α ∈ (0,1) and R > 0, the operator in (65) uniquely extends to a bounded linear
operator Tα,R : H 1(Rn) → L1(Rn ;Rn) with

‖Tα,R f ‖L1(Rn ;Rn ) ≤ τnR−α‖ f ‖H 1(Rn )

for all f ∈ H 1(Rn).
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Proof. We apply [40, Theorem 2.4.1] to the kernel

Kα,R (x) := x (1−ηR (x))

|x|n+α+1 , x ∈Rn , x 6= 0.

First of all, we have

|Kα,R (x)| ≤ 1−ηR (x)

|x|n+α ≤ 2α

Rα

1

|x|n , x ∈Rn , x 6= 0,

so that we can choose A1 = 2nωnR−α in the size estimate (2.4.1) in [40]. We also have

|∇Kα,R (x)| ≤ cn

(
1

R

∣∣η′( |x|R

)∣∣
|x|n+α + 1−ηR (x)

|x|n+α+1

)
≤ 4cn

2α

Rα

1

|x|n+1 , x ∈Rn , x 6= 0,

where cn > 0 is some dimensional constant, so that we can choose A2 = c ′nR−α in the smoothness
condition (2.4.2) in [40], where c ′n > cn is another dimensional constant. Finally, since clearly∫

{m<|x|<M }
Kα,R (x)dx = 0

for all m < M , we can choose A3 = 0 in the cancellation condition (2.4.3) in [40]. Since A1 + A2 +
A3 = c ′′nR−α for some dimensional constant c ′′n ≥ c ′n , the conclusion follows. �

With Lemma 9 at our disposal, we can prove the following result.

Theorem 10 (H 1 −BV α interpolation inequality). Let α ∈ (0,1]. There exists a constant cn,α > 0
such that

[ f ]BV β(Rn ) ≤ cn,α ‖ f ‖(α−β)/α
H 1(Rn )

[ f ]β/α
BV α(Rn ) (66)

for all β ∈ [0,α) and all f ∈ H 1(Rn)∩BV α(Rn).

Proof. Let α ∈ (0,1] be fixed. Thanks to Theorem 6, the case β = 0 is trivial, so we assume β ∈
(0,α). We can also assume that [ f ]BV α(Rn ) > 0 without loss of generality, since otherwise f = 0 L n-
a.e. by [28, Proposition 3.14] (note that the validity of [28, Proposition 3.14] for all f ∈ BV α(Rn)
follows by a simple approximation argument, thanks to [28, Theorem 3.8]). Hence, in particular,
we can assume ‖ f ‖L1(Rn ) > 0. We divide the proof in three steps.

Step 1: stability as β→ 0+. Let f ∈ H 1(Rn) ∩ BV α(Rn) and assume f ∈ Lipb(Rn). By [27,
Lemma 2.3], we can write

|∇β f (x)| =µn,β

∣∣∣∣∫
Rn

y( f (y +x)− f (x))

|y |n+β+1
dy

∣∣∣∣
=µn,β

∣∣∣∣∫
Rn
ηR (y)

y( f (y +x)− f (x))

|y |n+β+1
dy +

∫
Rn

(1−ηR (y))
y( f (y +x)− f (x))

|y |n+β+1
dy

∣∣∣∣ (67)

for all x ∈Rn and all R > 0. On the one hand, for α< 1, by [28, Proposition 3.14] we can estimate∫
Rn

∣∣∣∣∫
Rn
ηR (y)

y( f (y +x)− f (x))

|y |n+β+1
dy

∣∣∣∣ dx ≤
∫

BR

1

|y |n+β
∫
Rn

| f (y +x)− f (x)|dx dy

≤ γn,α |Dα f |(Rn)
∫

BR

dy

|y |n+β−α

= nωnγn,α
Rα−β

α−β |Dα f |(Rn)

(68)

for all R > 0, where γn,α > 0 is a constant depending only on n and α. If α= 1 instead, we simply
have ∫

Rn

∣∣∣∣∫
Rn
ηR (y)

y( f (y +x)− f (x))

|y |n+β+1
dy

∣∣∣∣ dx ≤ nωn
R1−β

1−β |D f |(Rn)
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for all R > 0 (by [4, Remark 3.25] with Ω = Rn , for instance). On the other hand, by Lemma 9 we
have ∫

Rn

∣∣∣∣∫
Rn

(1−ηR (y))
y( f (y +x)− f (x))

|y |n+β+1
dy

∣∣∣∣ dx =
∫
Rn

∣∣∣∣∫
Rn

(1−ηR (y))
y f (y +x)

|y |n+β+1
dy

∣∣∣∣ dx

≤ τnR−β‖ f ‖H 1(Rn )

(69)

for all R > 0, where τn > 0 is the constant of Lemma 9. Combining the above estimates, we get

|Dβ f |(Rn) ≤µn,β

(
nωnγn,α

Rα−β

α−β [ f ]BV α(Rn ) +τnR−β ‖ f ‖H 1(Rn )

)

≤µn,βmax{τn ,nωnγn,α}

(
Rα−β

α−β [ f ]BV α(Rn ) +R−β ‖ f ‖H 1(Rn )

)
for all R > 0, where we have set γn,1 := 1 by convention. With the choice R = ‖ f ‖1/α

H 1(Rn )
[ f ]−1/α

BV α(Rn ),
we get

|Dβ f |(Rn) ≤ 2µn,βmax{τn ,nωnγn,α}

α−β ‖ f ‖(α−β)/α
H 1(Rn )

[ f ]β/α
BV α(Rn ) (70)

for all f ∈ H 1(Rn)∩BV α(Rn) such that f ∈ Lipb(Rn). Using a standard approximation argument
via convolution, thanks to [28, Proposition 3.3] inequality (70) follows for all f ∈ H 1(Rn) ∩
BV α(Rn).

Step 2: stability as β→α−. If α< 1, then by [27, Proposition 3.12] we know that

|Dβ f |(Rn) ≤ dn,α
µn,1+β−α
n +β−α

(
Rα−β

α−β [ f ]BV α(Rn ) + R−β

β
‖ f ‖L1(Rn )

)
(71)

for all f ∈ BV α(Rn) and all R > 0, where

dn,α = max
{
nωn , (n +α)‖∇αχB1‖L1(Rn ;Rn )

}
,

so that [27, Theorem 4.9] implies

dn,1 := lim
α→1−

dn,α = (n +1)nωn <+∞.

If α= 1, then by [27, Proposition 3.2(i)] inequality (71) holds with α= 1 for all f ∈ BV (Rn). Since
‖ f ‖L1(Rn ) > 0, choosing R = [ f ]1/α

BV α(Rn ) ‖ f ‖−1/α
L1(Rn )

and using the inequality ‖ f ‖L1(Rn ) ≤ ‖ f ‖H 1(Rn ), we
can estimate

|Dβ f |(Rn) ≤ dn,α

β(α−β)

µn,1+β−α
n +β−α ‖ f ‖(α−β)/α

H 1(Rn )
[ f ]β/α

BV α(Rn ) (72)

for all f ∈ H 1(Rn)∩BV α(Rn).

Step 3: existence of cn,α. Combining (70) and (72), we get

|Dβ f |(Rn) ≤ϕn(α,β)‖ f ‖(α−β)/α
H 1(Rn )

[ f ]β/α
BV α(Rn )

for all f ∈ H 1(Rn)∩BV α(Rn), where

ϕn(α,β) := min

{
2µn,βmax{τn ,nωnγn,α}

α−β ,
dn,α

β(α−β)

µn,1+β−α
n +β−α

}
, 0 <β<α≤ 1.

We observe that, for all fixed α ∈ (0,1], ϕn(α,β) is continuous in β ∈ (0,α). Thanks to [27,
Lemma 4.1], we notice that for all α ∈ (0,1) we have

lim
β→α−ϕn(α,β) = dn,α

αn
lim
β→α−

µn,1+β−α
α−β = dn,α

αnωn
,
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while in the case α= 1 we obtain

lim
β→1−

ϕn(1,β) = min

{
2max{τn ,nωn} lim

β→1−
µn,β

1−β , dn,1 lim
β→1−

µn,β

β(1−β)(n +β−1)

}
= 1

ωn
min

{
2max{τn ,nωn},

dn,1

n

}
.

In addition, for all α ∈ (0,1], we get

lim
β→0+

ϕn(α,β) = 2µn,0 max{τn ,nωnγn,α}

α
.

Thus, for all α ∈ (0,1] we have ϕn(α, · ) ∈ C ([0,α]), and the conclusion follows by setting cn,α :=
maxβ∈[0,α]ϕn(α,β). �

Remark 11 (H 1 −W α,1 interpolation inequality). Thanks to [28, Theorem 3.18], by Theorem 10
one can replace the BV α-seminorm in the right-hand side of (66) with the W α,1-seminorm up to
multiply the constant cn,α by µn,α. However, one can prove a slightly finer estimate essentially
following the proof of Theorem 10. Indeed, for any given f ∈ H 1(Rn) ∩W α,1(Rn) sufficiently
regular, one writes ∇β f as in (67) and estimates the second part of it as in (69). To estimate the
first term, instead of following (68), one simply notes that∫

Rn

∣∣∣∣∫
Rn
ηR (y)

y( f (y +x)− f (x))

|y |n+β+1
dy

∣∣∣∣ dx ≤
∫
Rn

∫
BR

| f (y +x)− f (x)|
|y |n+β dy dx

≤ Rα−β
∫
Rn

∫
BR

| f (y +x)− f (x)|
|y |n+α dy dx

≤ Rα−β [ f ]W α,1(Rn )

for all R > 0. Hence

|Dβ f |(Rn) ≤µn,β
(
Rα−β [ f ]W α,1(Rn ) +τnR−β ‖ f ‖H 1(Rn )

)
for all R > 0, and the desired inequality follows by optimizing the parameter R > 0 in the right-
hand side.

4.2. The cases p > 1 and H 1 via the Mihlin–Hörmander Multiplier Theorem

Let 0 ≤β≤α≤ 1 and consider the function

mα,β(ξ) := |ξ|β
1+|ξ|α , ξ ∈Rn .

It is not difficult to see that

‖mα,β‖? := sup
a∈Nn

0 , |a|≤bn
2c+1

sup
ξ∈Rn \{0}

∣∣∣ξa∂a
ξmα,β(ξ)

∣∣∣<+∞.

We thus define the convolution operator Tmα,β : S (Rn) → S ′(Rn) with convolution kernel given
by F−1(mα,β), i.e.,

Tmα,β f := f ∗F−1(mα,β), f ∈S (Rn). (73)

In the following result, we observe that the multipliers mα,β satisfy uniform Mihlin–Hörmander
conditions as 0 ≤β≤α≤ 1.

Lemma 12 (Mihlin–Hörmander estimates for Tmα,β). There is a dimensional constant σn > 0
such that the following properties hold for all given 0 ≤β≤α≤ 1.
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(i) For all given p ∈ (1,+∞), the operator in (73) uniquely extends to a bounded linear
operator Tmα,β : Lp (Rn) → Lp (Rn) with

‖Tmα,β f ‖Lp (Rn ) ≤σn max

{
p,

1

p −1

}
‖ f ‖Lp (Rn )

for all f ∈ Lp (Rn).
(ii) The operator in (73) uniquely extends to a bounded linear operator Tmα,β : H 1(Rn) →

H 1(Rn) with
‖Tmα,β f ‖H 1(Rn ) ≤σn ‖ f ‖H 1(Rn )

for all f ∈ H 1(Rn).

Proof. Statements (i) and (ii) follow from the Mihlin–Hörmander Multiplier Theorem, see [39,
Theorem 6.2.7] for the Lp -continuity and [38, Chapter III, Theorem 7.30] for the H 1-continuity,
where

σn := cn sup
0≤β≤α≤1

‖mα,β‖? <+∞

with cn > 0 a dimensional constant. We leave the simple verifications to the interested reader. �

With Lemma 12 at our disposal, we can prove the following result.

Theorem 13 (Bessel and fractional Hardy–Sobolev interpolation inequalities). The following
statements hold.

(i) Given p ∈ (1,+∞), there exists a constant cn,p > 0 such that, given 0 ≤ γ ≤ β ≤ α ≤ 1, it
holds

‖∇β f ‖Lp (Rn ;Rn ) ≤ cn,p ‖∇γ f ‖
α−β
α−γ
Lp (Rn ;Rn ) ‖∇α f ‖

β−γ
α−γ
Lp (Rn ;Rn ) (74)

for all f ∈ Sα,p (Rn). In the case γ= 0 and 0 ≤β≤α≤ 1, we also have

‖∇β f ‖Lp (Rn ;Rn ) ≤ cn,p ‖ f ‖
α−β
α

Lp (Rn ) ‖∇α f ‖
β
α

Lp (Rn ;Rn ) (75)

for all f ∈ Sα,p (Rn).
(ii) There exists a dimensional constant cn > 0 such that, given 0 ≤ γ≤β≤α≤ 1, it holds

‖∇β f ‖H 1(Rn ;Rn ) ≤ cn ‖∇γ f ‖
α−β
α−γ
H 1(Rn ;Rn )

‖∇α f ‖
β−γ
α−γ
H 1(Rn ;Rn )

(76)

for all f ∈ HSα,1(Rn). In the case γ= 0 and 0 ≤β≤α≤ 1, we also have

‖∇β f ‖H 1(Rn ;Rn ) ≤ cn ‖ f ‖
α−β
α

H 1(Rn )
‖∇α f ‖

β
α

H 1(Rn ;Rn )
(77)

for all f ∈ HSα,1(Rn).

Proof. Without loss of generality, we can directly assume that 0 ≤ γ<β<α≤ 1. We prove the two
statements separately.

Proof of (i). Given f ∈ Sα,p (Rn), we can write

(−∆)
β
2 f = Tmα,β ◦

(
Id+(−∆)

α
2
)

f ,

so that

‖(−∆)
β
2 f ‖Lp (Rn ) = ‖Tmα,β ◦

(
Id+(−∆)

α
2
)

f ‖Lp (Rn )

≤σn max

{
p,

1

p −1

}
‖ f + (−∆)

α
2 f ‖Lp (Rn )

≤σn max

{
p,

1

p −1

}(‖ f ‖Lp (Rn ) +‖(−∆)
α
2 f ‖Lp (Rn )

)
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thanks to Lemma 12(i). By performing a dilation and by optimizing the right-hand side, we find
that

‖(−∆)
β
2 f ‖Lp (Rn ) ≤σn max

{
p,

1

p −1

}
‖ f ‖

α−β
α

Lp (Rn ) ‖(−∆)
α
2 f ‖

β
α

Lp (Rn )

for all f ∈ Sα,p (Rn). Now let f ∈C∞
c (Rn). Since

(−∆)
α
2 ∇γ f = R (−∆)

α+γ
2 f ∈ Lp (Rn ;Rn)

because f ∈ Lα+γ,p (Rn) and by the Lp -continuity property of the Riesz transform, we get that
∇γ f ∈ Sα,p (Rn ;Rn) according to the definition given in (48) and the identification established
in Corollary 1. Repeating the above computations for (each component of) the function ∇γ f ∈
Sα,p (Rn ;Rn) with exponents α−γ and β−γ in place of α and β respectively and then optimizing,
we get

‖∇β f ‖Lp (Rn ;Rn ) = ‖(−∆)
β−γ

2 ∇γ f ‖Lp (Rn ;Rn )

≤ cn,p ‖∇γ f ‖
α−β
α−γ
Lp (Rn ;Rn ) ‖(−∆)

α−γ
2 ∇γ f ‖

β−γ
α−γ
Lp (Rn ;Rn )

= cn,p ‖∇γ f ‖
α−β
α−γ
Lp (Rn ;Rn ) ‖∇α f ‖

β−γ
α−γ
Lp (Rn ;Rn )

for all f ∈C∞
c (Rn), where

cn,p =σnn1/2p max

{
p,

1

p −1

}
.

Thanks to Theorem 25, Proposition 30 and Proposition 33, inequality (74) follows by performing
a standard approximation argument.

In the case γ= 0, inequality (75) follows from (74) by the Lp -continuity of the Riesz transform.
This concludes the proof of (i).

Proof of (ii). Given f ∈ HSα,1(Rn), arguing as above, we can write

(−∆)
β
2 f = Tmα,β ◦

(
Id+(−∆)

α
2
)

f ,

so that

‖(−∆)
β
2 f ‖H 1(Rn ) ≤σn

(‖ f ‖H 1(Rn ) +‖(−∆)
α
2 f ‖H 1(Rn )

)
thanks to Lemma 12(ii). By performing a dilation and by optimising the right-hand side, we find
that

‖(−∆)
β
2 f ‖H 1(Rn ) ≤σn ‖ f ‖

α−β
α

H 1(Rn )
‖(−∆)

α
2 f ‖

β
α

H 1(Rn )

for all f ∈ HSα,1(Rn). Now let f ∈C∞
c (Rn). Note that ∇γ f ∈ H 1(Rn ;Rn), because ∇γ f ∈ L1(Rn ;Rn)

and
div0∇γ f = div0 R(−∆)

γ
2 f = (−∆)

γ
2 f ∈ H 1(Rn)

by Proposition 7(ii). Moreover,

(−∆)
α
2 ∇γ f = R (−∆)

α+γ
2 f ∈ H 1(Rn ;Rn)

because f ∈ HSα+γ,1(Rn) and by the H 1-continuity property of the Riesz transform. Thus ∇γ f ∈
HSα,1(Rn ;Rn). Repeating the above computations for (each component of) the function ∇γ f ∈
HSα,1(Rn ;Rn) with exponentsα−γ andβ−γ in place ofα andβ respectively and then optimizing,
we get

‖∇β f ‖H 1(Rn ;Rn ) ≤ cn ‖∇γ f ‖
α−β
α−γ
H 1(Rn ;Rn )

‖∇α f ‖
β−γ
α−γ
H 1(Rn ;Rn )

for all f ∈C∞
c (Rn), where cn =σnn1/2. Thanks to Lemma 3, inequality (76) follows by performing

a standard approximation argument.
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In the case γ= 0, inequality (77) follows from (74) by the H 1-continuity of the Riesz transform.
This concludes the proof of (ii). �

5. Asymptotic behavior of fractionalα-variation asα→ 0+

In this section, we study the asymptotic behavior of ∇α as α→ 0+.

5.1. Pointwise convergence of ∇α as α→ 0+

We start with the pointwise convergence of ∇α to ∇0 as α→ 0+ for sufficiently regular functions.

Lemma 14 (Uniform convergence of ∇α as α→ 0+). Let α ∈ (0,1] and p ∈ [1,+∞]. For β ∈ (0,α),
the operator

∇β : C 0,α
loc (Rn)∩Lp (Rn) →C 0(Rn ;Rn)

is well defined and satisfies

‖∇β f ‖L∞(BR ;Rn ) ≤ cn,p µn,β

 rα−β

α−β [ f ]C 0,α(BR+r ) +
r− n

p −β( n
p +β)1− 1

p

‖ f ‖Lp (Rn )

 (78)

for all r,R > 0 and all f ∈C 0,α
loc (Rn)∩Lp (Rn), where

cn,p :=


max

{
nωn , (nωn)1− 1

p
(
1− 1

p

)1− 1
p

}
if p ∈ (1,+∞),

max{nωn ,1} if p = 1,

nωn if p =+∞.

(79)

Moreover, for β ∈ (0,α) and f ∈C 0,α(Rn)∩Lp (Rn), we have ∇β f ∈C 0
b(Rn ;Rn) and

‖∇β f ‖L∞(Rn ;Rn ) ≤ cn,p µn,β
αp +n

(α−β)(βp +n)

(
n

p
+β

) α−β
αp+n ‖ f ‖

p(α−β)
αp+n

Lp (Rn ) [ f ]
βp+n
αp+n

C 0,α(Rn )
, (80)

where cn,p is as in (79).
Finally, if p <+∞ and f ∈C 0,α

loc (Rn)∩Lp (Rn), then ∇0 f is well defined and belongs to C 0(Rn ;Rn),
(80) holds for β= 0, for all bounded open sets U ⊂Rn we have

lim
β→0+

‖∇β f −∇0 f ‖L∞(U ;Rn ) = 0, (81)

and (81) holds for U =Rn if f ∈C 0,α(Rn)∩Lp (Rn) and p <+∞.

Proof. We divide the proof in four steps.

Step 1: proof of (78). Let α ∈ (0,1], p ∈ [1,+∞], f ∈ C 0,α
loc (Rn)∩Lp (Rn), β ∈ (0,α) and x ∈ Rn . We

notice that, for all ε ∈ (0,1),∫
{|y |>ε}

y f (y +x)

|y |n+β+1
dy =

∫
{ε<|y |≤1}

y( f (y +x)− f (x))

|y |n+β+1
dy +

∫
{|y |>1}

y f (y +x)

|y |n+β+1
dy,

so that we can pass to the limit in the right hand side as ε→ 0+ thanks to Hölder’s continuity and
the fact that y 7→ |y |−n−β ∈ Lq (Rn \ B1) for all q ∈ [1,+∞]. This shows that ∇β f (x) is well defined
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for all x ∈Rn . If p ∈ [1,+∞), this argument works also in the caseβ= 0. Now letα ∈ (0,1],β ∈ [0,α),
p ∈ (1,+∞), f ∈C 0,α

loc (Rn)∩Lp (Rn) and x ∈Rn . By Hölder’s inequality we can estimate∣∣∣∣∫
{|y |>ε}

y f (y +x)

|y |n+β+1
dy

∣∣∣∣≤ ∫
{ε<|y |<r }

| f (y +x)− f (x)|
|y |n+β dy +

∫
{|y |≥r }

| f (y +x)|
|y |n+β dy

≤ [ f ]C 0,α(Br (x))

∫
{|y |<r }

dy

|y |n+β−α +‖ f ‖Lp (Rn )

(∫
{|y |≥r }

dy

|y |(n+β)q

) 1
q

≤ nωnrα−β

α−β [ f ]C 0,α(Br (x)) +
(

nωnr n−(n+β)q

(n +β)q −n

) 1
q

‖ f ‖Lp (Rn )

for all r > ε > 0, where q = p
p−1 . Moreover, for p = 1, if f ∈ C 0,α

loc (Rn)∩L1(Rn), then an analogous
calculation shows that∣∣∣∣∫

{|y |>ε}

y f (y +x)

|y |n+β+1
dy

∣∣∣∣≤ nωnrα−β

α−β [ f ]C 0,α(Br (x)) + r−n−β ‖ f ‖L1(Rn )

for all r > ε > 0. Finally, for p = +∞, if β ∈ (0,α) and f ∈ C 0,α
loc (Rn)∩ L∞(Rn), then we similarly

obtain ∣∣∣∣∫
{|y |>ε}

y f (y +x)

|y |n+β+1
dy

∣∣∣∣≤ nωnrα−β

α−β [ f ]C 0,α(Br (x)) +
nωnr−β

β
‖ f ‖L∞(Rn )

for all r > ε> 0. Thus we obtain ∇β f ∈ L∞
loc(Rn ;Rn) for all f ∈C 0,α

loc (Rn)∩Lp (Rn) with β ∈ (0,α) and
p ∈ [1,+∞], including β= 0 if p <+∞, and (78) readily follows.

Step 2: proof of ∇β f ∈C 0(Rn ;Rn). Let us now prove that ∇β f ∈ C 0(Rn ;Rn) for any β ∈ (0,α) and
f ∈C 0,α

loc (Rn)∩Lp (Rn), where α ∈ (0,1] and p ∈ [1,+∞]. Let R > 0, r > 1, x ∈ BR , h ∈ B1, β<α′ <α
and gh(x) := f (x +h)− f (x). We notice that

[gh]C 0,α′ (BR+r ) ≤ 2[ f ]C 0,α(BR+r+|h|)|h|α−α
′
. (82)

Indeed, given x, x +h′ ∈ BR+r with |h′| ≤ |h| we have

|gh(x +h′)− gh(x)| ≤ | f (x +h +h′)− f (x +h)|+ | f (x +h′)− f (x)|
≤ 2[ f ]C 0,α(BR+r+|h|)|h′|α

≤ 2[ f ]C 0,α(BR+r+|h|)|h′|α′ |h|α−α′
.

While, in the case |h| ≤ |h′|, it holds

|gh(x +h′)− gh(x)| ≤ | f (x +h +h′)− f (x +h′)|+ | f (x +h)− f (x)|
≤ 2[ f ]C 0,α(BR+r+|h|)|h|α

≤ 2[ f ]C 0,α(BR+r+|h|)|h′|α′ |h|α−α′
,

therefore (82) easily follows. By plugging gh(x) in (78) with α′ in place of α and r > 0 we obtain

|∇β f (x +h)−∇β f (x)| ≤ cn,p µn,β

 rα
′−β

α′−β [gh]C 0,α′ (BR+r ) +
r− n

p −β( n
p +β)1− 1

p

‖gh‖Lp (Rn )


≤Cn,p,β

(
rα

′−β

α′−β |h|α−α′
[ f ]C 0,α(BR+r+|h|) + r− n

p −β‖ f ‖Lp (Rn )

)
,

where Cn,p,β > 0 is a constant depending only on n, p and β. The sought conclusion comes by
letting first h → 0 and after r →+∞.
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Step 3: proof of (80). Let α ∈ (0,1], p ∈ [1,+∞] and x ∈ Rn . If f ∈C 0,α(Rn)∩Lp (Rn), then arguing
as in Step 1 we can estimate

|∇β f (x)| ≤ cn,p µn,β

 rα−β

α−β [ f ]C 0,α(Rn ) +
r− n

p −β( n
p +β)1− 1

p

‖ f ‖Lp (Rn )

 ,

for all β ∈ (0,α), including β= 0 if p <+∞, so that (80) follows by optimizing the parameter r > 0
in the right-hand side.

Step 4: proof of (81). Let α ∈ (0,1], β ∈ (0,α), U be a bounded open set and x ∈U . If p ∈ (1,+∞),
then we can estimate

|∇β f (x)−∇0 f (x)| ≤
∣∣∣∣1− µn,β

µn,0

∣∣∣∣ |∇0 f (x)|+µn,β [ f ]C 0,α(B1(x))

∫
{|y |<1}

(
1

|y |β −1

)
dy

|y |n−α

+µn,β

∫
{|y |>1}

(
1− 1

|y |β
) | f (y +x)|

|y |n dy

≤
∣∣∣∣1− µn,β

µn,0

∣∣∣∣ ‖∇0 f ‖L∞(U ;Rn ) +
nωnβµn,β

α(α−β)
[ f ]C 0,α(U1)

+µn,β ‖ f ‖Lp (Rn )

(∫
{|y |>1}

(
1− 1

|y |β
)q 1

|y |nq dy

) 1
q

,

where q = p
p−1 and U1 := {y ∈Rn : dist(y,U ) < 1}. Since y 7→ |y |−nq ∈ L1(Rn \ B1) for all q ∈ (1,+∞),

also the last term vanishes as β→ 0+ thanks to Lebesgue’s Dominated Convergence Theorem, so
that the limit in (81) follows. If p = 1, then we can estimate the last term in the above inequality
as ∫

{|y |>1}

(
1− 1

|y |β
) | f (y +x)|

|y |n dy ≤ ‖ f ‖L1(Rn ) sup
|y |>1

1

|y |n
(
1− 1

|y |β
)

.

Since

sup
|y |>1

1

|y |n
(
1− 1

|y |β
)
= β

n
(
1+ β

n

) n
β
+1

−→ 0 as β→ 0+,

the limit in (81) follows also in this case. Finally, if f ∈ C 0,α(Rn)∩Lp (Rn) and p < +∞, then the
above estimates hold for U = Rn , so that we obtain the uniform convergence ∇β f → ∇0 f in
Rn . �

Remark 15. It is easy to see that a result analogous to Lemma 14 can be proved for the fractional
divergence operator. In particular, if ϕ ∈ C 0,α(Rn ;Rn) ∩ Lp (Rn ;Rn) for some α ∈ (0,1] and p ∈
[1,+∞], then divβϕ ∈ L∞(Rn) for all β ∈ (0,α) with

‖divβϕ‖L∞(Rn ) ≤ cn,p µn,β
αp +n

(α−β)(βp +n)

(
n

p
+β

) α−β
αp+n ‖ϕ‖

p(α−β)
αp+n

Lp (Rn ;Rn ) [ϕ]
βp+n
αp+n

C 0,α(Rn ;Rn )
,

where cn,p > 0 is the constant defined in (79). If p < +∞, then divβϕ ∈ L∞(Rn) for all β ∈ [0,α),
the above estimate holds also for β= 0 and we have

lim
β→0+

‖divβϕ−div0ϕ‖L∞(Rn ) = 0.

As an immediate consequence of Lemma 14 and Remark 15, we can show that the fractional
α-variation is lower semicontinuous as α→ 0+.

Corollary 16 (Lower semicontinuity of BV α-seminorm as α→ 0+). If f ∈ L1(Rn), then for all
open sets U ⊂Rn it holds

|D0 f |(U ) ≤ liminf
α→0+

|Dα f |(U ). (83)
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Proof. Given ϕ ∈C∞
c (U ;Rn) with ‖ϕ‖L∞(U ;Rn ) ≤ 1, thanks to Lemma 14 and Remark 15 we have∫
Rn

f div0ϕdx = lim
α→0+

∫
Rn

f divαϕdx ≤ liminf
α→0+

|Dα f |(U ),

so that (83) follows by (62). �

5.2. Strong and energy convergence of ∇α as α→ 0+

We now study the strong and the energy convergence of ∇α as α→ 0+. For the strong conver-
gence, we have the following result.

Theorem 17 (Strong convergence of ∇α as α→ 0+). The following hold.

(i) If f ∈⋃
α∈(0,1) HSα,1(Rn), then

lim
α→0+

‖∇α f −R f ‖H 1(Rn ;Rn ) = 0. (84)

(ii) If p ∈ (1,+∞) and f ∈⋃
α∈(0,1) Sα,p (Rn), then

lim
α→0+

‖∇α f −R f ‖Lp (Rn ;Rn ) = 0. (85)

Remark 18. Thanks to Corollary 8, Theorem 17(i) can be equivalently stated as

lim
α→0+

‖∇α f −R f ‖H 1(Rn ;Rn ) = 0 (86)

for all f ∈ H 1(Rn)∩⋃
α∈(0,1) W α,1(Rn).

We prove Theorem 17 in Section 5.3. For the convergence of the (rescaled) energy, we instead
have the following result.

Theorem 19 (Energy convergence of ∇α as α→ 0+). If f ∈⋃
α∈(0,1) W α,1(Rn), then

lim
α→0+

α

∫
Rn

|∇α f |dx = nωnµn,0

∣∣∣∣∫
Rn

f dx

∣∣∣∣ .

We prove Theorem 19 in Section 5.4.

5.3. Proof of Theorem 17

Before the proof of Theorem 17, we need to recall the following well-known result, see the first
part of the proof of [36, Lemma 1.60]. For the reader’s convenience and to keep the paper as self-
contained as possible, we briefly recall its simple proof.

Lemma 20. Let m ∈ N0. If f ∈ Sm(Rn), then f = div g for some g ∈ Sm−1(Rn ;Rn) (with g ∈
S (Rn ;Rn) in the case m = 0).

Proof. By means of the Fourier transform, the problem can be equivalently restated as follows:
if ϕ ∈ S (Rn) satisfies ∂aϕ(0) = 0 for all a ∈Nn

0 such that |a| ≤ m, then ϕ(ξ) = ∑n
1 ξiψi (ξ) for some

ψ1, . . . ,ψn ∈S (Rn) with ∂aψi (0) = 0 for all i = 1, . . . ,n and all a ∈Nn
0 such that |a| ≤ m−1. This can

be achieved as follows. Fixed any ζ ∈C∞
c (Rn) such that

suppζ⊂ B2 and ζ≡ 1 on B1,

we can define

ψi (ξ) := ζ(ξ)
∫ 1

0
∂iϕ(tξ)dt + 1−ζ(ξ)

|ξ|2 ξi ϕ(ξ), ξ ∈Rn ,

for all i = 1, . . . ,n. It is now easy to prove that suchψi ’s satisfy the required properties and we leave
the simple calculations to the reader. �
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Thanks to Lemma 20, we can prove the following Lp -convergence result of the fractional α-
Laplacian of suitably regular functions as α→ 0+, as well as analogous convergence results for
the fractional α-gradient.

Lemma 21. Let p ∈ [1,+∞]. If f ∈S0(Rn), then

lim
α→0+

‖(−∆)
α
2 f − f ‖Lp (Rn ) = 0. (87)

As a consequence, if p ∈ (1,+∞) and f ∈S0(Rn), then

lim
α→0+

‖∇α f −R f ‖Lp (Rn ;Rn ) = 0; (88)

if p = 1 and f ∈S∞(Rn), then

lim
α→0+

‖∇α f −R f ‖H 1(Rn ;Rn ) = 0. (89)

Proof. Let f ∈S0(Rn) be fixed. If p ∈ (1,+∞), then

‖∇α f −R f ‖Lp (Rn ;Rn ) = ‖R(−∆)
α
2 f −R f ‖Lp (Rn ;Rn ) ≤ cn,p‖(−∆)

α
2 f − f ‖Lp (Rn )

by the Lp -continuity of the Riesz transform, so that (88) is a consequence of (87). To prove (87),
given x ∈Rn we write

(−∆)
α
2 f (x) = νn,α

∫
{|h|>1}

f (x +h)− f (x)

|h|n+α dh +νn,α

∫
{|h|≤1}

f (x +h)− f (x)

|h|n+α dh,

where

νn,α = 2απ− n
2
Γ

( n+α
2

)
Γ

(−α
2

) , α ∈ (0,1),

is the constant appearing in (45). One easily sees that

lim
α→0+

νn,α

α
=− 1

nωn
. (90)

On the one hand, we can estimate∥∥∥∥νn,α

∫
{|h|≤1}

f ( ·+h)− f ( · )
|h|n+α dh

∥∥∥∥
Lp (Rn )

≤ nωnνn,α

1−α ‖∇ f ‖Lp (Rn ;Rn )

(by the Fundamental Theorem of Calculus, see [20, Proposition 9.3(iii)] for instance), so that

lim
α→0+

∥∥∥∥νn,α

∫
{|h|≤1}

f ( ·+h)− f ( · )
|h|n+α dh

∥∥∥∥
Lp (Rn )

= 0

by (90) for all p ∈ [1,+∞]. On the other hand, by Lemma 20 there exists g ∈ S (Rn ;Rn) such that
f = div g and thus we can write

νn,α

∫
{|h|>1}

f (x +h)− f (x)

|h|n+α dh = νn,α

∫
{|h|>1}

f (x +h)

|h|n+α dh − nωnνn,α

α
f (x)

= νn,α

∫
{|h|>1}

div g (x +h)

|h|n+α dh − nωnνn,α

α
f (x).

Integrating by parts, the reader can easily verify that

lim
α→0+

∥∥∥∥νn,α

∫
{|h|>1}

div g ( ·+h)

|h|n+α dh

∥∥∥∥
Lp (Rn )

= 0

for all p ∈ [1,+∞]. Hence we get

lim
α→0+

‖(−∆)
α
2 f − f ‖Lp (Rn ) = ‖ f ‖Lp (Rn ) lim

α→0+

∣∣∣1+ nωnνn,α

α

∣∣∣= 0

for all p ∈ [1,+∞], so that we obtain (87) and (88). Finally, let f ∈S∞(Rn), so that R f ∈S0(Rn ;Rn),
R(R f ) ∈S0(Rn ;Rn2

) and (−∆)
α
2 R f =∇α f . Then, we have

‖∇α f −R f ‖H 1(Rn ;Rn ) = ‖(−∆)
α
2 R f −R f ‖L1(Rn ;Rn ) +‖(−∆)

α
2 R(R f )−R(R f )‖

L1(Rn ;Rn2 )
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and thus

lim
α→0+

‖∇α f −R f ‖H 1(Rn ;Rn ) = 0

thanks (87) (which clearly holds also for vector-valued functions). Thus, we obtain (89), and the
proof is complete. �

We can now prove Theorem 17.

Proof of Theorem 17. We prove the two statements separately.

Proof of (i). Let f ∈ HSα,1(Rn). By Lemma 3, there exists ( fk )k∈N ⊂ S∞(Rn) such that fk → f
in HSα,1(Rn) as k →+∞. If β ∈ (0,α), then we can estimate

‖∇β f −R f ‖H 1(Rn ;Rn ) ≤ ‖∇β fk −R fk‖H 1(Rn ;Rn ) +‖∇β f −∇β fk‖H 1(Rn ;Rn ) +‖R f −R fk‖H 1(Rn ;Rn )

≤ ‖∇β fk −R fk‖H 1(Rn ;Rn ) + cn‖ f − fk‖
α−β
α

H 1(Rn )
‖∇α f −∇α fk‖

β
α

H 1(Rn ;Rn )

+ c ′n‖ f − fk‖H 1(Rn )

for all k ∈ N by (77) in Theorem 13(ii) and the H 1-continuity of the Riesz transform, where
cn ,c ′n > 0 are dimensional constants. Thus

limsup
β→0+

‖∇β f −R f ‖H 1(Rn ;Rn ) ≤ limsup
β→0+

‖∇β fk −R fk‖H 1(Rn ;Rn ) + c ′′n‖ f − fk‖H 1(Rn )

= c ′′n‖ f − fk‖H 1(Rn )

for all k ∈N by (89) in Lemma 21, where c ′′n = cn +c ′n . Hence (84) follows by passing to the limit as
k →+∞ and the proof of (i) is complete.

Proof of (ii). We argue as in the proof of (i). Let f ∈ Sα,p (Rn). By Proposition 2, there exists
( fk )k∈N ⊂S0(Rn) such that fk → f in Sα,p (Rn) as k →+∞. If β ∈ (0,α), then we can estimate

‖∇β f −R f ‖Lp (Rn ;Rn ) ≤ ‖∇β fk −R fk‖Lp (Rn ;Rn ) +‖∇β f −∇β fk‖Lp (Rn ;Rn ) +‖R f −R fk‖Lp (Rn ;Rn )

≤ ‖∇β fk −R fk‖Lp (Rn ;Rn ) + cn,p‖ f − fk‖
α−β
α

Lp (Rn ) ‖∇α f −∇α fk‖
β
α

Lp (Rn ;Rn )

+ c ′n,p‖ f − fk‖Lp (Rn )

for all k ∈ N by (75) in Theorem 13(i) and the Lp -continuity of the Riesz transform, where the
constants cn,p ,c ′n,p > 0 depend only on n and p. Thus

limsup
β→0+

‖∇β f −R f ‖Lp (Rn ;Rn ) ≤ limsup
β→0+

‖∇β fk −R fk‖Lp (Rn ;Rn ) + c ′′n,p‖ f − fk‖Lp (Rn )

= c ′′n,p‖ f − fk‖Lp (Rn )

for all k ∈ N by (88) in Lemma 21, where c ′′n,p = cn,p + c ′n,p . Hence (85) follows by passing to the
limit as k →+∞ and the proof of (ii) is complete. �

Remark 22 (Direct proof of (14)). The proof of (14), i.e.,

lim
α→0+

‖∇α f −R f ‖L1(Rn ;Rn ) = 0 for all f ∈ H 1(Rn)∩ ⋃
α∈(0,1)

W α,1(Rn),

immediately follows from Theorem 17(i) and Remark 18. As briefly discussed in Section 1.3, one
can directly prove (14) by combining the interpolation inequality proven in Theorem 10 with an
approximation argument as done in the proof of Theorem 17. We let the interested reader fill the
easy details.
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5.4. Proof of Theorem 19

We now pass to the proof of Theorem 19. We need some preliminaries. We begin with the
following result.

Lemma 23. Let f ∈ L1(Rn) and let R ∈ (0,+∞) be such that supp f ⊂ BR . If ε> R, then

lim
α→0+

αµn,α

∫
Rn

∣∣∣∣∫
{|y |>ε}

y f (y +x)

|y |n+α+1 dy

∣∣∣∣ dx = nωnµn,0

∣∣∣∣∫
Rn

f dx

∣∣∣∣ .

Proof. Since µn,α→µn,0 as α→ 0+, we just need to prove that

lim
α→0+

α

∫
Rn

∣∣∣∣∫
{|y |>ε}

y f (y +x)

|y |n+α+1 dy

∣∣∣∣ dx = nωn

∣∣∣∣∫
Rn

f dx

∣∣∣∣ . (91)

We now divide the proof in two steps.

Step 1. We claim that

lim
α→0+

α

∫
Rn

∣∣∣∣∫
{|y |>ε}

x f (y +x)

|x|n+α+1 dy

∣∣∣∣ dx = nωn

∣∣∣∣∫
Rn

f dx

∣∣∣∣ . (92)

Indeed, since supp f ⊂ BR , we have that∫
{|y |>ε}

x f (y +x)

|x|n+α+1 dy = 0 for all x ∈Rn such that |x + y | ≥ R for all |y | > ε.

Recalling that ε> R, we see that, for all |y | > ε,

|x| ≤ ε−R =⇒ |x + y | ≥ R (93)

and thus we can write

α

∫
Rn

∣∣∣∣∫
{|y |>ε}

x f (y +x)

|x|n+α+1 dy

∣∣∣∣ dx =α
∫

{|x|>ε−R}

∣∣∣∣∫
{|y |>ε}

x f (y +x)

|x|n+α+1 dy

∣∣∣∣ dx

=α
∫

{|x|>ε−R}

1

|x|n+α
∣∣∣∣∫

{|y |>ε}
f (y +x)dy

∣∣∣∣ dx.

Now, on the one hand, we have

α

∫
{ε−R<|x|≤ε+R}

1

|x|n+α
∣∣∣∣∫

{|y |>ε}
f (y +x)dy

∣∣∣∣dx ≤αnωn‖ f ‖L1(Rn )

∫ ε+R

ε−R

dr

rα+1 (94)

for all α ∈ (0,1). On the other hand, since

|x| > ε+R =⇒ BR ⊂ Bε(x)c ,

we have

α

∫
{|x|>ε+R}

1

|x|n+α
∣∣∣∣∫

{|y |>ε}
f (y +x)dy

∣∣∣∣ dx =α
∫

{|x|>ε+R}

1

|x|n+α
∣∣∣∣∫
Rn

f dz

∣∣∣∣ dx

= nωn

(ε+R)α

∣∣∣∣∫
Rn

f dz

∣∣∣∣ (95)

for allα ∈ (0,1). Hence, claim (92) follows by first combining (94) and (95) and then passing to the
limit as α→ 0+.

Step 2. We claim that∣∣∣∣ y

|y |n+α+1 + x

|x|n+α+1

∣∣∣∣≤ (n +3)
|x + y |

|y |n+α+1

( ε

ε−R

)n+α+1
(96)

C. R. Mathématique — 2022, 360, 589-626



618 Elia Bruè, Mattia Calzi, Giovanni E. Comi and Giorgio Stefani

for all x, y ∈ Rn such that |x| > ε−R, |y | > ε and |y + x| < R. Indeed, setting F (z) := z
|z|n+α+1 for all

z ∈Rn \ {0}, we can estimate∣∣∣∣ y

|y |n+α+1 + x

|x|n+α+1

∣∣∣∣= |F (y)−F (−x)| ≤ |y +x| sup
t∈[0,1]

|∇F |((1− t )y − t x)

≤ (n +α+2) |y +x| sup
t∈[0,1]

1

|(1− t )y − t x|n+α+1 .

Since
1

|(1− t )y − t x|n+α+1 ≤ 1

||y |− t |y +x||n+α+1

≤ 1

(|y |−R)n+α+1

≤ 1

|y |n+α+1

( |y |
|y |−R

)n+α+1

≤ 1

|y |n+α+1

( ε

ε−R

)n+α+1

for all t ∈ [0,1], claim (96) immediately follows. Now, recalling (93), we can estimate∣∣∣∣α∫
Rn

∣∣∣∣∫
{|y |>ε}

y f (y +x)

|y |n+α+1 dy

∣∣∣∣dx −α
∫
Rn

∣∣∣∣∫
{|y |>ε}

x f (y +x)

|x|n+α+1 dy

∣∣∣∣ dx

∣∣∣∣
≤α

∫
Rn

∫
{|y |>ε}

| f (y +x)|
∣∣∣∣ y

|y |n+α+1 + x

|x|n+α+1

∣∣∣∣ dy dx

=α
∫

{|x|>ε−R}

∫
{|y |>ε}

| f (y +x)|
∣∣∣∣ y

|y |n+α+1 + x

|x|n+α+1

∣∣∣∣dy dx

≤α(n +3)
( ε

ε−R

)n+α+1 ∫
{|x|>ε−R}

∫
{|y |>ε}

| f (y +x)| |y +x|
|y |n+α+1 dy dx

for all α ∈ (0,1) thanks to (96). Since

α

∫
{|y |>ε}

1

|y |n+α+1

∫
{|x|>ε−R}

| f (y +x)| |y +x|dx dy ≤αnωnR ‖ f ‖L1(Rn )

∫ ∞

ε

dr

rα+2 ,

we conclude that

limsup
α→0+

∣∣∣∣α∫
Rn

∣∣∣∣∫
{|y |>ε}

y f (y +x)

|y |n+α+1 dy

∣∣∣∣ dx −α
∫
Rn

∣∣∣∣∫
{|y |>ε}

x f (y +x)

|x|n+α+1 dy

∣∣∣∣ dx

∣∣∣∣= 0. (97)

Thus (91) follows by combining (92) with (97) and the proof is complete. �

Thanks to Lemma 23, we can prove the following result.

Lemma 24. Let f ∈ L1(Rn) and η> 0. There exists ε> 0 such that

limsup
α→0+

∣∣∣∣αµn,α

∫
Rn

∣∣∣∣∫
{|y |>ε}

y f (y +x)

|y |n+α+1 dy

∣∣∣∣ dx −nωnµn,0

∣∣∣∣∫
Rn

f dx

∣∣∣∣∣∣∣∣< η.

Proof. Let η′ > 0 be such that η = 2nωnµn,0η
′. Since f ∈ L1(Rn), we can find R > 0 such that∫

B c
R
| f |dx < η′. Let ε> R and g := f χBR , which satisfies g ∈ L1(Rn) and supp(g ) ⊂ BR . Then∣∣∣∣∫
Rn

∣∣∣∣∫
{|y |>ε}

y f (y +x)

|y |n+α+1 dy

∣∣∣∣ dx −
∫
Rn

∣∣∣∣∫
{|y |>ε}

y g (y +x)

|y |n+α+1 dy

∣∣∣∣dx

∣∣∣∣
≤

∫
{|y |>ε}

1

|y |n+α
∫
Rn

| f (y +x)− g (y +x)|dx dy

= nωn‖ f − g‖L1(Rn )

αεα
< nωn

αεα
η′.
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Since clearly ∣∣∣∣∣∣∣∣∫
Rn

f dx

∣∣∣∣− ∣∣∣∣∫
Rn

g dx

∣∣∣∣∣∣∣∣≤ ‖ f − g‖L1(Rn ) < η′,
by Lemma 23 we conclude that

limsup
α→0+

∣∣∣∣αµn,α

∫
Rn

∣∣∣∣∫
{|y |>ε}

y f (y +x)

|y |n+α+1 dy

∣∣∣∣ dx −nωn µn,0

∣∣∣∣∫
Rn

f dx

∣∣∣∣∣∣∣∣
< limsup

α→0+

∣∣∣∣αµn,α

∫
Rn

∣∣∣∣∫
{|y |>ε}

y g (y +x)

|y |n+α+1 dy

∣∣∣∣dx −nωn µn,0

∣∣∣∣∫
Rn

g dx

∣∣∣∣∣∣∣∣
+

(
nωnµn,0 +nωn lim

α→0+
µn,αε

−α
)
η′

= 2nωnµn,0η
′ = η

and the proof is complete. �

We are now ready to prove Theorem 19.

Proof of Theorem 19. Assume f ∈W β,1(Rn) for some β ∈ (0,1) and fix η> 0. By Lemma 24, there
exists ε> 0 such that

limsup
α→0+

∣∣∣∣αµn,α

∫
Rn

∣∣∣∣∫
{|y |>ε}

y f (y +x)

|y |n+α+1 dy

∣∣∣∣dx −nωnµn,0

∣∣∣∣∫
Rn

f dx

∣∣∣∣∣∣∣∣< η. (98)

Since for all α ∈ (0,β) we can estimate∣∣∣∣α∫
Rn

|∇α f |dx −nωnµn,0

∣∣∣∣∫
Rn

f dx

∣∣∣∣∣∣∣∣
≤

∣∣∣∣αµn,α

∫
Rn

∣∣∣∣∫
{|y |>ε}

y f (y +x)

|y |n+α+1 dy

∣∣∣∣dx −nωnµn,0

∣∣∣∣∫
Rn

f dx

∣∣∣∣∣∣∣∣
+αµn,α

∫
Rn

∫
{|y |≤ε}

| f (y +x)− f (x)|
|y |n+α dy dx

≤
∣∣∣∣αµn,α

∫
Rn

∣∣∣∣∫
{|y |>ε}

y f (y +x)

|y |n+α+1 dy

∣∣∣∣dx −nωnµn,0

∣∣∣∣∫
Rn

f dx

∣∣∣∣∣∣∣∣+αµn,α ε
β−α[ f ]W β,1(Rn ),

by (98) we have

limsup
α→0+

∣∣∣∣α∫
Rn

|∇α f |dx −nωnµn,0

∣∣∣∣∫
Rn

f dx

∣∣∣∣∣∣∣∣< η
and the conclusion follows passing to the limit as η→ 0+. �

Appendix A. C∞
c (Rn) is dense in Sα,p (Rn)

In this section, we prove Theorem 25 below. This result completely answers a question left open
in [28, Section 3.9].

Theorem 25 (Approximation by C∞
c functions in Sα,p ). Let α ∈ (0,1) and p ∈ [1,+∞). The set

C∞
c (Rn) is dense in Sα,p (Rn).

For the proof of Theorem 25, we need some preliminary results. We begin with the following
integration-by-parts formula.

Lemma 26. Let p, q ∈ (1,+∞) be such that 1
p + 1

q = 1. If f ∈ Lp (Rn) and ϕ ∈ Lq (Rn ;Rn), then∫
Rn

f div0ϕdx =−
∫
Rn
ϕ ·∇0 f dx. (99)
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Proof. Integrating by parts and applying Fubini’s Theorem, formula (99) is easily proved for all
f ∈C∞

c (Rn) and ϕ ∈C∞
c (Rn ;Rn). Since the real-valued bilinear functionals

( f ,ϕ) 7→
∫
Rn

f div0ϕdx, ( f ,ϕ) 7→
∫
Rn
ϕ ·∇0 f dx,

are both continuous on Lp (Rn)×Lq (Rn ;Rn) by Hölder’s inequality and the Lp -continuity of Riesz
transform, the conclusion follows by a simple approximation argument. �

Remark 27. As an immediate consequence of Lemma 26 and the Lp -continuity of the Riesz
transform, we can conclude that the space

S0,p (Rn) := {
f ∈ Lp (Rn) : ∇0 f ∈ Lp (Rn ;Rn)

}
actually coincides with Lp (Rn) for all p ∈ (1,+∞), with ∇0 f = R f . In addition, Theorem 6 easily
yields the identity BV 0(Rn) = S0,1(Rn) = H 1(Rn). Arguing in an analogous fashion, we can see
that, for all p ∈ (1,+∞),

BV 0,p (Rn) := {
f ∈ Lp (Rn) : D0 f ∈M (Rn ;Rn)

}
coincides with the space {

f ∈ Lp (Rn) : R f ∈ Lp (Rn ;Rn)∩L1(Rn ;Rn)
}
.

Adopting the notation introduced in [70, Equation (1.9)], for α ∈ (0,1) and f ∈S (Rn), let

Dα f (x) :=
∫
Rn

| f (y +x)− f (y)|
|y |n+α dy

for all x ∈Rn . Note that |(−∆)
α
2 f (x)| ≤ |νn,α|Dα f (x) for all α ∈ (0,1), f ∈S (Rn) and x ∈Rn . In the

following result, we prove that the operator Dα naturally extends to a continuous operator from
W 1,p (Rn) to Lp (Rn).

Lemma 28. Let α ∈ (0,1) and p ∈ [1,+∞]. The operator Dα : W 1,p (Rn) → Lp (Rn) is well defined
and satisfies ∥∥Dα f

∥∥
Lp (Rn ) ≤

2nωn

α(1−α)
‖ f ‖αLp (Rn )‖∇ f ‖1−α

Lp (Rn ;Rn ) (100)

for all f ∈W 1,p (Rn).

Proof. Let f ∈W 1,p (Rn) and r > 0. We can estimate

Dα f (x) ≤
(∫

{|y |<r }

| f (y +x)− f (x)|
|y |n+α dy +

∫
{|y |≥r }

| f (y +x)− f (x)|
|y |n+α dy

)
for a.e. x ∈Rn . By Minkowski’s integral inequality, on the one hand we have∥∥∥∥∫

{|y |<r }

| f (y +· )− f ( · )|
|y |n+α dy

∥∥∥∥
Lp (Rn )

≤
∫

{|y |<r }

‖ f (y +· )− f ( · )‖Lp (Rn )

|y |n+α dy

≤ ‖∇ f ‖Lp (Rn ;Rn )

∫
{|y |<r }

dy

|y |n+α−1

= nωnr 1−α

1−α ‖∇ f ‖Lp (Rn ;Rn )

while, on the other hand, we have∥∥∥∥∫
{|y |≥r }

| f (y +· )− f ( · )|
|y |n+α dy

∥∥∥∥
Lp (Rn )

≤
∫

{|y |<r }

‖ f (y +· )‖Lp (Rn ) +‖ f ‖Lp (Rn )

|y |n+α dy

= 2‖ f ‖Lp (Rn )

∫
{|y |≥r }

dy

|y |n+α

= 2nωnr−α

α
‖ f ‖Lp (Rn ).
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Hence ∥∥Dα f
∥∥

Lp (Rn ) ≤ 2nωn

(
r 1−α

1−α ‖∇ f ‖Lp (Rn ;Rn ) + r−α

α
‖ f ‖Lp (Rn )

)
for all r > 0. Thus (100) follows by choosing r = ‖ f ‖Lp (Rn )

‖∇ f ‖Lp (Rn ;Rn )
and the proof is complete. �

In the following result, we recall the self-adjointness property the fractional Laplacian.

Lemma 29. Letα ∈ (0,1) and p, q ∈ [1,+∞] such that 1
p + 1

q = 1. If f ∈W 1,p (Rn) and g ∈W 1,q (Rn),
then ∫

Rn
f (−∆)

α
2 g dx =

∫
Rn

g (−∆)
α
2 f dx. (101)

Proof. Formula (101) is well known for f , g ∈S (Rn) and can be proved by exploiting Functional
Calculus or by directly using the definition of (−∆)

α
2 for instance. Since the real-valued functional

( f , g ) 7→
∫
Rn

f (−∆)
α
2 g dx

is bilinear and continuous on Lp (Rn)×W 1,q (Rn ;Rn) by Hölder’s inequality and Lemma 28 above,
the conclusion follows by a simple approximation argument or p, q ∈ (1,+∞). The case p, q ∈
{1,+∞} follows by Fubini’s theorem, thanks to the fact that the function

(x, y) → f (x)
g (x + y)− g (x)

|y |n+α

belongs to L1(Rn ×Rn) if ( f , g ) ∈ L1(Rn)×W 1,∞(Rn) or ( f , g ) ∈ L∞(Rn)×W 1,1(Rn). The details are
left to the reader. �

We are now ready to prove the main result of this section.

Proof of Theorem 25. The density of C∞
c (Rn) in Sα,1(Rn) was already proved in [28, Theo-

rem 3.23], so we can restrict our attention to the case p > 1 without loss of generality. We divide
the proof in two steps.

Step 1. Let f ∈ Sα,p (Rn) and assume f ∈W 1,p (Rn)∩Lipb(Rn). Givenϕ ∈C∞
c (Rn ;Rn), we can write

divαϕ= (−∆)
α
2 div0ϕ with div0ϕ ∈ Lipb(Rn)∩W 1,q (Rn), so that∫

Rn
f (−∆)

α
2 div0ϕdx =

∫
Rn

(−∆)
α
2 f div0ϕdx

for all ϕ ∈ C∞
c (Rn ;Rn) by Lemma 29. Since (−∆)

α
2 f ∈ Lp (Rn) thanks to Lemma 28, by Lemma 26

we have ∫
Rn

(−∆)
α
2 f div0ϕdx =−

∫
Rn
ϕ ·∇0(−∆)

α
2 f dx

for allϕ ∈C∞
c (Rn ;Rn). We thus get that∇α f =∇0(−∆)

α
2 f for all f ∈ Sα,p (Rn)∩W 1,p (Rn)∩Lipb(Rn),

so that

c1‖(−∆)
α
2 f ‖Lp (Rn ) ≤ [ f ]Sα,p (Rn ) ≤ c2‖(−∆)

α
2 f ‖Lp (Rn )

for all f ∈ Sα,p (Rn) ∩W 1,p (Rn) ∩ Lipb(Rn), where c1,c2 > 0 are two constants depending only
on p > 1. Thus, recalling the equivalent definition of the space Lα,p (Rn) given in (48), we conclude
that

Sα,p (Rn)∩W 1,p (Rn)∩Lipb(Rn) ⊂ Lα,p (Rn)

with continuous embedding.
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Step 2. Now fix f ∈ Sα,p (Rn) and let (%ε)ε>0 ⊂C∞
c (Rn) be a family of standard mollifiers (see [28,

Section 3.3] for a definition). Setting fε := f ∗ %ε for all ε > 0, arguing as in the proof of [28,
Theorem 3.22] we have that fε → f in Sα,p (Rn) as ε→ 0+. By Young’s inequality, we have that
fε ∈ Sα,p (Rn)∩W 1,p (Rn)∩Lipb(Rn) for all ε > 0. Thus Sα,p (Rn)∩W 1,p (Rn)∩Lipb(Rn) is a dense
subset of Sα,p (Rn). Hence, by Step 1, we get that also Lα,p (Rn) is a dense subset of Sα,p (Rn). Since

Lα,p (Rn) = Sα,p
0 (Rn) =C∞

c (Rn)
‖·‖Sα,p (Rn ) (see [66, Theorem 1.7]), the conclusion follows. �

Appendix B. Some properties of Sα,p (Rn)

In this section, we collect some additional properties of the space Sα,p (Rn). We begin with the
following result, whose proof is very similar to the one of [28, Proposition 3.3] and is left to the
reader.

Proposition 30. Let α ∈ (0,1) and p ∈ [1,+∞). If ( fk )k∈N ⊂ Sα,p (Rn) is such that

liminf
k→+∞

‖∇α fk‖Lp (Rn ;Rn ) <+∞
and fk → f in Lp (Rn) as k →+∞, then f ∈ Sα,p (Rn) with

‖∇α f ‖Lp (U ;Rn ) ≤ liminf
k→+∞

‖∇α fk‖Lp (U ;Rn ) (102)

for any open set U ⊂Rn .

The following result provides an Lp -estimate on translations of functions in Sα,p (Rn). It can
be stated by saying that the inclusion Sα,p (Rn) ⊂ Bα

p,∞(Rn) is continuous, where Bα
p,q (Rn) is the

Besov space, see [45, Chapter 14]. For a similar result in the W α,p (Rn) space, we refer the reader
to [75].

Thanks to Corollary 1, this result can be derived from the analogous result already known for
functions in Lα,p (Rn). However, the estimate in (103) provides an explicit constant (independent
of p) that may be of some interest. The proof of Proposition 31 below can be easily established
following the one of [28, Proposition 3.14](and exploiting Minkowski’s integral inequality and
Theorem 25) and we leave it to the reader.

Proposition 31. Let α ∈ (0,1) and p ∈ [1,+∞). If f ∈ Sα,p (Rn), then

‖ f ( ·+ y)− f ( · )‖Lp (Rn ) ≤ γn,α |y |α ‖∇α f ‖Lp (Rn ;Rn ) (103)

for all y ∈Rn , where γn,α > 0 is as in [28, Proposition 3.14].

A similar result holds for spaces BV α(Rn), indeed from [28, Proposition 3.14], one immediately
deduces that the inclusion BV α(Rn) ⊂ Bα

1,∞(Rn) holds continuously for all α ∈ (0,1). The next
result shows that this inclusion is actually strict whenever n ≥ 2.

Theorem 32 (Bα
1,∞(Rn)\BV α(Rn) 6=∅ for n ≥ 2). Letα ∈ (0,1) and n ≥ 2. The inclusion BV α(Rn) ⊂

Bα
1,∞(Rn) is strict.

Proof. By [28, Theorem 3.9], we just need to prove that Bα
1,∞(Rn)\L

n
n−α (Rn) 6=∅. Let η1 ∈C∞

c (Rn)
be as in (63) and (64), and let f (x) = η1(x)|x|α−n for all x ∈ Rn . On the one side, we clearly have
f ∉ L

n
n−α (Rn). On the other side, for all h ∈Rn with |h| < 1, we can estimate∫

Rn
| f (x +h)− f (x)|dx ≤

∫
{|x|>2|h|}

∣∣η1(x +h)|x +h|α−n −η1(x)|x|α−n∣∣dx +2
∫

{|x|<3|h|}
η1(x)|x|α−n dx

≤C |h|
∫

{|x|>2|h|}
|x|α−n−1 dx +C

∫
{|x|<3|h|}

|x|α−n dx

=C |h|
∫ +∞

2|h|
rα−2 dr +C

∫ 3|h|

0
rα−1 dr =C |h|α,
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where C > 0 is a constant depending only on n and α (that may vary from line to line). Thus
f ∈ Bα

1,∞(Rn) and the conclusion follows. �

We conclude with the following result which, again, can be derived from the theory of Bessel
potential spaces. We state it here since our distributional approach provides explicit constants
(independent of p) in the estimates that may be of some interest. The proof is very similar to the
one of [27, Proposition 3.12] and we leave it to the interested reader.

Proposition 33 (Sβ,p (Rn) ⊂ Sα,p (Rn) for 0 < β < α < 1). Let 0 < β < α < 1 and p ∈ (1,+∞). If
f ∈ Sα,p (Rn), then f ∈ Sβ,p (Rn) with

‖∇β f ‖Lp (A;Rn ) ≤
nωnµn,1+β−α

n +β−α

(
rα−β

α−β ‖∇α f ‖Lp (Ar ;Rn ) + cn,α
r−β

β
‖ f ‖Lp (Rn )

)
(104)

for any r > 0 and any open set A ⊂Rn , where Ar := {
x ∈Rn : dist(x, A) < r

}
and cn,α > 0 is a constant

depending only on n and α. In particular, we have

‖∇β f ‖Lp (Rn ;Rn ) ≤ cn,α
µn,1+β−α

β(α−β)(n +β−α)
‖∇α f ‖β/α

Lp (Rn ;Rn )‖ f ‖(β−α)/α
Lp (Rn ) , (105)

where cn,α > 0 is a constant depending only on n and α. In addition, if p ∈
(
1, n

α−β
)

and q =
np

n−(α−β)p , then

∇β f = Iα−β∇α f a.e. in Rn (106)

and ∇β f ∈ Lq (Rn ;Rn).

Appendix C. Continuity properties of the map α 7→ ∇α

Here we prove the following continuity properties of the fractional gradient operator.

Theorem 34 (Continuity properties of α 7→ ∇α). Let α ∈ (0,1] and p ∈ [1,+∞).

(i) If f ∈ BV α(Rn), then the function

(0,α) 3β 7→ ∇β f ∈ L1(Rn ;Rn)

is continuous. If f ∈ BV α(Rn)∩H 1(Rn), then we also have the continuity at β= 0.
(ii) If f ∈ Sα,p (Rn), then the function

(0,α] 3β 7→ ∇β f ∈ Lp (Rn ;Rn)

is continuous. If p > 1, then we also have the continuity at β= 0.

Proof. We prove the two statements separately.

(i). Let f ∈ BV α(Rn) be fixed. By [28, Theorem 3.32], we know that f ∈ W γ,1(Rn) for all γ ∈
(0,α). Hence the claimed continuity follows by combining [27, Lemma 5.1 and Remark 5.2]. If
f ∈ BV α(Rn)∩H 1(Rn) the claimed conclusion follows from Remark 22.

(ii). The continuity at the boundary points α = 0 and α = 1 is already proved in Theorem 17(ii)
and [27, Theorem 4.10] respectively, so we can assume α ∈ (0,1). We can further assume p >
1 since, thanks to the continuous embedding Sα,1(Rn) ⊂ BV α(Rn) established in [28, Theo-
rem 3.25], the case p = 1 is already proved in (i). If f ∈ Lipc (Rn), then one can prove that
∇β f →∇α f in Lp (Rn ;Rn) asβ→αwith the strategy adopted in [27, Section 5.1] up to some minor
modifications that we leave to the interested reader. For a general f ∈ Sα,p (Rn), the claimed con-
tinuity follows from Theorem 25 and Theorem 13(i) arguing as in the proof of Theorem 13(i). �
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