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Abstract. A result of Gluck is that any finite group G has an abelian subgroup A such that |G : A| is bounded
by a polynomial function of the largest irreducible character degree of G . Moretó presented a variation of this
result that looks at the number of prime factors of the irreducible character degrees and obtained an almost
quadratic bound. The author improved the result of Moretó to almost linear. In this note, we further improve
the bound, and also study the related problem on conjugacy class sizes.
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1. Introduction

Let G be a finite group, F(G) be the Fitting subgroup of G , and denote by b(G) = max{ψ(1) | ψ ∈
Irr(G)} the largest degree of an irreducible character of G . Gluck proved in [6] that any finite group
G has an abelian subgroup A such that |G : A| is bounded by a polynomial function of b(G). For
solvable groups, Gluck showed that |G : F(G)| ≤ b(G)13/2 and conjectured that |G : F(G)| ≤ b(G)2.
This is a well-known conjecture for solvable groups.

In more recent work, Moretó [8] explored a different notion of “large”. The obvious meaning
for the word “large” refers to the absolute value of an integer n. The meaning that Moretó
considered involves the prime factorization of n; n is “large” if it has many prime divisors
(counting multiplicities). Given an integer n = pa1

1 · · ·pat
t as a product of powers of different

primes, we define ω(n) = a1 + ·· · + an and ωpi (n) = ai . Let G be a finite group, we use Irr(G)
to denote the set of complex irreducible characters of G and cl(G) to denote the set of conjugacy
classes of G . We set ω(G) = max{ω(χ(1)) |χ ∈ Irr(G)} and ωcl (G) = max{ω(|C |) |C ∈ cl(G)}.

Moretó [8] proved the following variation of the theorem of Gluck. In this paper, the base of
the log will always be 2.
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Theorem 1. There exist (universal) constants D1 and D2 such that if G is a non-abelian finite
group then G has an abelian subgroup A satisfying

ω(|G : A|) ≤ D1ω(G)2 logω(G)+D2.

Moretó speculated that a linear bound might exist. In [12], the author improved the bound in
Theorem 1 to almost linear.

Theorem 2. There exists a (universal) constant D such that G has an abelian subgroup A satisfying
ω(|G : A|) ≤ Dω(G) logω(G) when ω(G) > 1.

In this paper, we first strengthen Theorem 2.

Theorem 3. There exist (universal) constants D3 and D4 such that G has an abelian subgroup A
satisfying ω(|G : A|) ≤ D3ω(G)(loglog(ω(G))+D4) when ω(G) > 1.

After this, we also study the related question about conjugacy classes.

Theorem 4. There exist (universal) constants D5 and D6 such that ω(|G : F(G)|) ≤ D5ωcl (G)
(loglog(ωcl (G))+D6) when ωcl (G) > 1.

2. Preliminary Results

Lemma 5. Let N be a normal subgroup of G.

(1) If x ∈ N , then |xN | divides |xG |.
(2) If x ∈G, then |(xN )G/N | divides |xG |.

Lemma 6. Let G be a finite simple group. Then ω(|Aut(G)|) ≤ 2ω(|G|).

Proof. This is [8, Lemma 2.7]. �

Lemma 7. Let n ≥ 2 be a positive integer. Thenω(n!) ≤ 2n(log(logn)+C ) for some fixed constant C .

Proof. This is a standard result in number theory. We have

ωp (n!) =

⌊
logp n

⌋∑
k=1

⌊
n

pk

⌋
≤

∞∑
k=1

⌊
n

pk

⌋
≤ n

p −1
≤ 2n

p
.

Hence by [5], we have

ω(n!) ≤ 2n
∑

p ≤n

1

p
≤ 2n · (loglogn +C

)
.

�

Lemma 8. There exist (universal) constants C1 and C2 such that if G is a nonabelian simple group,
then ω(|G|) ≤C1ω(G)(loglogω(G)+C2).

Proof. Let G be a finite simple group which is not an alternating group, then ω(|G|) ≤ 5ω(G)
by [8, Lemmas 2.2, 2.3, 2.4].

Let G be an alternating group of degree n ≥ 5. Note that ω(|G|) =ω(n!/2). Since ω2(n!) ≥ n
2 , we

have 2ω(G) ≥ω2(n!) ≥ n
2 by [4, Lemma 1.2] (for the exceptional cases in the table one may verify

this by a direct calculation). By Lemma 7, we have

ω(|G|) ≤ 8ω(G) · (log
(
log4ω(G)

)+C
)

.

We note that ω(G) ≥ 2 since G is a nonabelian simple group. Thus,

ω(|G|) ≤ 8ω(G) · (log
(
logω(G)

)+C +2
)

.

We may choose C1 = 8, C2 =C +2 and the result follows. �
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Lemma 9. The alternating groups Altn of degree n ≥ 5 has conjugacy classes cl1 and cl2 such that
|Altn | | |cl1||cl2|.
Proof. For n = 5,6, this can be checked by a direct calculation.

For the case when n ≥ 7, set α= (1,2, . . . ,n) and β= (1,2, . . . , n −2) if n is odd. Then,

1

2

∣∣αSymn
∣∣= 1

2
(n)!/(n)

∣∣∣ ∣∣∣αAltn

∣∣∣
and

1

2

∣∣βSymn
∣∣= 1

2
(n)!/(2(n −2))

∣∣∣ ∣∣∣βAltn

∣∣∣ .

Since 2(n −2)n | 1
2 (n)!, we have 1

2 (n)!||αAltn | · |βAltn |, and the result follows.

Set α= (1,2, . . . , n −1) and β= (1,2, . . . , n −3) if n is even. Then,

1

2

∣∣αSymn
∣∣= 1

2
(n)!/(n −1)

∣∣∣ ∣∣∣αAltn

∣∣∣
and

1

2

∣∣βSymn
∣∣= 1

2
(n)!/(3(n −3))

∣∣∣ ∣∣∣βAltn

∣∣∣ .

Since 3(n −3)(n −1) | 1
2 (n)!, we have 1

2 (n)!||αAltn | · |βAltn |, and the result follows. �

Theorem 10. Let S 6= 2F4(2)′ be a simple group of Lie type. There exist semisimple elements
s1, s2 ∈ S such that |sS

1 ||sS
2 | is divisible by |S|.

Proof. The case S = PSL2(5) can be checked directly using [2] for instance. For S = PSL2(q) with
q > 5, it is well known that S has a class of size q(q +1) and another of size q(q −1) (see [3]), and
we are done. We therefore may assume that S 6= PSL2(q) from now on.

Let G be a simple algebraic group of simply connected type and F : G → G be a Steinberg
endomorphism such that S = Ḡ =G/Z with G := GF and Z := Z(G). For g ∈G , let g denote by the
image of g in S under the natural projection τ : G → S.

Let g ∈ G and denote Cg the preimage of CG (g ) under τ. Following [1, § 4.2], we consider
the map Tg : Cg → Z by h 7→ [h, g ] := h−1g−1hg . It is easy to show that Tg is in fact a group
homomorphism, and hence it follows that∣∣CG

(
g
)∣∣ |Z | = ∣∣Cg

∣∣= ∣∣CG (g )
∣∣ ∣∣Im(

Tg
)∣∣ .

In particular, |CG (g )| divides |CG (g )|, and therefore, it suffices to prove that there exist semisimple
elements g1, g2 ∈G such that |S| is divisible by |CG (g1)||CG (g2)|.

First, we consider the case when G is of exceptional type. Centralizers of semisimple
elements in such group are well known, see [7] for instance. One then can easily find the
required semisimple elements g1 and g2 such that |CG (g1)||CG (g2)| divides |S|. As an example,
the group G = E8(q) has two elements whose centralizers have orders Φ1(q)Φ2(q)Φ3(q)Φ5(q)
and Φ1(q)Φ2(q)Φ6(q)Φ10(q), where Φk (q) denotes the kth cyclotomic polynomial evaluated at
q , and thus they satisfy the desired condition. It remains to consider classical groups of rank at
least 2. We will produce the required semisimple elements g1, g2 ∈G using known knowledge on
the structure of semisimple elements in finite classical groups.

Let S = PSLn(q) with n ≥ 3. Using [10, Lemma 3.2], we can find g1 ∈ G = SLn(q) such that
CGLn (q)(g1) ∼= GL1(qn) and |CG (g1)| = (qn −1)/(q−1). (Here the centralizer is in fact a Coxter torus
of G .) Also, we can find g2 so that |CG (g2)| = qn−1 −1.

Let S = PSUn(q) with n ≥ 3. By [10, Lemma 3.3], we know that the centralizer of a semisimple
element in GUn(q) is a direct product of groups of the forms GLm(q2k ) and GUm(q2k−1) for
k ∈ Z≥0. Therefore we may choose g1 and g2 in SUn(q) such that the orders of their centralizers
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are (qn +1)/(q +1) and (qn−2 +1)(q −1) when n is odd and qn−1 +1 and (qn −1)/(q +1) when n
is even.

Let S = PSp2n(q) or Ω2n+1(q) with n ≥ 2. By [9, Lemmas 2.2 and 2.4], there exist semisimple
elements g1, g2 ∈ G such that CG (g1) = GL1(qn) and CG (g2) = GU1(qn), so that |S| is divisible by
|CG (g1)||CG (g2)|.

Lastly, let S = PΩε
2n(q) with n ≥ 4 and ε = ±. Then G = P(COε

2n(q))0. By [9, Lemmas 2.3 and
2.5], there are g1, g2 ∈ G such that |CG (g1)| = qn − ε1 and |CG (g2)| = (qn−1 + ε1)(q +1). The proof
of Theorem 10 is complete. �

Theorem 11. Let S be a nonabelian simple group. There exist two elements s1, s2 ∈ S such that
|sS

1 ||sS
2 | is divisible by |S|.

Proof. The sporadic groups can be checked by using [2]. The other cases follow from Lemma 9
and Theorem 10. �

3. Main Results

We first improve the main result of [12].

Proposition 12. Assume that N/G where N = L1× . . . ×Lm is the product of m finite non-abelian
simple groups Li permuted transitively by G. Let K =⋂

i NG (Li ). Then ω(|G|) ≤ 2m(loglogm+C )+
2ω(|N |).

Proof. We observe that G/K is a permutation group on m letters and K /N ≤ Out(L1) × . . . ×
Out(Lm). Then the result follows from Lemma 7 and Lemma 6. �

Proposition 13. Let G be a group with no non-trivial solvable normal subgroup. Then ω(|G|) ≤
(2+2C1)ω(F∗(G))(loglogω(F∗(G))+C2).

Proof. The generalized Fitting subgroup F∗(G) = E1 ×E2 × ·· ·×En is a direct product of n non-
abelian simple groups on which G acts faithfully by conjugation.

Let K0 = G , {E11,E12, . . . , E1m1 } be an orbit of K0 on the set of simple direct factors of F∗(G),
and set L1 = E11 ×E12 × ·· ·×E1m1 . Let K1 = CK0 (L1), {E21,E22, . . . , E2m2 } be an orbit of K1 on the
set of simple direct factors of F∗(G), and set L2 = E21 ×E22 × ·· · ×E2m2 . Let K2 = CK1 (L2), and
inductively, we may define L3,K3 . . . Lt ,Kt where Kt = 1.

Clearly F∗(G) = L1 × L2 × ·· · × Lt . We know that Ki−1/Ki acts transitively and faithfully on
Li where i = 1, . . . , t and Li ∩ Ki = 1. Thus by Proposition 12, we have that ω(|Ki−1/Ki |) ≤
2mi (loglogmi +C )+2ω(|Li |).

Thus

ω(|G|) ≤ω (|K0/K1|)+·· ·+ω (|Kt−1/Kt |) ≤ 2
t∑

i=1
mi

(
loglogmi +C

)+2
t∑

i=1
ω (|Li |) .

Since n = m1 +·· ·+mt , we have

ω(|G|) ≤ 2n
(
loglogn +C

)+2ω
(∣∣F∗(G)

∣∣) .

Since F∗(G) is a direct product of n simple groups, ω(F∗(G)) ≥ n. By Lemma 8, we have

ω(|G|) ≤ (2+2C1)ω
(
F∗(G)

)(
loglogω

(
F∗(G)

)+C2
)

. �

We now prove Theorem 3.

Proof. Let T be the maximal solvable normal subgroup of G . Then there exists an abelian
subgroup A of T such that ω(|T : A|) ≤ 19ω(T ) ≤ 19ω(G) by [12, Theorem 1.3].
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Let Ḡ =G/T , and we have that

ω
(∣∣Ḡ∣∣)≤ (2+2C1)ω

(
F∗ (

Ḡ
))(

loglogω
(
F∗ (

Ḡ
))+C2

)≤ (2+2C1)ω(G)
(
loglogω(G)+C2

)
by Proposition 13.

Thus ω(|G : A|) =ω(|Ḡ|)+ω(|T : A|) ≤ D3ω(G)(loglog(ω(G))+D4) for some fixed constants D3

and D4. �

We now study the related problem on class sizes. We would expect a similar result would hold.
However, as the extra-special group shows, one cannot have a bound by just moduloing out an
abelian subgroup. On the other hand, if we replace an abelian subgroup by the Fitting subgroup,
we will get something along the same line.

Proposition 14. Let G be a finite solvable group. Then ω(|G : F(G)|) ≤ 15ωcl (G).

Proof. Since G is solvable, then there exist 15 conjugacy classes cl1, . . . , cl15 such that |G : F(G)|
divides |cl1| · · · |cl15| by [11, Theorem 3.5]. Thus we have ω(|G : F(G)|) ≤ 15ωcl (G). �

Proposition 15. Let G be a group with no non-trivial solvable normal subgroup. Then ω(|G|) ≤
2ωcl (F∗(G))(loglogωcl (F∗(G))+C2 +2).

Proof. The generalized Fitting subgroup F∗(G) = E1 ×E2 × ·· ·×En is a direct product of n non-
abelian simple groups on which G acts faithfully by conjugation.

Let K0 = G , {E11,E12, . . . , E1m1 } be an orbit of K0 on the set of simple direct factors of F∗(G),
and set L1 = E11 ×E12 × ·· · ×E1m1 . Let K1 = CK0 (L1), {E21,E22, . . . , E2m2 } be an orbit of K1 on the
set of simple direct factors of F∗(G), and set L2 = E21 ×E22 × ·· · ×E2m2 . Let K2 = CK1 (L2), and
inductively, we may define L3,K3 . . . Lt ,Kt where Kt = 1.

Clearly F∗(G) = L1 × L2 · · · × Lt . We know that Ki−1/Ki acts transitively and faithfully on Li

where i = 1, . . . , t and Li ∩Ki = 1. Thus by Proposition 12, we have that

ω (|Ki−1/Ki |) ≤ 2mi
(
loglogmi +C

)+2ω (|Li |) .

Thus

ω(|G|) ≤ω (|K0/K1|)+·· ·+ω (|Kt−1/Kt |) ≤ 2
t∑

i=1
mi

(
loglogmi +C

)+2
t∑

i=1
ω (|Li |) .

Since n = m1 +·· ·+mt , we have

ω(|G|) ≤ 2n
(
loglogn +C2

)+2ω
(∣∣F∗(G)

∣∣) .

Since F∗(G) is a direct product of n simple groups, ωcl (F∗(G)) ≥ n. By Theorem 11, we have
ω(|F∗(G)|) ≤ 2ωcl (F∗(G)). Thus,

ω(|G|) ≤ 2ωcl
(
F∗(G)

)(
loglogωcl

(
F∗(G)

)+C2 +2
)

.

�

We now prove Theorem 4.

Proof. Let T be the maximal solvable normal subgroup of G . Then ω(|T : F(G)|) ≤ 15ωcl (T ) ≤
15ωcl (G) by Proposition 14.

Let Ḡ =G/T , and we have that

ω(|Ḡ|) ≤ 2ωcl
(
F∗ (

Ḡ
))(

loglogωcl
(
F∗ (

Ḡ
))+C2 +2

)≤ 2ωcl (G)
(
loglogωcl (G)+C2 +2

)
by Proposition 15.

Thus ω(|G : F(G)|) = ω(|Ḡ|) +ω(|T : F(G)|) ≤ D5ωcl (G)(loglog(ωcl (G)) + D6) for some fixed
constants D5 and D6. �
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