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Abstract. The strength of a homogeneous polynomial (or form) is the smallest length of an additive decom-
position expressing it whose summands are reducible forms. Using polynomial functors, we show that the
set of forms with bounded strength is not always Zariski-closed. More specifically, if the ground field is alge-
braically closed, we prove that the set of quartics with strength ≤ 3 is not Zariski-closed for a large number of
variables.
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1. Introduction

In [1], Ananyan and Hochster defined the notion of strength of a polynomial to solve the famous
conjecture by Stillman on the existence of a uniform bound, independent on the number of vari-
ables, for the projective dimension of a homogeneous ideal of a polynomial ring. Interestingly,
well before this groundbreaking work in commutative algebra, Schmidt [19, p. 245] had intro-
duced the very same measure of complexity (called Schmidt rank) of a polynomial in the context
of arithmetic geometry to study integer points in varieties defined over the rationals. We shall use
the terminology of Ananyan and Hochster.

Let S = ⊕
d≥0 S d be a standard graded polynomial ring in n variables, i.e., S d is the vector

space of degree-d homogeneous polynomials, or forms, in n variables with coefficients in a
field k.
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Definition 1. A strength decomposition of a homogeneous polynomial f is an expression of the
form

f = g1h1 +·· ·+ gr hr , where gi ,hi are homogeneous with 1 ≤ deg(gi ),deg(hi ) ≤ deg( f )−1. (1)

We define the strength of f to be the smallest length of a strength decomposition of f . Note that this
differs from the definition used in [1] by 1, so that a homogeneous polynomial has strength ≤ r if
and only if it is the sum of r polynomials of strength ≤ 1.

Since its introduction, the notion of strength has been studied in several works, see e.g. [2–4,
6,8,9,11,12,14–17] (in the last three works, strength is called Schmidt rank). Despite this interest,
our knowledge of the strength of forms is still quite limited.

A special type of strength decomposition is the one where each summand in (1) is required to
have a linear factor; such decompositions are called slice decompositions. The smallest length of
a slice decomposition of a form f is called its slice rank, or qrank [9] when f has degree 3. It is
well-known that a form f admits a slice decomposition of length r if and only if the hypersurface
{ f = 0} contains a linear subspace of codimension r ; see for instance [9, Proposition 2.2]. Hence,
in the projective space PS d of degree-d homogeneous polynomials, the set of forms having
slice rank ≤ r is the image of the projection onto the first factor of an incidence variety inside
PS d ×Gr(n − r,n), where Gr(k,n) is the Grassmannian of k-dimensional linear spaces in kn ;
see [13, Example 12.5]. Thus it is Zariski-closed.

It is natural to ask whether the same holds for sets of forms of bounded strength.

Question 2 ([6, Example 2]). In the projective space PS d of degree-d homogeneous polynomials
in n variables, is the set of polynomials having strength ≤ r always Zariski-closed?

In this note, we give a negative answer to this question. Note that, since for quadrics and cu-
bics the notion of strength coincides with that of slice rank, the smallest degree where Question 2
might have a negative answer is 4. This is indeed the case: we prove that, for quartics in suffi-
ciently many variables, the space of forms with strength ≤ 3 is not closed. Employing the theory
of polynomial functors [5, 6, 10], in Section 4 we show the following.

Theorem 3. Let k be algebraically closed. For polynomials x, y,u, v of degree 1 and f , g , p, q of
degree 2, the polynomial

x2 f + y2g +u2p + v2q, (2)

is always a limit of strength-≤ 3 polynomials, but for a sufficiently large number of variables and a
suitable choice of x, y,u, v, f , g , p, q it has strength 4.

This shows that the answer to Question 2 is negative for d = 4, r = 3 and n À 0. We leave the
question concerning the minimal n where this is possible open. Note that over C it has to be at
least 6: indeed, the strength of a form is bounded above by its slice rank and the slice rank of a
degree-4 form in n ≤ 5 variables is at most 3; see e.g. [8].

Question 4. What is the smallest number of variables n where (2) can have strength 4? Does the
sum of squares q = x2s2 + y2t 2 +u2w2 + v2z2 in 8 variables possess this property?

The degree d = 4 of our counterexample is minimal. However, we do not know whether the
strength r = 3 is minimal as well. This leads to the following question.

Question 5. In the projective space PS d of degree-d homogeneous polynomials in n variables, is
the set of polynomials having strength ≤ 2 always Zariski-closed?
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2. Polynomial Functors

We now collect the basic notions from the theory of polynomial functors of finite degree that we
shall need for our example. We restrict our attention to polynomial functors whose elements are
tuples of polynomials. We refer to [5, 7, 10] for more details on the general theory of polynomial
functors. Let Vec be the category of finite-dimensional vector spaces over a field k and let d ≥ 1
be an integer.

Definition 6. The polynomial functor Sd : Vec → Vec is the functor that assigns to a finite-
dimensional vector space V ∈ Vec its d-th symmetric power Sd (V ) ∈ Vec and to a linear map
L : V →W the linear map Sd (L) : Sd (V ) → Sd (W ) it induces.

Let x1, . . . , xn be a basis of V ∈ Vec. Then Sd (V ) = k[x1, . . . , xn]d is the space of degree-d forms.
So we say that homogeneous polynomials of degree d are the elements of Sd .

Definition 7. Let P,Q : Vec → Vec be polynomial functors. Then their direct sum P⊕Q : Vec → Vec
is the polynomial functor that assigns to a finite-dimensional vector space V ∈ Vec the space P (V )⊕
Q(V ) and to a linear map L : V → W the linear map P (L)⊕Q(L) : P (V )⊕Q(V ) → P (W )⊕Q(W )
sending (v1, v2) 7→ (P (L)(v1),Q(L)(v2)).

So, for all integers d1, . . . ,dk ≥ 1, we get a polynomial functor Sd1 ⊕·· ·⊕Sdk .

Definition 8. A polynomial transformation α : Sd1 ⊕·· ·⊕Sdk → Se1 ⊕·· ·⊕Se` consists of a map

αV : Sd1 (V )⊕·· ·⊕Sdk (V ) → Se1 (V )⊕·· ·⊕Se` (V )

( f1, . . . , fk ) 7→ (F1( f1, . . . , fk ), . . . ,F`( f1, . . . , fk ))

for every V ∈ Vec. Here F1, . . . ,F` ∈ k[X1, . . . , Xk ] are fixed forms with deg(F j ) = e j where deg(Xi ) =
di . We denote by im(α) the functor Vec → Set that assigns V ∈ Vec to the set im(αV ).

Remark 9. For fixed d1, . . . ,dk ,e1, . . . ,e` ≥ 1, the map that sends such a tuple of polynomials
(F1, . . . ,F`) to the polynomial transformation Sd1 ⊕·· ·⊕Sdk → Se1 ⊕·· ·⊕Se` defines a bijection.

Remark 10. Given polynomial transformations

α : Sc1 ⊕·· ·⊕Sch → Sd1 ⊕·· ·⊕Sdk and β : Sd1 ⊕·· ·⊕Sdk → Se1 ⊕·· ·⊕Se`

defined by polynomials F1, . . . ,Fk and G1, . . . ,G`, respectively, note that the composition

β◦α : Sc1 ⊕·· ·⊕Sch → Se1 ⊕·· ·⊕Se`

is defined by the polynomials G1(F1, . . . ,Fk ), . . . ,G`(F1, . . . ,Fk ).

Definition 11. Let P be a polynomial functor. Then its inverse limit is

P∞ := lim←−−
n

P (kn) =
{

( fn)n ∈
∞∏

n=1
P (kn)

∣∣∣∣P (πn)( fn+1) = fn for all n ≥ 1

}
where πn : kn+1 → kn is the projection map that forgets the last coordinate.

Let d ≥ 1 be an integer. Then the elements of Sd∞ are polynomial series

f =∑
ece

xe , ce ∈ k,

where e = (e1,e2, . . . ) ranges over all sequences of nonnegative integers that sum up to d and xe =
xe1

1 xe2
2 · · · . The set k⊕⊕∞

e=1 Se∞ naturally has the structure of a graded k-algebra. The following
theorem of Erman, Sam and Snowden tells us that this k-algebra is in fact a polynomial ring.

Theorem 12 ([12, Theorem 1.1]). There exists an index set I and a map d : I → N such that
k ⊕ ⊕∞

e=1 Se∞ is isomorphic as a graded k-algebra to the polynomial ring k[yi | i ∈ I ] where
deg(yi ) = d(i ).

C. R. Mathématique — 2022, 360, 371-380
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Remark 13. The notion of strength naturally extends both to series in Sd∞ and to homogeneous
polynomials in k[yi | i ∈ I ]. In both cases, we define the strength of an element f to be the infimal
length of a strength decomposition of f . When f has a strength decomposition, this definition
coincides with Definition 1. When f has no strength decomposition, we instead say that f has
infinite strength. Let

ϕ : k[yi | i ∈ I ] → k⊕
∞⊕

e=1
Se
∞

be any graded k-algebra isomorphism and let f ∈ k[yi | i ∈ I ] be a homogeneous polynomial of
degree d . Then the strengths of f in k[yi | i ∈ I ] and ϕ( f ) in Sd∞ coincide.

Proposition 14. Let f ∈ k[yi | i ∈ I ] be a homogeneous polynomial of degree d. Then f has finite
strength if and only if f ∈ k[yi | i ∈ I ,deg(yi ) < d ].

Proof. Suppose that f has finite strength. Then all terms in a strength decomposition of f have
degree < d and are therefore contained in k[yi | i ∈ I ,deg(yi ) < d ]. Hence f is as well.

Suppose that f ∈ k[yi | i ∈ I ,deg(yi ) < d ]. Then the polynomial f is a sum of monomials in
variables yi of degree < d . Since f has degree d , each of these monomials must be reducible. This
yields a strength decomposition of f . Hence f has finite strength. �

Remark 15. The proposition shows that all variables yi have infinite strength. In particular, the
variables with degree ≥ 2. So in this setting, not all polynomials of degree ≥ 2 have finite strength.

Definition 16. A tuple of series

( fe, j )e, j ∈
d⊕

e=1
(Se

∞)⊕ke

is part of a system of variables (over k) when (ϕ−1( fe, j ))e, j is a tuple of distinct variables for some
graded k-algebra isomorphism ϕ : k[yi | i ∈ I ] → k⊕⊕∞

e=1 Se∞.

Proposition 17. A tuple of series

( fe, j )e, j ∈
d⊕

e=1
(Se

∞)⊕ke

is part of a system of variables if and only if every element of

{λ1 fe,1 +·· ·+λke fe,ke | (λ1 : · · · :λke ) ∈Pke−1}

has infinite strength for all e ∈ {1, . . . ,d}.

Proof. Let ϕ : k[yi | i ∈ I ] → k⊕⊕∞
e=1 Se∞ be a graded k-algebra isomorphism. Suppose that

(ϕ−1( fe, j ))e, j is a tuple of distinct variables. Then

λ1ϕ
−1( fe,1)+·· ·+λkeϕ

−1( fe,ke )

is not a polynomial in variables of degree < e for every (λ1 : · · · :λke ) ∈Pke−1. Hence

λ1 fe,1 +·· ·+λke fe,ke

has infinite strength for every (λ1 : · · · :λke ) ∈Pke−1.
We prove the inverse statement using induction on d . So we may assume that

( fe, j )e<d , j ∈
d−1⊕
e=1

(Se
∞)⊕ke

is part of a system of variables and (ϕ−1( fe, j )) j is a tuple of distinct variables of degree e for all
e < d . Hence, it is enough to construct a change of variables in k[yi | i ∈ I ] which is the identity
on the yi ’s with degree < d and turns (ϕ−1( fd , j )) j into a tuple of variables. Write

ϕ−1( fd , j ) = ` j + g j

C. R. Mathématique — 2022, 360, 371-380
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where ` j is a finite linear combination of the variables yi of degree d and g j ∈ k[yi | i ∈ I ,deg(yi ) <
d ]. Suppose that λ1`1 +·· ·+λkd

`kd
= 0 for some (λ1 : · · · :λkd

) ∈Pkd−1. Then

λ1 fd ,1 +·· ·+λkd
fd ,kd

=ϕ(λ1g1 +·· ·+λkd
gkd

)

has finite strength, because λ1g1+·· ·+λkd
gkd

lies in k[yi | i ∈ I ,deg(yi ) < d ] and hence has finite
strength. Since this is not the case, we see that `1, . . . ,`kd

must be linearly independent. So there
exists a graded k-algebra automorphism ψ of k[yi | i ∈ I ] sending yi 7→ yi when deg(yi ) 6= d such
that ψ−1(` j ) is a variable for j = 1, . . . ,kd . Replacing ϕ by ϕ ◦ψ, we may assume that the ` j are
already variables. Now, let ω be the automorphism k[yi | i ∈ I ] sending ` j 7→ ` j + g j and sending
all other variables to themselves. Then the isomorphism ϕ ◦ω shows that ( fe, j )e, j is part of a
system of variables. �

The next lemma shows that there exist tuples defined over k that are part of a system of
variables over any field extension of k.

Lemma 18. For e = 1, . . . ,d, let πe : {1, . . . ,ke }× {1, . . . ,e}×N→N be an injection and take

fe, j =
∞∑

i=1
xπe ( j ,1,i ) · · ·xπe ( j ,e,i ) ∈ Se

∞.

Then ( fe, j )e, j is part of a system of variables.

Proof. Let ϕ : k[yi | i ∈ I ] → k⊕⊕∞
e=1 Se∞ be a graded k-algebra isomorphism and suppose that

λ1 fe,1 +·· ·+λke fe,ke

has finite strength for some (λ1 : · · · :λke ) ∈Pke−1. Then

ϕ−1(λ1 fe,1 +·· ·+λke fe,ke ) ∈ k[yi | i ∈ I ,deg(yi ) < e]

Let f ∈ k[yi | i ∈ I ,deg(yi ) < e] be a homogeneous polynomial of degree e. By relabelling the
variables, we may assume that f = f (y1, . . . , yk ) for some variables y1, . . . , yk of degree < e. The
product rule shows that

ϕ−1
(
∂

∂x j
ϕ( f )

)
∈ (y1, . . . , yk )

for each j ∈ N. Hence, in order to get a contradiction, it suffices to prove for all (λ1 : · · · : λke ) ∈
Pke−1 that {

ϕ−1
(
∂

∂x j
(λ1 fe,1 +·· ·+λke fe,ke )

)∣∣∣∣ j ∈N
}

is not contained in an ideal of k[yi | i ∈ I ] generated by finitely many variables. This is indeed
the case since, by construction, the above set consists up to scaling of infinitely many monomials
in pairwise distinct variables. So, by Proposition 17, we see that ( fe, j )e, j is part of a system of
variables. �

Before we explain our proof strategy, we first give the intuition behind it. Let h ∈ k[y1, . . . , yn]
be a homogeneous polynomial of degree d ≥ 2 where we have deg(yi ) = di > 0. Let f1, . . . , fn

be forms of degrees d1, . . . ,dn in variables x1, . . . , xm of degree 1. Then we can consider the form
h( f1, . . . , fn). Suppose that h has a strength decomposition, say of length r . Then, by evaluating
this strength decomposition in f1, . . . , fn , we get a strength decomposition of h( f1, . . . , fn). We see
that str(h( f1, . . . , fn)) ≤ str(h) for all f1, . . . , fn whenever the latter is finite. In general, we have no
reason to expect equality to hold; indeed, we also have str(h( f1, . . . , fn)) ≤ str( f1)+·· ·+str( fn) and
str(h( f1, . . . , fn)) ≤ m which may yield far stronger bounds in certain cases.

Now, the idea behind our proof is that the strength of h is much easier to compute than the
strength of h( f1, . . . , fn). So we first go to a setting where f1, . . . , fn can be treated as if they are
variables and so the strength of these two forms is in fact the same. This setting is precisely the

C. R. Mathématique — 2022, 360, 371-380
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case where ( f1, . . . , fn) is part of a system of variables. We then translate this back to statements
about polynomials.

Next, we explain our proof strategy in detail. It is inspired by the theory of polynomial functors
from [7] established by Bik, Draisma, Eggermont, and Snowden. A polynomial transformation
α : Q → P naturally induces a map α∞ : Q∞ → P∞.

Proposition 19. Take P = Sd1 ⊕ ·· · ⊕ Sdk and Q = Se1 ⊕ ·· · ⊕ Se` . Let α : P → Sd and β : Q → Sd

be polynomial transformations and let p = (p1, . . . , pk ) ∈ P∞, q = (q1, . . . , q`) ∈ Q∞. Suppose that
q is part of a system of variables and α∞(p) = β∞(q). Then β = α ◦ γ for some polynomial
transformation γ : Q → P.

Proof. When char(k) = 0, this is a special case of [5, Proposition 4.5.17]. Let ϕ : k[yi | i ∈ I ] →
k⊕⊕∞

e=1 Se∞ be a graded k-algebra isomorphism such that (ϕ−1(q1), . . . ,ϕ−1(q`)) is a tuple of
distinct variables. By relabelling the variables, we may assume thatϕ−1(qi ) = yi . We haveβ∞(q) =
ϕ(B(y1, . . . , y`)) and α∞(p) = ϕ(A(z1, . . . , zk )) for some polynomials A,B where z j = ϕ−1(p j ) ∈
k[yi | i ∈ I ]. As the z j are elements of k[yi | i ∈ I ], by relabelling more variables, we may assume
that they are polynomials in y1, . . . , y`′ for some `′ ≥ `. y the assumption α∞(p) =β∞(q), we have

A(z1(y1, . . . , y`′ ), . . . , zk (y1, . . . , y`′ )) = B(y1, . . . , y`).

Now, we set yi = 0 for i > ` on both sides and find that

A(z1(y1, . . . , y`,0, . . . ,0), . . . , zk (y1, . . . , y`,0, . . . ,0)) = B(y1, . . . , y`).

Write F j = z j (y1, . . . , y`,0, . . . ,0) ∈ k[y1, . . . , y`]. Then we see that β = α ◦ γ for the polynomial
transformation γ : Q → P defined by (F1, . . . ,Fk ). �

In other words, if β∞(q) ∈ im(α∞), then β factors through α. To relate this condition back to
polynomials, we have the following lemma.

Lemma 20. Suppose that k is algebraically closed and let L be an uncountable algebraically closed
extension of k. Take P = Sd1⊕·· ·⊕Sdk , letα : P → Sd be a polynomial transformation and let f ∈ Sd∞
be the inverse limit of a sequence ( fn)n ∈∏∞

n=1 Sd (kn). Assume that f =β∞(q) for some polynomial
transformation β : Q → Sd where Q = Se1 ⊕·· ·⊕Se` and q ∈Q∞ is part of system of variables over
L. Then f ∈ im(α∞) if and only if fn ∈ im(αkn ) for all n ∈N.

Proof. When char(k) = 0, this is a special case of [5, Lemma 4.5.24]. We follow its proof. Clearly,
if f ∈ im(α∞), then fn ∈ im(αkn ) for all n ∈N. So assume that fn ∈ im(αkn ) for all n ∈N.

Before we prove the general case, we first consider the case where L = k. Let p = (pn)n ∈
P∞. Then the equality α∞(p) = f holds if and only if αkn (pn) = fn holds for all n ∈ N. This
translates the condition α∞(p) = f into polynomial equations in countably many variables and
the condition that fn ∈ im(αkn ) for all n ∈ N shows that any finite number of these equations
has a solution. Hence, by Lang’s theorem from [18] the entire system has a solution since k is
algebraically closed and uncountable.

Now for the general case, note that by the first part of the proof, there exists a p ∈ PL∞ defined
over L such that αL∞(p) = f . We now have αL∞(p) = βL∞(q). By Proposition 19, it follows that βL =
αL ◦γL for some polynomial transformation γL : QL→ PL defined over L. The condition β=α◦γ
defines a Zariski-closed subset in the finite-dimensional space of polynomial transformations
γ : Q → P : since we have just observed that this Zariski-closed set is non-empty over L and k is
algebraically closed, then it must be non-empty also over k. In particular, we get that β=α◦γ for
some γ : Q → P . The point p = γ∞(q) satisfies α∞(p) = f . �

This gives us the following proof strategy: let

α : Sd1 ⊕·· ·⊕Sdk → Sd and β : Se1 ⊕·· ·⊕Se` → Sd
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be polynomial transformations defined by polynomials F and G respectively. If β factors through
α, then G = F (H1, . . . , Hk ) for some polynomials H1, . . . , Hk . So if we can prove this not to be the
case, then f := β∞(q) 6∈ im(α∞) for any point q that is part of a system of variables over all field
extensions of k and hence we get fn 6∈ im(αkn ) for the projection fn of such an f to Sd (kn) for
some integer n ≥ 1. Our goal now is to choose α,β such that this conclusion is exactly what we
want.

Remark 21. Since the diagram

Sd1 (V )⊕·· ·⊕Sdk (V )
αV //

Sd1 (L)⊕···⊕Sdk (L)
��

Sd (V )

Sd (L)
��

Se1 (V )⊕·· ·⊕Se` (V )
βV

oo

Se1 (L)⊕···⊕Se` (L)

��

Sd1 (W )⊕·· ·⊕Sdk (W )
αW

// Sd (W ) Se1 (W )⊕·· ·⊕Se` (W )
βW

oo

commutes for all linear maps L : V → W , it in this case follows that fn 6∈ im(αkn ) for all n À 1
by choosing for L the projection maps πn . More precisely, for L = πn , the diagram shows that if
fn+1 ∈ im(αkn+1 ), then also fn ∈ im(αkn ).

3. The example in finite setting

Before explaining our example, we prove a theorem which will be the heart of the proof in the next
section. Here, we consider polynomials in the polynomial ringk[x, y,u, v, f , g , p, q] where x, y,u, v
and f , g , p, q are variables of degrees 1 and 2, respectively. We start by defining the strength of a
homogeneous polynomial in this setting.

Definition 22. A strength decomposition of a homogeneous polynomial h ∈ k[x, y,u, v, f , g , p, q]
is an expression of the form

h = g1h1 +·· ·+ gr hr , where gi ,hi are homogeneous with 1 ≤ deg(gi ),deg(hi ) ≤ deg(h)−1. (3)

We define the strength of h to be the smallest length of a strength decomposition of h.

Theorem 23. The polynomial x2 f + y2g +u2p + v2q ∈ k[x, y,u, v, f , g , p, q] has strength 4.

Proof. The polynomial x2 f + y2g + u2p + v2q has strength ≤ 4. We need to show that x2 f +
y2g + u2p + v2q has no strength decomposition of length 3. This gives us four cases. We will
use the following notation. For i ∈ {1,2,3}, let xi , gi ,hi , qi ∈ k[x, y,u, v, f , g , p, q] be homogeneous
polynomials of degrees 1,2,2,3, respectively. Let R = k[x, y,u, v]. Then, xi ∈ R and

gi = ai ,1 f +ai ,2g +ai ,3p +ai ,4q + ĝ i ,

hi = bi ,1 f +bi ,2g +bi ,3p +bi ,4q + ĥi ,

qi = ci ,1 f + ci ,2g + ci ,3p + ci ,4q

for some ai , j ,bi , j ∈ k and ci , j , ĝ i , ĥi ∈ R. Write

Gi := ai ,1 f +ai ,2g +ai ,3p +ai ,4q and Hi := bi ,1 f +bi ,2g +bi ,3p +bi ,4q.

Case a. We show that

x2 f + y2g +u2p + v2q 6= x1q1 +x2q2 +x3q3. (4)

View both sides as polynomials in R[ f , g , p, q]. So on the left-hand side, the coefficients of
f , g , p, q are x2, y2,u2, v2. Recall that xi ∈ R and

qi = ci ,1 f + ci ,2g + ci ,3p + ci ,4q
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for some homogeneous ci , j ∈ R of degree 1. Note that, on the right-hand side of (4), the coefficient
x1c1,1 + x2c2,1 + x3c3,1 of f is contained in the ideal (x1, x2, x3) ⊆ R. Assume by contradiction that
in (4) equality holds. This implies that x2 ∈ (x1, x2, x3) and then x ∈ (x1, x2, x3) since the ideal is
prime. Similarly, y,u, v ∈ (x1, x2, x3). But this is impossible, as the four variables x, y,u, v cannot
all lie in an ideal generated by three linear forms. Hence (4) is indeed an inequality.

Case b. We show that

x2 f + y2g +u2p + v2q 6= x1q1 +x2q2 + g1h1. (5)

In the notation introduced above, if G1H1 6= 0, then we see that the coefficient of one of the
monomials f 2, f g , . . . , pq, q2 in the right-hand-side of (5) is nonzero. Therefore, (5) holds in this
case. If G1 = 0, we see that the coefficients of f , g , p, q on the right-hand side of (5) are contained
in the ideal (x1, x2, ĝ 1) ⊆ R. Similarly, if H1 = 0, the coefficients of f , g , p, q on the right-hand
side of (5) are contained in the ideal (x1, x2, ĥ1) ⊆ R. In both cases, this is impossible as these
ideals cannot contain all the powers x2, y2,u2, v2 by Krull’s height theorem. Hence, G1H1 6= 0 and
then (5) holds.

Case c. We show that

x2 f + y2g +u2p + v2q 6= x1q1 + g1h1 + g2h2. (6)

Let ai , j ,bi , j ∈ k, ci , j , ĝ i , ĥi ∈ R and Gi , Hi be as before. Assume by contradiction that (6) is instead
an equality and set x, y,u, v = 0. Then we get 0 =G1H1+G2H2. It follows that after reordering and
scaling, we have (G2, H2) = (G1,−H1) or G1 =G2 = 0. In the first case, we find that the coefficients
of f , g ,h, q on the right-hand side of (6) are contained in (x1, ĝ 1 − ĝ 2, ĥ1 + ĥ2). In the second case,
we find that these coefficients are contained in (x1, ĝ 1, ĝ 2). Both these cases are impossible since
x2, y2,u2, v2 cannot all be contained in such ideals by Krull’s height theorem. Hence (6) holds.

Case d. We show that

x2 f + y2g +u2p + v2q 6= g1h1 + g2h2 + g3h3. (7)

Let ai , j ,bi , j ∈ k, ĝ i , ĥi ∈ R and Gi , Hi be as before. Assume by contradiction that (7) is instead
an equality. First, consider both sides of (7) as polynomials in x, y,u, v with coefficients in
k[ f , g , p, q]. Then the coefficients of x2, y2,u2, v2 on the right-hand side are contained in the
span of G1, H1,G2, H2,G3, H3. As these coefficients are f , g , p, q on the left-hand side, we see
that this span must be 4-dimensional. So among G1, H1,G2, H2,G3, H3 there must be four linearly
independent forms. After reordering, we may assume that these forms are either G1, H1,G2, H2 or
G1, H1,G2,G3. In both cases, we call these forms F,G ,P,Q and note that the remaining two forms
are also forms in F,G ,P,Q. Now, we set x, y,u, v = 0. We get the equation 0 =G1H1+G2H2+G3H3.
So we see that either FG +PQ +G3H3 = 0 or FG +PH2 +QH3 = 0. Both of these equations have
no solutions: indeed, for the first, FG +PQ is irreducible; for the second, we see that the equality
FG =−PH2 −QH3 cannot hold by setting P =Q = 0. �

4. The example

We are now ready to explain our example which gives a negative answer to Question 2. Assume
that k is algebraically closed. For any t ∈ k\ {0}, consider

h(t ) := 1

t

(
(x2 + t g )(y2 + t f )− (u2 − t q)(v2 − t p)− (x y +uv)(x y −uv)

)
(8)

where x, y,u, v and f , g , p, q are forms in n variables of degrees 1 and 2, respectively. One sees
that

h := lim
t→0

h(t ) = x2 f + y2g +u2p + v2q (9)
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is a limit of strength-≤ 3 polynomials and has itself strength ≤ 4. We use the machinery of
polynomial functors from Section 2 to show that, if n À 0, the polynomial h indeed has strength
4 for some choices of x, y,u, v, f , g , p, q .

Consider the following polynomial transformations:

α1 : (S1)⊕3 ⊕ (S3)⊕3 → S4, (x1, x2, x3, q1, q2, q3) 7→ x1q1 +x2q2 +x3q3,
α2 : (S1)⊕2 ⊕ (S3)⊕2 ⊕S2 ⊕S2 → S4, (x1, x2, q1, q2, g1,h1) 7→ x1q1 +x2q2 + g1h1,
α3 : (S1)⊕ (S3)⊕ (S2)⊕2 ⊕ (S2)⊕2 → S4, (x1, q1, g1, g2,h1,h2) 7→ x1q1 + g1h2 + g2h2,
α4 : (S2)⊕3 ⊕ (S2)⊕3 → S4, (g1, g2, g3,h1,h2,h3) 7→ g1h1 + g2h2 + g3h3,
β : (S1)⊕4 ⊕ (S2)⊕4 → S4, (x, y,u, v, f , g , p, q) 7→ x2 f + y2g +u2p + v2q.

The image im(β) form the set of polynomials as in (9) over all x, y,u, v, f , g , p, q . Notice that⋃4
i=1 im(αi ) consists of all forms of degree 4 with strength ≤ 3. By the discussion in Section 2,

in order to prove that h has strength > 3 for some choice of x, y,u, v, f , g , p, q , it suffices to prove
that β does not factor via αi for any i ∈ {1,2,3,4}. This is essentially the statement of Theorem 23.

Lemma 24.

(a) There is no γ : (S1)⊕4 ⊕ (S2)⊕4 → (S1)⊕3 ⊕ (S3)⊕3 such that β=α1 ◦γ.
(b) There is no γ : (S1)⊕4 ⊕ (S2)⊕4 → (S1)⊕2 ⊕ (S3)⊕2 ⊕S2 ⊕S2 such that β=α2 ◦γ.
(c) There is no γ : (S1)⊕4 ⊕ (S2)⊕4 → (S1)⊕ (S3)⊕ (S2)⊕2 ⊕ (S2)⊕2 such that β=α3 ◦γ.
(d) There is no γ : (S1)⊕4 ⊕ (S2)⊕4 → (S2)⊕3 ⊕ (S2)⊕3 such that β=α4 ◦γ.

Proof. By Remarks 9 and 10, if any of (a)–(d) would not hold, then the polynomial x2 f +
y2g +u2p + v2q ∈ k[x, y,u, v, f , g , p, q] would have strength ≤ 3. Hence Theorem 23 implies the
lemma. �

By Lemma 24, Proposition 19, Lemma 18, Lemma 20 and Remark 21, we conclude that the
form h in (9) has strength 4 for some choice of x, y,u, v, f , g , p, q . So the set of forms of degree 4 in
n À 0 variables with strength ≤ 3 is not closed.

Remark 25. In the proof of Theorem 23, the symbols x, y,u, v, f , g ,h, q are treated as variables,
the first four of degree 1 and the last four of degree 2. We think of (x, y,u, v, f , g ,h, q) as a tuple of
polynomial series that is part of a system of variables. So this proof strategy does not directly apply
for a fixed value of n (i.e., in a fixed ambient dimension), and so does not apply towards answering
Question 4. More specifically, once n is fixed, the symbols f , g ,h, q would not be formal variables
of degree 2 anymore, but rather degree 2 forms in n variables.

Remark 26. Similar to all problems concerning additive decompositions of forms, one of the
biggest challenges is to provide efficient methods to get lower bounds on the strength of a given
form f . As far as we know, the only general method is observed in [2, Remark 1.1]: if Sing( f ) is the
singular locus of the hypersurface { f = 0} and codim(Sing( f )) ≥ 2k+1, then str( f ) ≥ k+1. Suppose
we have a flat family of hypersurfaces f (t ) → f (0) = f such that str( f (t )) ≤ k for all t ∈ A1

k \ {0}.
By the aforementioned bound, one has codim(Sing( f (t ))) ≤ 2k. Note that, in such a situation,
codim(Sing( f (t ))) ≥ codim(Sing( f )). Therefore, the Ananyan–Hochster lower bound cannot be
better than k. In our example, codim(Sing(h)) ≤ 4 and so this lower bound is not larger than 2.
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