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Abstract. We use the recently introduced étale open topology to prove several known facts on large fields. We
show that these facts lift to a quite general topological setting.
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Throughout K ,L are fields, L is infinite, and Am
K ,Am

L is m-dimensional affine space over K ,L,
respectively. A K -variety is a separated K -scheme of finite type, not assumed to be reduced. If
K is a subfield of L and V is a K -variety then VL = V ×SpecK SpecL is the base change of V , and
if f : V → W is a morphism of K -varieties then fL : VL → WL is the base change of f . Given a
K -variety V we let V (K ) be the set of K -points of V , K [V ] be the coordinate ring of V when V is
affine, and K (V ) be the function field of V when V is integral.

The field L is large if every smooth integral L-curve with an L-point has infinitely many
L-points. Most fields of interest fall, or conjecturally fall, into one of the following mutually
exclusive categories:

(1) K is large.
(2) K is finitely generated over its prime subfield (Equivalently: K is a number field, a

function field1 over a number field, or a function field over a finite field).
(3) K is a function field over a large field. (This is nontrivially equivalent to: K is finitely

generated over a large field and not large.)

Local fields, real closed fields, separably closed fields, fields which admit Henselian valuations,
quotient fields of Henselian domains, pseudofinite fields, infinite algebraic extensions of finite
fields, PAC fields, p-closed fields, and fields that satisfy a local-global principle are all large.
Function fields are not large. It is an open question whether the maximal abelian or maximal
solvable extension of Q is large. See [9] and [2] for more background on large fields. Large
fields where introduced for Galois-theoretic purposes, in particular Pop solved the inverse Galois
problem over K (x) for K large [8]. Large fields are now central in Galois theory and have been a
subject of increasing interest from other directions.

We will give topological proofs of Facts A, B, and C below. Fact A is [9, Proposition 2.6].

∗Corresponding author.
1Finitely generated purely transendental proper extension.
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Fact A. Suppose that L is large and V is an irreducible L-variety with a smooth L-point. Then V (L)
is Zariski dense in V .

Facts B and C are due to Fehm. Fact B is proven in [3]. Note that Fehm uses “ample” for “large”
(this is one of a surprisingly large number of names used in the literature.)

Fact B. Suppose that L is large, K is a proper subfield of L, and V is a positive-dimensional
irreducible K -variety with a smooth K -point. Then |V (L) \V (K )| = |L|.

Fact B is a strengthening of the fact that if L is large and V is a positive-dimensional irreducible
L-variety with a smooth L-point then |V (L)| = |L|. This was previously proven by Pop, see [5,
Proposition 3.3]. Fact B is used to show that if L is large and C is a smooth projective integral
L-curve then the absolute Galois group of L(C ) is quasi-free, see [5, Proposition 3.4] and [6,
Corollary 4.4]. We give a separate proof of this fact in Section 3. Secondly, Fact B and the fact
that an algebraic extension of a large field is large yields the following: if K is large, V is a
positive dimensional irreducible K -variety with a smooth K -point, and L/K is algebraic then
|V (L) \ V (K )| = |L|. (We also give a topological proof of the fact that large fields are closed under
algebraic extensions in Section 1.)

Fact C is from [4]. We let td(E/F ) be the transendence degree of a field extension E/F .

Fact C. Suppose K is a subfield of L, L is large, and V is a smooth geometrically integral K -variety.
Then the following are equivalent:

(1) td(L/K ) ≥ dimV and V (L) ̸= ;,
(2) there is a K -algebra embedding K (V ) → L.

Another proof of Fact C is given in [1, Proposition 1.1], they reduce to the one-dimensional case
which then follows directly by Fact B. The implication (2) ⇒ (1) is routine and does not require
largeness. We describe a geometric statement equivalent to (1) ⇒ (2). Suppose that p ∈V (L) and
p ∉ W (L) for any proper closed subvariety W of V . Let U be an affine open subvariety of V , so
p ∈U (L). Note that K (U ) = K (V ) and K (V ) is the fraction field of K [U ]. Now p gives a morphism
SpecL →U , which is dual to an K -algebra morphism K [U ] → L. Note that K [U ] → L is injective as
p ∉W (L) for any proper closed subvariety W of V . So K [U ] → L extends to a K -algebra morphism
K (V ) = K (U ) → L. We prove the following.

Alternate form of Fact C. Suppose that L is large, K is a subfield of L with td(L/K ) ≥ m, and V
is a smooth geometrically integral m-dimensional K -variety with V (L) ̸= ;. Then there is p ∈V (L)
such that p ∉W (L) for any proper closed subvariety W of V .

We now discuss our proof technique. Each fact says that V (L) is large in some sense. Fix
a smooth p ∈ V (L). There is an open subvariety U of V containing p and an étale morphism
f : U → Am

L , and f (U (L)) is a nonempty étale open subset of Lm . This allows us to reduce each
of the facts above to a statement saying non-empty étale open subsets of Lm are large in some
sense. In each case the statement holds in a very broad setting which we now describe.

A system of topologies. T over L is a choice of topology on V (L) for each L-variety V such that
the following holds for any morphism f : V →W of L-varieties:

(1) the induced map V (L) →W (L) is continuous,
(2) if f is an open immersion then V (L) →W (L) is a topological open embedding, and
(3) if f is a closed immersion then V (L) →W (L) is topological closed embedding.

If τ is a Hausdorff field topology on L then we produce a system of topologies by equipping
each V (L) with the usual τ-topology, the other familiar example of a system is the Zariski topology.
The étale open topology is a system of topologies, which may or may not be induced by a
Hausdorff field topology on L. It is easy to see that the T-topology on L = A1

L(L) is discrete if
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and only if the T-topology on V (L) is discrete for every L-variety V , and we say that T is discrete
if these conditions hold. We show in [7, Theorem C.1] that L is large if and only if the étale open
topology over L is not discrete.

Facts A, B, C follows from Propositions A, B, C, respectively.

Proposition A. Suppose that T is a non-discrete system of topologies over L and O is a nonempty
T-open subset of Lm . Then O is Zariski dense in Am

L .

Proposition B. Suppose that T is a non-discrete system of topologies over L, K is a proper subfield
of L, and O is a nonempty T-open subset of Lm . Then |O \ K m | = |L|.

Note that if a = (a1, . . . , am) ∈ Lm then td(K (a1, . . . , am)/K ) is the minimum dimension of a
closed subvariety W ofAm

K such that a ∈W (L).

Proposition C. Suppose that T is a non-discrete system of topologies over L, m ≥ 1, K is a subfield
of L with td(L/K ) ≥ m, and O is a nonempty T-open subset of Lm . Then there is (a1, . . . , am) ∈ O
such that td(K (a1, . . . , am)/K ) = m. Equivalently there is a ∈ O such that a ∉ W (L) for any proper
closed subvariety W ofAm

K .
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0.1. Background

It is worth noting that any system of topologies refines the Zariski topology, i.e. if T is a system of
topologies over L and V is an L-variety then the T-topology on V (L) refines the Zariski topology.
Fact 1 is proven in [7, Lemma 7.24]. The T-topology and the product of the T-topologies on
(V ×W )(L) =V (L)×W (L) may not agree.

Fact 1. Suppose that T is a system of topologies over L and V ,W are L-varieties. Then the
projection V (L)×W (L) →V (L) is a T-open map.

We will also make frequent use the obvious fact that the T-topology on L is affine invariant,
i.e. the map L → L, x 7→ ax +b is a homeomorphism for all a ∈ L×,b ∈ L. In particular this implies
that T is discrete if and only if there is a non-empty finite T-open subset of L.

Let V be a L-variety. An étale image in V (L) is a set of the form h(W (L)) for an étale mor-
phism h : W → V of L-varieties. We emphasize that Fact 2 follows from standard facts on étale
morphisms. Fact 2 is also proven in [7, Theorem A, Lemma 5.3].

Fact 2. Given an L-variety V , the collection of étale images in V (L) is a basis for a topology. The
collection of such topologies forms a system of topologies over L. If f : V →W is an étale morphism
of L-varieties and O is an étale open subset of V (L) then f (O) is an étale open subset of W (L).

We refer to this system of topologies as the étale open topology (over L). We are not aware of
any direct connection to the well-known étale topology. We will sometimes refer to it as the EL-
topology when there are multiple fields in play.
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1. Algebraic extensions

We give a topological proof of the fact that large fields are closed under algebraic extensions.
Fact 3 is [9, Proposition 2.7].

Fact 3. If K is a subfield of L, K is large, and L/K is algebraic, then L is large.

There is a field K and a finite extension L/K such that L is large and K is not large [10]. Fact 4
is [7, Theorem 5.8]. The proof does not make use of largeness. (The proof of Fact 4, like all other
proofs of Fact 3, uses a form of Weil restriction.)

Fact 4. Suppose that K is a subfield of L, L/K is algebraic, and V is a K -variety. The EK -topology
on V (K ) refines the topology induced by the EL-topology on VL(L) =V (L).

We view Fact 4 as a topological refinement of Fact 3. We prove Fact 3.

Proof. Suppose that L/K is algebraic and L is not large. Then the EL-topology on L is discrete, so
{0} is an EL-open subset of L. By Fact 4 {0} = {0}∩K is an EK -open subset of K . So the EK -topology
on K is discrete, so K is not large. □

2. Fact A

We first prove Proposition A.

Proof. Suppose that O is not Zariski dense in Am
L and let W be the Zariski closure of U in Am

L .
So dimW < m. Fix p ∈ O. A typical line in Am

L passing through p will intersect W in only finitely
many points. So there is a closed immersion g : A1

L → Am
L such that g (0) = p and g (A1

L)∩W is
finite. Let O′ be the preimage of O under the induced map L → Lm . So O′ is a nonempty finite
T-open subset of L, hence T is discrete, contradiction. □

We now prove the following stronger version of Fact A. (It is stronger in that it applies to
more subsets of V (K ). Fact A shows that Zariski open subsets of V (K ) are Zariski dense and
Proposition 5 extends this to étale open subsets. This extra strength has been)

Proposition 5. Suppose that L is large, V is an irreducible L-variety with dimV ≥ 1, and O is an
étale open subset of V (L) which contains a smooth L-point. Then O is Zariski dense in V .

Proof. Fix a smooth p ∈ O and let m = dimV . The case m = 0 is trivial so we suppose m ≥ 1. Fix
an open subvariety U of V containing p and an étale morphism f : U →Am

L . Let P = f (U (L)∩O),
so P is a non-empty étale open subset of Lm . Suppose that O is not Zariski dense in V and let
W be the Zariski closure of O in V . Then dimW < m hence dimU ∩W < m, and the Zariski
closure of f (U ∩W ) has dimension < m. Therefore P ⊆ f (U ∩W ) is not Zariski dense in Am

L ,
contradiction. □

3. Many L-points

Before proving Fact B we prove the following related result.

Proposition 6. Suppose that L is large, V is an irreducible L-variety, and O is a nonempty étale
open subset of V (L) which contains a smooth L-point. Then |O| = |L|.

Proposition 6 follows from a more general fact.

Proposition 7. Suppose that T is a non-discrete system of topologies over L and O is a nonempty
T-open subset of Lm for m ≥ 2. Then |O| = |L|.



Erik Walsberg 1191

Proof. Letπ : Lm → L be a coordinate projection. Fact 1 shows thatπ(O) isT-open. As |O| ≥ |π(O)|
we may suppose that m = 1.

Claim. If O contains 0 then OO−1 = L, hence |O| = |L|.
Proof of the Claim. Suppose that O contains 0 and OO−1 ̸= L. Fix a ∈ L× \ OO−1. Then O ∩aO =
{0}. However, O ∩aO is T-open, so T is discrete, contradiction. □

Note that if b ∈O then |O| = |O −b| = |L|. □

We now prove Proposition 6.

Proof. Suppose that p ∈ O is smooth. Let m = dimV , U be an open subvariety of V , and
f : U → Am

L be an étale morphism. Then f (U (K )∩O) is a nonempty étale open subset of Lm .
Apply Proposition 7. □

4. Fact B

We will need a couple lemmas. Fact 8 is a special case of [3, Lemma 3].

Fact 8. Suppose that F is a field, S is an F -vector space of dimension ≥ 2, I is an index set, and Si

is a one-dimensional vector subspace of S for all i ∈ I . If S =⋃
i ∈ I Si then |I | ≥ |F |.

Proof. Fix a one-dimensional subspace S′ of S and a ∈ S \ S′. Then |S′| = |F | and it is easy to see
that |Si ∩ (a +S′)| ≤ 1 for all i ∈ I . □

Lemma 9 is essentially in the proof of [3, Lemma 4]. Recall our standing assumption that L is
infinite.

Lemma 9. Suppose that K is a proper subfield of L and X ⊆ L satisfies X X −1 = L. Then |X \K | = |L|.
Proof. Note that |X | = |L|. Suppose that |K | < |L|. Then |X | = |L| > |K | so |X \ K | = |L|. So we may
suppose that |K | = |L|. It now suffices to show that |X \ K | ≥ |K |. We let Y × = Y \ {0} for any Y ⊆ L.
Let A = X ∩K and B = X \ K . So

L = {
a/b : (a,b) ∈ X ×X ×}

= {
a/b : (a,b) ∈ (

A× A×)∪ (
A×B×)∪ (

B × A×)∪ (
B ×B×)}

⊆ K ∪
( ⋃

b∈B×
(1/b)K

)
∪

( ⋃
a∈B

aK

)
∪

( ⋃
a∈B ,b∈B×

(a/b)K

)
.

Consider L to be a K -vector space. Hence L is a union of ≤ 1 + 2|B | + |B |2 one-dimensional
subspaces. By Fact 8 we have 1+2|B |+ |B |2 ≥ |K |. As K is infinite |B | ≥ |K |. □

We now prove Proposition B.

Proof. Let π : Lm → L be the projection onto the first coordinate. By Fact 1 π(O) is T-open. We
have π(O) \ K ⊆ π(O \ K m), so it suffices to show that |π(O) \ K | = |L|. So we may suppose that
O is an T-open subset of L. By the claim in the proof of Proposition 7 (O − b)(O − b)−1 = L for
any b ∈ O. So |O| = |L|. If O ∩K = ; we are done. Suppose otherwise and fix b ∈ O ∩K . By the
claim (O −b)(O −b)−1 = L so by Lemma 9 |(O −b) \ K | = |L|. Note that x 7→ x +b gives a bijection
(O −b) \ K →O \ K . □
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We now prove Fact B.

Proof. Let p be a smooth K -point of V and m = dimV . As V is irreducible there is an open
subvariety U of V containing p and an étale morphism f : U → Am

K . Let O = fL(UL(L)), note
that fL is étale as étale morphisms are closed under base change. Then O is an étale image in
Am

L (L) = Lm and is hence étale open. By Proposition B |U \ K m | = |L|. Note that if p ∈U (K ) then
fL(p) = f (p) ∈ K m . □

5. Fact C

We now prove Proposition C. Given a = (a1, . . . , am) ∈ Lm we let K (a) = K (a1, . . . , am).

Proof. We apply induction on m. Suppose m = 1. Let K ′ be the algebraic closure of K in L. So K ′

is a proper subfield of L. By Proposition B there is a ∈ O \ K ′. So td(K (a)/K ) = 1. Suppose m ≥ 2.
Let π : K m → K m−1 be the projection away from the first coordinate. By Fact 1 π(O) is T-open. By
induction there is b ∈π(O) such that td(K (b)/K ) = m −1. Let Ob = {c ∈ L : (b,c) ∈O}. Note that Ob

is the pre-image of O under the map K → K m given by x 7→ (b, x). So Ob is T-open. As td(L/K ) ≥ m
we have td(L/K (b)) ≥ 1. So there is c ∈Ob such that td(K (b,c)/K (b)) = 1. Let a = (b,c). □

We now prove a stronger version of the second form of Fact C.

Proposition 10. Suppose that L is large, K is a subfield of L with td(L/K ) ≥ m, and V is a smooth
geometrically irreducible m-dimension K -variety. Then the set of p ∈ V (L) such that p ∉ W (L) for
any proper closed subvariety W of V is dense in the étale open topology on V (L) =VL(L).

Proof. Suppose that O is a nonempty étale open subset of V (L). We show that O contains a p as
above. As V is smooth and irreducible there is an open subvariety U of V and an étale morphism
f : U →Am

K . By Proposition 5 O intersects UL(L). Let P = fL(UL(L)∩O), so P is a nonempty étale
open subset of Lm . By Proposition C there is a ∈ P such that td(K (a)/K ) = m. Fix p ∈ O ∩UL(L)
such that fL(p) = a. Suppose W is a proper closed subvariety of V , we show that p ∉ W (L).
Let W ′ be the Zariski closure of fL(WL). Then dimW < m, so dimWL < m, so dimW ′ < m. As
td(K (a)/K ) = m we have a ∉W ′. Hence p ∉WL(L) =W (L). □
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