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Abstract. The aim of this note is to deduce error estimates for a fully-discrete finite element method approxi-
mation of a kind of degenerate mixed parabolic equations. The obtained results consider regularity assump-
tions about the main variable according to the degenerate character of the problem, given by the term involv-
ing the time-derivative, which is represented with a non-invertible linear operator R. We show two different
approaches to obtain the error estimates. The first one needs to introduce an extension operator of R and the
second one requires to add a new ellipticity property for this operator. These error estimates can be applied
to analyze the fully-discrete finite element method approximation of an eddy current model.

Résumé. Le but de cette note est de déduire des estimations d’erreur pour une approximation par la méthode
des éléments finis entièrement discrets d’un type d’équations paraboliques mixtes dégénérées. Les résultats
obtenus considèrent des hypothèses de régularité sur la variable principale selon le caractère dégénéré du
problème, donné par le terme impliquant la dérivée temporelle, qui est représentée par un opérateur linéaire
non inversible R. Nous présentons deux approches différentes pour obtenir les estimations d’erreur. La
première nécessite d’introduire un opérateur d’extension de R et la seconde nécessite d’ajouter une nouvelle
propriété d’ellipticité pour cet opérateur. Ces estimations d’erreur peuvent être appliquées pour analyser
l’approximation par la méthode des éléments finis entièrement discrets d’un modèle de courants de Foucault.
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1. Introduction

We start introducing the mixed degenerate parabolic problem: given u0 ∈ Y , f ∈ L2(0,T ; X ′) and
g ∈ L2(0,T ; M ′), find u ∈ L2(0,T ; X ) and λ ∈ L2(0,T ; M) satisfying the following equations:

d

d t

[〈
Ru(t ), v

〉
Y +b(v,λ(t ))

]+〈
Au(t ), v

〉
X = 〈

f (t ), v
〉

X ∀ v ∈ X in D′(0,T ), (1)

b
(
u(t ),η

)= 〈
g (t ),η

〉
M ∀ η ∈ M , (2)〈

Ru(0), v
〉

Y = 〈
Ru0, v

〉
Y ∀ v ∈ Y . (3)

where X and Y are two real Hilbert spaces such that X is contained in Y with a continuous
and dense imbedding; M is a real reflexive Banach space; 〈·, ·〉Z denotes the duality pairing in
Z (Z ∈ {X ,Y , M }); R : Y → Y ′, A : X → X ′ are continuous linear operator with R not necessarily
invertible; and b : X × M → R is a continuous bilinear form. A motivation for the study of this
kind of equations comes from the eddy current models considered in [3–5]. These models allow
to consider the time-primitive of the electric field as the main variable of the problem and to
compute it by using the finite element method (FEM). Furthermore, to obtain the convergence of
FEM approximation, in [3,4] have been assumed that ∂t t u is square integrable inΩ×(0,T ) where
Ω is the computational domain, while in [5] it has been supposed that this property holds in a
parabolic subdomain ΩC × (0,T ) where ΩC represents the conductor domain which is contained
inΩ.

Recently, a FEM approximation for the general problem (1)–(3) has been analyzed in [1] and to
obtain the convergence of the method has been assumed that u ∈ H2(0,T ;Y ). This condition for
the concrete case of problems in [3–5] is equivalent to suppose that ∂t t u is square integrable in
Ω× (0,T ). The goal of this paper is to obtain error estimates for the approximation of the general
problem (1)–(3) by considering a time regularity that in the practice problems is equivalent to the
regularity in the subdomainΩC × (0,T ) (see Remark 4 below).

With this aim, we present two alternatives. The first one requires to build a vector space that
allows the linear operator R to be adequately extended in order to improve the aforementioned
regularity. The second one consists in assuming a kind of elliptic condition for the operator R. In
both cases, it is necessary to redefine the error term for the approximation of the time-derivatives,
which is based on a projection operator of Y onto the orthogonal space of the kernel of the
operator R.

The outline of this note is as follows: in Section 2 we recall results obtained in [2] about
the well-posedness of Problem (1)–(3) and we present a fully-discrete approximation for that
problem. Next, some preliminary notation and relevant results for the error estimate analysis
are presented in Section 3. Finally, two different approaches to deduce the error estimates of the
fully-discrete approximation with a (new) time regularity for the problem are shown in Sections 4
and 5.

2. The mixed degenerate parabolic problem

Let V be the kernel of the bilinear form b, i.e., V := {
v ∈ X : b(v,η) = 0 ∀ η ∈ M

}
and denote by

W its closure with respect to the Y -norm. The well-posedness of problem (1)-(3) is obtained by
assuming the following assumptions [2]:

(H1) R is self-adjoint and monotone on V , i.e., 〈Rv, w〉Y = 〈Rw, v〉Y and 〈Rv, v〉Y ≥ 0 for any
v, w ∈V .

(H2) The bilinear form b satisfies a continuous inf-sup condition, i.e., there exists β > 0 such
that

sup
v ∈X

b(v,η)

‖v‖X
≥β∥∥η∥∥

M ∀ η ∈ M .
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(H3) The operator A is self-adjoint on V , i.e., 〈Av, w〉X = 〈Aw, v〉X for any v, w ∈V .
(H4) There exist ξ> 0 and α> 0 such that 〈Av, v〉X +ξ〈Rv, v〉Y ≥α‖v‖2

X for any v ∈V .
(H5) The initial data u0 belongs to W .
(H6) The data function g belongs to H1(0,T ; M ′).

Theorem 1. Let us assume that assumptions (H1)–(H6) hold true. Then the Problem (1)–(3) has a
unique solution (u,λ) ∈ L2(0,T ; X )×C 0([0,T ]; M) and there exists a constant C > 0 such that

‖u‖L2(0,T ; X ) +‖λ‖L2(0,T ; M) ≤C
{‖ f ‖L2(0,T ; X ′) +‖g‖H1(0,T ; M ′) +‖u0‖Y

}
.

Moreover, λ(0) = 0.

Proof. See [2, Theorem 2.1]. �

Now, we introduce the following fully-discrete approximation for the mixed degenerate par-
abolic problem (1)-(3). Let {Xh}h>0 and {Mh}h>0 be sequences of finite-dimensional subspaces
of X and M , respectively (the choice for the subspaces Xh and Mh correspond to element finite
spaces) and let {tn := n∆t : n = 0, . . . , N } be a uniform partition of [0,T ] with a step size∆t := T /N .
For any finite sequence {θn : n = 0, . . . , N } we denote

∂θn := θn −θn−1

∆t
, n = 1, . . . , N .

Let u0,h ∈ Xh and assume that f ∈ C ([0,T ]; X ′). Then, the fully-discrete approximation of the
Problem (1)-(3) reads as follows:

Find un
h ∈ Xh , λn

h ∈ Mh , n = 1, . . . , N , such that:〈
R∂un

h , v
〉

Y
+b

(
v,∂λn

h

)
+〈

Aun
h , v

〉
X = 〈

f (tn) , v
〉

X ∀ v ∈ Xh , (4)

b
(
un

h ,η
)= 〈

g (tn) ,η
〉

M ∀ η ∈ Mh , (5)

u0
h = u0,h , (6)

λ0
h = 0. (7)

We can notice that this scheme is obtained by using a backward Euler discrete approximation for
the time-derivatives. Furthermore, the third equation of Problem (4)-(7) will require a suitable
approximation u0,h of the initial data u0 to obtain the convergence of the scheme (see Theorems 3
and 7). The existence and uniqueness of the problem (4)-(7) is obtained from the classical
Babuška–Brezzi Theory by assuming the following conditions:

(H7) There exist ξh > 0 and αh > 0 such that

〈Av, v〉X +ξh〈Rv, v〉Y ≥αh‖v‖2
X ∀ v ∈Vh , (8)

where Vh denotes the discrete kernel of b in Xh , i.e., Vh := {v ∈ Xh : b(v,η) = 0 ∀ η ∈ Mh}.
(H8) The bilinear form b : Xh × Mh → R is bounded and it satisfies the discrete inf-sup

condition, i.e., there exists βh > 0 such that

sup
v ∈Xh

b(v,η)

‖v‖X
≥βh

∥∥η∥∥
M ∀ η ∈ Mh . (9)

3. Preliminary concepts for the analysis of error estimates

We start by considering the projection operatorΠh : X → Xh characterized by

Πh w ∈ Xh :
(
Πh w, z

)
X = (w, z)X ∀ z ∈ Xh ,

then there is C > 0 independent on h satisfying∥∥w −Πh w
∥∥

X ≤C inf
z∈Xh

‖w − z‖X .
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Now, we introduce the discrete orthogonal of V ⊥
h , i.e,

V ⊥
h := {

v ∈ Xh : (v, w)X = 0 ∀ w ∈Vh
}⊂ Xh .

By proceeding as in [1, Subsection 4.1], we can define Ph : X → Xh given by

Ph w := P̃ h w +Πh w ∀ w ∈ X ,

where P̃ h : X →V ⊥
h is defined by

b
(
P̃ h w,µ

)
= b

(
w −Πh w,µ

) ∀µ ∈ Mh .

The operator P̃ h is well defined thanks to the discrete inf-sup condition (9) and there holds∥∥∥P̃ h w
∥∥∥

X
≤ ‖b‖
βh

∥∥w −Πh w
∥∥

X ,

thus, from the triangle inequality, it follows that∥∥w −Ph w
∥∥

X ≤C

(
1+ ‖b‖

βh

)
inf

z∈Xh

‖w − z‖X ∀ w ∈ X .

Therefore, we can use the operator Ph to consider the split of the error given by

en
h := u (tn)−un

h = ρn
h +σn

h , n = 1, . . . , N , (10)

where

ρh(t ) := u(t )−Phu(t ), ρn
h := ρh (tn) , σn

h :=Phu (tn)−un
h .

In order to define the error term for time derivatives and obtain the error estimates with the
desired regularity, we will need to introduce some notations and deduce some relevant results. In
fact, letΛY : Y → Y ′ be the Riesz isomorphism and define R̂ :=Λ−1

Y R. Thus, by following the ideas
from [6, Section 4], we can observe R̂ : Y → Y is a monotone, linear and bounded self-adjoint
operator. Therefore, the operator R̂ admits a unique square root R̂1/2 which is also a monotone,
linear and bounded self-adjoint operator (see [7]). Let Y0 := ker R̂, Y+ be the orthogonal space of
Y0 and Y 1/2+ be the completion of Y+ with respect the topology induced by the norm

‖v‖+ := ∥∥R̂1/2v
∥∥

Y .

Therefore, we can notice that

〈Rv, v〉Y = ∥∥R̂1/2v
∥∥2

Y ∀ v ∈ Y .

Denote P+ : Y → Y+ the orthogonal projection satisfies R̂v = R̂(P+v) for any v ∈ Y and observe
that ∥∥R̂1/2P+v

∥∥
Y = ‖P+v‖+ ∀ v ∈ Y .

In summary, we have

〈Rv, v〉Y = ∥∥R̂1/2v
∥∥2

Y = ∥∥R̂1/2P+v
∥∥2

Y = ‖P+v‖2
+ ∀ v ∈ Y .

Now, since the operator R is monotone and self-adjoint, it is easy to check the following
Cauchy–Schwarz type inequality

|〈Rv, w〉Y | ≤ 〈Rv, v〉1/2
Y 〈Rw, w〉1/2

Y ∀ v, w ∈ Y , (11)

which implies

|〈Rv, w〉Y | ≤ ‖R‖
1
2
L (Y ,Y ′)‖w‖Y ‖v‖+ ∀ v ∈ Y+ ∀ w ∈ Y

and consequently

‖Rv‖Y ′ ≤ ‖R‖
1
2
L (Y ,Y ′)‖v‖+ ∀ v ∈ Y+.
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4. Error estimates by using an extension operator of R

Now we present the first approach to obtain the error estimates with the corresponding regularity
of the solution. We start by introducing the operator

R̃ : Y 1/2
+ → Y ′,

which is the linear and continuous extension operator of the operator R|Y+ : Y+ → Y ′ (the
restriction of the operator R to Y+). Then, from inequality (11) and by means of an standard
argument of continuity and density, we can deduce∣∣〈R̃v, w

〉
Y

∣∣≤ ‖v‖+ 〈Rw, w〉1/2
Y ∀ v ∈ Y 1/2

+ ∀ w ∈ Y . (12)

Furthermore, we can easily notice that

Rv = R (P+v) = R̃ (P+v) ∀ v ∈ Y . (13)

On the other hand, we can prove that if u ∈ H1(0,T ; X )(⊆ H1(0,T ;Y )) then P+u ∈ H1(0,T ;Y+)(⊆
H1(0,T ;Y )) and therefore

∂t (P+u) = P+ (∂t u) in L2 (0,T ;Y+) .

Thus, by using (13) and the continuity of R, it follows RP+u ∈ H1(0,T ;Y ′) and consequently

∂t (Ru) = ∂t (RP+u) = R∂t (P+u) = RP+∂t u in L2 (
0,T ;Y ′) . (14)

Now, since the embedding Y+ ⊆ Y 1/2+ is continuous and P+u ∈ H1(0,T ;Y+), we have P+u ∈
H1(0,T ;Y 1/2+ ). Hence, by recalling the fact that R and R̃ coincide in Y+ and R̃ ∈ L (Y 1/2+ ,Y ′), we
deduce R(P+u) = R̃(P+u) ∈ H1(0,T ;Y ′). Moreover, if P+u ∈C 1([0,T ];Y 1/2+ ) then

∂t (RP+u) = R̃∂t (P+u) in C 0 (
[0,T ];Y ′)(⊆C 0 (

[0,T ]; X ′)) .

Consequently, if u ∈ H1(0,T ; X ) and P+u ∈C 1([0,T ];Y 1/2+ ), from (14) and the previous identity,
we can conclude

∂t (Ru) = ∂t (RP+u) = R̃∂t (P+u) in C 0 (
[0,T ];Y ′) . (15)

Now, we are able to define the corresponding error term to estimate the time-derivatives
approximation. In fact, by assuming P+u(t ) ∈C 1([0,T ];Y 1/2+ ) we denote

τn := P+u (tn)−P+u (tn−1)

∆t
−∂t P+u (tn) , n = 1, . . . , N .

Note that τn ∈ Y 1/2+ , but in general τn 6∈ Y . Moreover, we can notice the following relationship
between τn , ρn

h and σn
h (see (10)) for n = 1, . . . , N :

∂t P+u (tn)−∂(
P+un

h

)= ∂(
P+en

h

)−τn = ∂(
P+ρn

h

)+∂(
P+σn

h

)−τn . (16)

In the following, we denote C as a generic positive constant that is not necessarily the same at
each occurrence.

Lemma 2. If u ∈ H1(0,T ; X ) with P+u ∈ C 1([0,T ];Y 1/2+ ), λ ∈ C 1(0,T ; M) and {ξh}h>0, {αh}h>0

(see H7) are bounded uniformly in h, then provided ∆t is small enough, there exists a constant
C > 0 independent of h and ∆t , such that〈

Rσn
h ,σn

h

〉
Y
+∆t

n∑
k=1

∥∥∥σk
h

∥∥∥2

X

≤C

(〈
Rσ0

h ,σ0
h

〉
Y
+∆t

N∑
k=1

[∥∥∥τk
∥∥∥2

++
∥∥∥∂ρk

h

∥∥∥2

Y
+

∥∥∥ρk
h

∥∥∥2

X
+

(
sup
v ∈Vh

b
(
v,∂t λ (tk )

)
‖v‖X

)2])
. (17)



436 Ramiro Miguel Acevedo Martínez and Christian Camilo Gómez Mosquera

Proof. Let k ∈ {1, . . . , N }. By combining (1) and (15), we have〈
R̃

(
∂t (P+u) (tk )

)
, v

〉
Y
+b

(
v,∂tλ (tk )

)+〈
Au (tk ) , v

〉
X = 〈

f (tk ), v
〉

X ∀ v ∈Vh .

Moreover, by using (4) and (13), we obtain〈
R̃

(
∂
(
P+uk

h

))
, v

〉
Y
+

〈
Auk

h , v
〉

X
= 〈

f (tk ), v
〉

X ∀ v ∈Vh .

Then, by subtracting these two identities and using (16), we deduce〈
R̃∂

(
P+σk

h

)
, v

〉
Y
+

〈
Aσk

h , v
〉

X

=
〈

R̃τk , v
〉

Y
−

〈
R̃

(
P+∂ρk

h

)
, v

〉
Y
−

〈
Aρk

h , v
〉

X
−b

(
v,∂t λ (tk )

) ∀ v ∈Vh ,

hence, from (13) it follows〈
R∂σk

h , v
〉

Y
+

〈
Aσk

h , v
〉

X

=
〈

R̃τk , v
〉

Y
−

〈
R∂ρk

h , v
〉

Y
−

〈
Aρk

h , v
〉

X
−b

(
v,∂t λ (tk )

) ∀ v ∈Vh .

Thus, by taking v :=σk
h ∈Vh in this last identity, we have〈

R∂σk
h ,σk

h

〉
Y
+

〈
Aσk

h ,σk
h

〉
X
=

〈
R̃τk ,σk

h

〉
Y
−

〈
R∂ρk

h ,σk
h

〉
Y
−

〈
Aρk

h ,σk
h

〉
X
−b

(
σk

h ,∂t λ (tk )
)
. (18)

Now, we can estimate the first term in the right hand term of this equality by recalling that
τk ∈ Y 1/2+ and using (12) and Young inequality, to obtain∣∣∣〈R̃τk ,σk

h

〉
Y

∣∣∣≤ 1

4

〈
Rσk

h ,σk
h

〉
Y
+

∥∥∥τk
∥∥∥2

+ .

Similarly, it is easy to check that∣∣∣〈R∂ρk
h ,σk

h

〉
Y

∣∣∣≤ 1

4

〈
Rσk

h ,σk
h

〉
Y
+C

∥∥∥∂ρk
h

∥∥∥2

Y
,

〈
Aρk

h ,σk
h

〉
X
≤ α

4

∥∥∥σk
h

∥∥∥2

X
+C

∥∥∥ρk
h

∥∥∥2

X
.

Therefore, having in mind the estimate

b
(
σk

h ,∂tλ (tk )
)
≤

∥∥∥σk
h

∥∥∥
X

sup
v ∈Vh

b
(
v,∂t λ (tk )

)
‖v‖X

≤ α

4

∥∥∥σk
h

∥∥∥2

X
+C

(
sup
v ∈Vh

b
(
v,∂t λ (tk )

)
‖v‖X

)2

,

the Lemma 2 is obtained from (18), by using (8) and following the standard arguments for the
error estimates of mixed degenerate parabolic problems (see, for instance, [1, Lemma 4.1]). �

Theorem 3. Under the assumptions of Lemma 2, if {βh}h>0 is bounded uniformly in h and
u ∈ H1(0,T ; X ) with P+u ∈ H2(0,T ;Y 1/2+ ) then there exists a constant C > 0 independent of h and
∆t , such that for ∆t small enough there holds

max
1≤n≤N

〈
R

(
u (tn)−un

h

)
,u (tn)−un

h

〉
Y
+∆t

N∑
n=1

∥∥u (tn)−un
h

∥∥2
X

≤C

{〈
R

(
u0 −u0,h

)
,u0 −u0,h

〉
Y + max

0≤n≤N

(
inf

z∈Xh

‖u (tn)− z‖X

)2

+
∫ T

0

(
inf

z∈Xh

∥∥∂t u(t )− z
∥∥

X

)2

d t + (∆t )2∥∥∂t t P+u
∥∥2

L2
(
0,T ;Y 1/2+

)+∆t
N∑

n=1

(
inf

µ∈Mh

∥∥∂tλ(tn)−µ∥∥
M

)2
}

.

Proof. A Taylor’s expansion shows that
N∑

k=1

∥∥∥τk
∥∥∥2

+ =
N∑

k=1

∥∥∥∥ 1

∆t

∫ tk

tk−1

(
tk−1 − t

)
∂t t P+u(t )d t

∥∥∥∥2

+
≤∆t

∫ T

0

∥∥∂t t P+u(t )
∥∥2
+ d t .

Now, by using σ0
h = e0

h −ρ0
h and recalling that R is self-adjoint and monotone, it follows that〈

Rσ0
h ,σ0

h

〉
Y
≤ 2

〈
R

(
u0 −u0,h

)
,u0 −u0,h

〉
Y
+2

〈
Rρ0

h ,ρ0
h

〉
Y

.
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Thus, by using the Lemma 2, we can proceed as in [1, Theorem 4.1] to conclude the result. �

Remark 4. For the case of formulations of the eddy current model in terms of a time primitive of
the electric field (see [3–5]), we have X := H(curl;Ω), Y := L2(Ω)3 and

〈Rv,w〉Y :=
∫
ΩC

σv ·w ∀ v,w ∈ Y ,

where Ω ⊂ R3 is the computational domain, ΩC is the conductor domain satisfying ΩC (Ω and
σ is the physical parameter called the electric conductivity that is assumed to be a positive and
bounded function in the conductor (i.e., 0 < σ0 ≤ σ(x) ≤ σ1 a.e. x ∈ ΩC, with σ0 and σ1 positive
constants) and zero in the insulator ΩD := Ω \Ωc. Therefore, the operators defined above are
given by

R̂v :=σχΩC
v, R̂1/2v :=σ1/2χΩC

v ∀ v ∈ Y := L2 (Ω)3 ,

where χΩC
is the characteristic function ofΩC. Furthermore,

Y 1/2
+ = Y+ :=

{
v ∈ L2 (Ω)3 : v|ΩD

= 0
}∼= L2 (

ΩC

)3

and P+v :=χΩC
v for all v ∈ Y . Consequently, the assumption P+u ∈ H2(0,T ;Y 1/2+ ) in Theorem 3 is

equivalent to the fact that the solution u of the eddy current problem satisfies

u|ΩC
∈ H 2

(
0,T ;L2 (

ΩC

)3
)

.

5. Error estimates by assuming an elliptic condition for R

Another alternative to deduce error estimates for solution is obtained by assuming the following
property about the operator R: there exists a constant γ> 0 such that

〈Rv, v〉Y ≥ γ‖v‖2
Y ∀ v ∈ Y+, (19)

where Y+ is the ortogonal space to Y0 := ker R̂ (see Section 3). We can easily check that (19) implies
the norms ‖ ·‖Y and ‖ ·‖+ are equivalent on Y+ and consequently Y 1/2+ = Y+.

Remark 5. Let us notice that for the case of the eddy current model application (see Remark 4),
the operator R satisfies (19). More precisely,

〈Rv,v〉Y =
∫
ΩC

σ|v|2 ≥σ0‖v‖2

L2
(
ΩC

)3 ∀ v ∈ Y+ ∼= L2 (
ΩC

)3 .

For the rest of this section we assume u ∈ H1(0,T ; X ) and P+u ∈C 1([0,T ];Y+). Then R(P+u) ∈
C 1([0,T ];Y ′) and

∂t (RP+u) = R∂t (P+u) ∈C 0 (
[0,T ];Y ′)⊂C 0 (

[0,T ]; X ′) .

Furthermore, if λ ∈C 1(0,T ; M) since f (·)− Au(·) ∈C 0([0,T ]; X ′), the identity〈
R

(
∂t (P+u) (t )

)
, v

〉
Y
+b

(
v,∂tλ(t )

)+〈
Au(t ), v

〉
X = 〈

f (t ), v
〉

X ∀ v ∈Vh (20)

holds for all t ∈ [0,T ]. Besides, by using (4) and (13), we obtain〈
R

(
∂
(
P+un

h

))
, v

〉
Y
+〈

Aun
h , v

〉
X = 〈

f (tn), v
〉

X ∀ v ∈Vh (21)

for n = 1, . . . , N .
Now, we define

τn := u (tn)−u (tn−1)

∆t
−∂t P+u (tn) , n = 1, . . . , N .

We can notice τn ∈ Y . Moreover, by recalling (10) we obtain

∂t P+u (tn)−∂(
P+un

h

)= ∂(
P+ρn

h

)+∂(
P+σn

h

)−P+τn , (22)

for n = 1, . . . , N .
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Next, by using (20), (21) and (22), we can proceed as in the proof of Lemma 2 to obtain the
following similar result.

Lemma 6. If u ∈ H1(0,T ; X ) with P+u ∈C 1([0,T ];Y+), λ ∈C 1(0,T ; M) and {ξh}h>0, {αh}h>0 (see
H7) are bounded uniformly in h, then provided ∆t is small enough, there exists a constant C > 0
independent of h and ∆t , such that〈

Rσn
h ,σn

h

〉
Y
+∆t

n∑
k=1

∥∥∥σk
h

∥∥∥2

X

≤C

(〈
Rσ0

h ,σ0
h

〉
Y
+∆t

N∑
k=1

[∥∥∥P+τk
∥∥∥2

++
∥∥∥∂ρk

h

∥∥∥2

Y
+

∥∥∥ρk
h

∥∥∥2

X
+

(
sup
v ∈Vh

b
(
v,∂t λ (tk )

)
‖v‖X

)2])
.

Finally, in virtue of the previous lemma and by proceeding as in the proof of Theorem 3, we
deduce the following error estimate.

Theorem 7. Under the assumptions of Lemma 6, if {βh}h>0 is bounded uniformly in h and
u ∈ H1(0,T ; X ) with P+u ∈ H2(0,T ;Y+) then there exists a constant C > 0 independent of h and
∆t , such that

max
1≤n≤N

〈
R

(
u (tn)−un

h

)
,u (tn)−un

h

〉
Y
+∆t

N∑
n=1

∥∥u (tn)−un
h

∥∥2
X

≤C

{〈
R

(
u0 −u0,h

)
,u0 −u0,h

〉
Y
+ max

0≤n≤N

(
inf

z∈Xh

∥∥u (tn)− z
∥∥

X

)2

+
∫ T

0

(
inf

z∈Xh

∥∥∂t u(t )− z
∥∥

X

)2

d t + (∆t )2∥∥∂t t P+u
∥∥2

L2(0,T ;Y+) +∆t
N∑

n=1

(
inf

µ∈Mh

∥∥∂tλ (tn)−µ∥∥
M

)2
}

.

Remark 8. Theorems 3 and 7 are similar to [1, Theorem 4.1], but this last result requires the
solution u belongs to H2(0,T ;Y ), instead of the hypothesis P+u ∈ H2(0,T ;Y+), which is a more
reasonable assumption for a solution of a degenerate problem. In particular, for the case of
eddy current applications (see Remark 4), the assumption P+u ∈ H2(0,T ;Y+) means u|ΩC

∈
H2(0,T ;L2(ΩC)3), that is in accordance with the functional space to which the solution u belongs
(see [3–5]):

W :=
{

v ∈ L2
(
0,T ;H

(
curl;ΩC

))
: ∂t v|ΩC

∈ L2
(
0,T ;H

(
curl;ΩC

)′)} .

Consequently, by proceeding as in [1, Remark 5.7], we can apply Theorem 3 or Theorem 7
to obtain the asymptotic convergence of the fully-discrete approximation for the eddy current
problems studied in [3–5].
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