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Abstract. We are concerned with the determination of the reachable states for the distributed control of the
heat equation on an interval. We consider either periodic boundary conditions or homogeneous Dirichlet
boundary conditions. We prove that for a L2 distributed control, the reachable states are in the Sobolev space
H1 and that they have complex analytic extensions on squares whose horizontal diagonals are regions where
no control is applied.
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1. Introduction

The null controllability of the heat equation has been investigated for a long time [4], and
sharp results in dimension N were obtained in the nineties by using Carleman estimates [5, 9].
By contrast, sharp results for the exact controllability of the heat equation were obtained only
recently. In [12], the authors noticed that for the boundary control of the heat equation on a
real interval, the reachable space was sandwiched between the set of analytic functions on a ball
and the set of analytic functions on a square. These results were improved in [2, 6], where the
reachable space was sandwiched between two spaces of analytic functions on squares. The sharp
result, derived in [7,13], tells that the reachable space for the heat equation on the interval (−1,1)
with two boundary controls at x =±1 taken in the space L2(0,T ), is exactly the Bergman space of
the functions that are both analytic and square integrable on the squareΩ= {x + i y ; |x|+|y | < 1}.
See also [8] for the reachable spaces of semilinear parabolic equations, and [11] and [1] for the
reachable spaces of the linear Korteweg-de Vries equation and the linear Zakharov–Kuznetsov
equation, respectively.
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The present paper is concerned with the determination of the reachable space for the dis-
tributed control of the heat equation on an interval. Roughly, it is proved that when using L2 dis-
tributed controls, the reachable states are H 1 in the control region and analytic elsewhere. At the
same time, we shall provide a short proof of the main result in [2] by using the method introduced
in [10] to construct backward solutions of the heat equation.

Let us review the main results in this paper. Consider first periodic boundary conditions. Let
T=R/2πZ and let χ(l1,l2)(x) = 1 if x ∈ (l1, l2), 0 otherwise. We consider the control problem:{

wt −wxx =χ(l1,l2)u (x, t ) ∈T× (0,T ),

w(x,0) = 0 x ∈T.
(1)

For 0 < L1 < L2 < 2π, we introduce the open set

S (L1,L2) = {x + i y ∈C; |y | < x −L2 and |y | < L1 +2π−x}

which is a square with the interval (L2,L1 +2π) as a diagonal. Define

H (L1,L2) = {
f ∈ H 1(T); f |(L2,L1+2π) can be extended as an analytic function in S (L1,L2)

}
,

A (L1,L2) =
{

f ∈H (L1,L2);
∫
S (L1,L2)

| f (x + i y)|2dxdy <∞
}

.

Note that any function f ∈H (L1,L2) can be extended as an analytic function on ∪k∈ZS (L1,L2)+
2kπ, by 2π-periodicity of f . The following result is the first main result in this paper.

Theorem 1. Let T > 0 and 0 < l1 < l2 < 2π. Then

(i) for any u ∈ L2(0,T ;L2(T)), the solution w of system (1) satisfies w( · ,T ) ∈A (l1, l2);
(ii) for any 0 < ε < (l2 − l1)/2 and any wT ∈ H (l1 + ε, l2 − ε), there exists a control input

u ∈ L2(0,T ;L2(T)) such that the solution w of system (1) satisfies w( · ,T ) = wT in T.

Remark 2.

(1) The above result is “almost sharp”, for ε can be taken as small as desired in the inclusion

H (l1 +ε, l2 −ε) ⊂A (l1, l2).

(2) Having in mind the characterisation of the reachable space for the boundary control of
the heat equation in [7], it is natural to conjecture that the reachable space for system (1)
is the Bergman space A (l1, l2).

Figure 1. Reachable states for periodic boundary conditions.

Next, we consider distributed control systems on the interval (0,1) with homogeneous bound-
ary conditions.1

1Homogeneous Neumann boundary conditions could be treated in a similar way.
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Let 0 < l1 < l2 < 1. For any given u ∈ L2(0,T,L2(0,1)), let w denote the solution of the control
system 

wt −wxx =χ(l1,l2)u (x, t ) ∈ (0,1)× (0,T ),

w(0, t ) = w(1, t ) = 0 t ∈ (0,T ),

w(x,0) = 0 x ∈ (0,1).

(2)

For any L > 0, we introduce the set

S (L) = {x + i y ∈C; |x|+ |y | < L},

and the spaces

H (L) = {
f ∈ H 1(0,L); f can be extended as an odd analytic function on S (L)

}
,

A (L) =
{

f ∈H (L);
∫
S (L)

| f (x + i y)|2dxdy <∞
}

.

The following result is the second main result in this paper.

Theorem 3. Let T > 0 and 0 < l1 < l2 < 1. Then

(i) for any u ∈ L2(0,T ;L2(0,1)), the solution w of system (2) satisfies w( · ,T ) ∈ H 1
0 (0,1),

w( · ,T ) ∈A (l1) and w(1−· ,T ) ∈A (1− l2);
(ii) for any 0 < ε < (l2 − l1)/2, for any wT ∈ H 1

0 (0,1) with wT ∈ H (l1 + ε) and wT (1 − · ) ∈
H (1− l2 +ε), there exists a control function u ∈ L2(0,T ;L2(0,1)) such that the solution w
of system (2) satisfies w( · ,T ) = wT in (0,1).

Figure 2. Reachable states for homogeneous Dirichlet boundary conditions.

Remark 4. The result is again “almost sharp”. We conjecture that for 0 < l1 < l2 < 1, the reachable
space for system (2) is the set of functions wT ∈ H 1

0 (0,1) such that wT ∈ A (l1) and wT (1− · ) ∈
A (1− l2).

The paper is outlined as follows. The proof of Theorem 1 (resp. Theorem 3) is given in Section 2
(resp. in Section 3). We provide in appendix a short proof of the main result in [2] which is used
to prove Theorem 1.

2. Proof of Theorem 1

(i). Pick any u ∈ L2(0,T,L2(T)) and let w denote the solution of (2). Using the regularity of
solutions of the heat equations (see [3]), we see that

w ∈C ([0,T ], H 1(T)), (3)
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and hence w( · ,T ) ∈ H 1(T). Introduce the function

v(x, t ) = w(x, t ) for (x, t ) ∈ [l2, l1 +2π]× [0,T ].

Then v satisfies the following system
vt − vxx = 0 (x, t ) ∈ (l2, l1 +2π)× (0,T ),

v(l2, t ) = w(l2, t ), v(l1 +2π, t ) = w(l1 +2π, t ) t ∈ (0,T ),

v(x,0) = 0 x ∈ (l2, l1 +2π),

where the boundary controls w(l2, · ) and w(l1 + 2π, · ) are in C ([0,T ]), by (3). Then v( · ,T ) can
be extended as an analytic function in S (l1, l2) by [12, Theorem 2.1]. Furthermore, w( · ,T ) ∈
L2(S (l1, l2)) by [6, Proposition 1.2]. Therefore w( · ,T ) ∈A (l1, l2).

(ii). We introduce a partition of unity. Let ψ1,ψ2 ∈C∞(T) be such that

ψ1 +ψ2 = 1, 0 ≤ψi ≤ 1, i = 1,2

ψ1(x) = 0, x ∈T\ (l1, l2),

ψ2(x) = 0, x ∈
(
l1 + ε

2
, l2 − ε

2

)
.

Figure 3. Partition of unity

Consider a control problem with a distributed control supported in T:{
w1t −w1xx = ũ1 (x, t ) ∈T× (0,T ),

w1(x,0) = 0 x ∈T,
(4)

where ũ1 is the control.

Lemma 5. For any T > 0 and any wT ∈ H 1(T), there exists a function ũ1 ∈ L2(0,T ;L2(T)) such that
the solution of (4) satisfies

w1(x,T ) = wT (x) ∀ x ∈T.

Proof. Expand the control input as a Fourier series ũ1(x, t ) = ∑
n∈Zun(t )e i nx . Then by Duhamel

formula

w1(x, t ) =
∫ t

0

∑
n∈Z

e−n2(t−τ)un(τ)e i nx dτ.

Since wT ∈ H 1(T), we can expand wT as wT (x) =∑
n∈Z ane i nx with

∑
n∈Zn2|an |2 <∞.

Pick

un(t ) =


a0

T
for n = 0,

2n2e−n2(T−t )

1−e−2n2T
an for n ∈Z∗.

C. R. Mathématique — 2022, 360, 627-639
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Then we obtain for n ∈Z∗∫ T

0
|un(t )|2dt =

(
2n2

1−e−2n2T

)2

|an |2
∫ T

0
e−2n2(T−t )dt = 2n2

1−e−2n2T
|an |2 ∼ 2n2|an |2 as n →+∞.

It follows that

‖ũ1‖2
L2(0,T ;L2(T)) = 2π

∑
n∈Z

∫ T

0
|u2

n(t )|dt <∞.

On the other hand, we have
∫ T

0 e−n2(T−τ)un(τ)dτ = an for all n ∈ Z, and hence w1( · ,T ) = wT .
The proof of Lemma 5 is complete. �

It follows from (4) that the function ψ1w1 satisfies the system:
(ψ1w1)t − (ψ1w1)xx = u1 (x, t ) ∈T× (0,T ),

(ψ1w1)(x,0) = 0 x ∈T,

(ψ1w1)(x,T ) = (ψ1wT )(x) x ∈T,

(5)

with

u1 =ψ1(w1t −w1xx )−2ψ1x w1x −ψ1xx w1

=ψ1ũ1 −2ψ1x w1x −ψ1xx w1.

By (3) (still valid for l1 = 0 and l2 = 2π), we have that w1 ∈C ([0,T ], H 1(T)). By construction of ψ1,
we have that ∂n

xψ1(x) = 0 for all x ∈T\ (l1, l2) and all n ≥ 0, and hence

u1 =χ(l1,l2)u1 in L2(0,T,L2(T)).

Let Hol(Ω) denote the space of (complex) analytic functions in Ω. A function h ∈C∞([0,T ]) is
said to be Gevrey of order 2, and we write h ∈G2([0,T ]), if there exist some positive constants C ,R
such that

|∂p
t h(t )| ≤C

(p !)2

Rp ∀ t ∈ [0,T ], ∀ p ≥ 0.

The following result is needed.

Theorem 6. Let L > 1, T > 0, and ψ ∈ Hol(S(L)). Then there exist h−1,h1 ∈G2([0,T ]) such that the
solution w = w(x, t ) of the control system

wt −wxx = 0, (x, t ) ∈ (−1,1)× (0,T ), (6)

w(−1, t ) = h−1(t ), w(1, t ) = h1(t ), t ∈ (0,T ), (7)

w(x,0) = 0, x ∈ (−1,1), (8)

satisfies w ∈ C∞([−1,1]× [0,T ]) and w(x,T ) = ψ(x) for x ∈ [−1,1]. If, in addition, ψ is odd, then
we can require that w( · , t ) be odd for all t ∈ [0,T ], so that h−1(t ) = −h1(t ) and w(0, t ) = 0 for all
t ∈ [0,T ].

Note that a similar result with h−1,h1 ∈ C∞([0,T ]) was derived in [2, Theorem 5.2]. Here,
we provide in Appendix a very short proof of Theorem 6 which is interesting in itself. Note
that the control inputs can be made explicit and that they have the (sharp) time regularity G2

corresponding to the space regularity G1. That property is useful when dealing with nonlinear
problems [8].

By Theorem 6, if wT ∈H (l1+ε, l2−ε), we can find h1,h2 ∈G2([0,T ]) such that the solution w2

of the following system
w2t −w2xx = 0 (x, t ) ∈ (l2 − ε

2 , l1 + ε
2 +2π)× (0,T ),

w2(l2 − ε
2 , t ) = h1(t ), w2(l1 + ε

2 +2π, t ) = h2(t ) t ∈ (0,T ),

w2(x,0) = 0 x ∈ (l2 − ε
2 , l1 + ε

2 +2π)

(9)
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satisfies w2 ∈C∞([l2 − ε
2 , l1 + ε

2 +2π]× [0,T ]) and

w2(x,T ) = wT (x), ∀ x ∈
(
l2 − ε

2
, l1 + ε

2
+2π

)
.

Extend w2 as a function in C∞(T× [0,T ]) (i.e. as a function smooth in (x, t ) and 2π-periodic in x)
and still denote this function by w2. Then we have

(ψ2w2)t − (ψ2w2)xx = u2 (x, t ) ∈T× (0,T ),

(ψ2w2)(x,0) = 0 x ∈T
(ψ2w2)(x,T ) = (ψ2wT )(x) x ∈T

(10)

where

u2 =ψ2(w2t −w2xx )−2ψ2x w2x −ψ2xx w2.

It follows from the definition of ψ2 and the first equation in (9) that u2(x, t ) = 0 for x ∈
[l2, l1 +2π] and t ∈ [0,T ]. Thus we have

u2 =χ(l1,l2)u2 in L2(0,T,L2(T)).

Since w2 ∈C∞(T× [0,T ]), we have u2 ∈C∞(T× [0,T ]). Combining (5) and (10), if we take

u =χ(l1,l2)u1 +χ(l1,l2)u2,

then w =ψ1w1 +ψ2w2 satisfies (1) and

w(x,T ) = (ψ1wT )(x)+ (ψ2wT )(x) = wT (x), ∀ x ∈T.

The proof of Theorem 1 is complete. �

3. Dirichlet boundary conditions

In this section, we prove Theorem 3. The necessary conditions in (i) are obtained as in the
proof of Theorem 1. Indeed, introducing v1 = w|(0,l1)×(0,T ) and v2 = w|(l2,1)×(0,T ) and applying [6,
Proposition 5.1], we obtain the desired result.

To prove (ii), we use again a partition of unity. We pick some functions ψ1,ψ2,ψ3 ∈ C∞([0,1])
such that

ψ1 +ψ2 +ψ3 = 1, 0 ≤ψi ≤ 1, i = 1,2,3,

ψ1(x) = 0 x ∈ [0, l1]∪ [l2,1],

ψ2(x) = 0 x ∈
[

l1 + ε

2
,1

]
,

ψ3(x) = 0 x ∈
[

0, l2 − ε

2

]
.

As in the proof of Lemma 5, we can show that for any wT ∈ H 1
0 (0,1), there exists a function

ũ1 ∈ L2(0,T ;L2(0,1)) such that the solution w1 of the system
w1t −w1xx = ũ1 (x, t ) ∈ (0,1)× (0,T ),

w1(0, t ) = w1(1, t ) = 0 t ∈ (0,T ),

w1(x,0) = 0 x ∈ (0,1),

satisfies

w1(x,T ) = wT (x), ∀ x ∈ (0,1).
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Proceeding as for system (5), we see that there exists a control function u1 ∈ L2(0,T ;L2(0,1)) such
that ψ1w1 is the solution of the following system:

(ψ1w1)t − (ψ1w1)xx =χ(l1,l2)u1 (x, t ) ∈ (0,1)× (0,T ),

(ψ1w1)(0, t ) = (ψ1w1)(1, t ) = 0 t ∈ (0,T ),

(ψ1w1)(x,0) = 0 x ∈ (0,1),

(ψ1w1)(x,T ) = (ψ1wT )(x) x ∈ (0,1).

Since wT ∈H (l1+ε), there exists by Theorem 6 a function h1 ∈G2([0,T ]) such that the solution
w2 of 

w2t −w2xx = 0 (x, t ) ∈ (0, l1 + ε
2 )× (0,T ),

w2(0, t ) = 0, w2(l1 + ε
2 , t ) = h1(t ) t ∈ (0,T ),

w2(x,0) = 0 x ∈ (0, l1 + ε
2 )

satisfies w2 ∈C∞([0, l1 + ε
2 ]× [0,T ]) and

w2(x,T ) = wT (x), ∀ x ∈
(
0, l1 + ε

2

)
.

We still denote by w2 a smooth extension of w2 to [0,1] × [0,T ]. Then there exists a function
u2 ∈ L2(0,T ;L2(0,1)) such that ψ2w2 solves

(ψ2w2)t − (ψ2w2)xx =χ(l1,l1+ ε
2 )u2 (x, t ) ∈ (0,1)× (0,T ),

(ψ2w2)(0, t ) = (ψ2w2)(1, t ) = 0 x ∈ (0,T ),

(ψ2w2)(x,0) = 0 t ∈ (0,1),

(ψ2w2)(x,T ) = (ψ2wT )(x) x ∈ (0,1).

Similarly, since wT (1− · ) ∈ H (1− l2 + ε), there exists a function h2 ∈ G2([0,T ]) such that the
solution w̃3 of the system

w̃3t − w̃3xx = 0 (x, t ) ∈ (0,1− l2 + ε
2 )× (0,T ),

w̃3(0, t ) = 0, w̃3(1− l2 + ε
2 , t ) = h2(t ) t ∈ (0,T ),

w̃3(x,0) = 0 x ∈ (0,1− l2 + ε
2 )

satisfies w̃3 ∈C∞([0,1− l2 + ε
2 ]× [0,T ]) and

w̃3(x,T ) = wT (1−x), x ∈
(
0,1− l2 + ε

2

)
.

Let
w3(x, t ) = w̃3(1−x, t ), x ∈

(
l2 − ε

2
,1

)
, t ∈ (0,T ).

Then we have 
w3t −w3xx = 0 (x, t ) ∈ (l2 − ε

2 ,1)× (0,T ),

w3(l2 − ε
2 , t ) = h2(t ), w3(1, t ) = 0 t ∈ (0,T ),

w3(x,0) = 0 x ∈ (l2 − ε
2 ,1),

w3(x,T ) = wT (x) x ∈ (l2 − ε
2 ,1).

We still denote by w3 a smooth extension of w3 to [0,1]×[0,T ]. It follows that there exists a control
function u3 ∈ L2(0,T ;L2(0,1)) such that ψ3w3 solves

(ψ3w3)t − (ψ3w3)xx =χ(l2− ε
2 ,l2)u3 (x, t ) ∈ (0,1)× (0,T ),

(ψ3w3)(0, t ) = (ψ3w3)(1, t ) = 0 t ∈ (0,T ),

(ψ3w3)(x,0) = 0 x ∈ (0,1),

(ψ3w3)(x,T ) = (ψ3wT )(x) x ∈ (0,1).
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Finally, if we take
u =χ(l1,l2)u1 +χ(l1,l1+ ε

2 )u2 +χ(l2− ε
2 ,l2)u3,

we infer that w =ψ1w1 +ψ2w2 +ψ3w3 is the solution of (2). On the other hand, we have that

w(x,T ) = (ψ1wT )(x)+ (ψ2wT )(x)+ (ψ3wT )(x) = wT (x), ∀ x ∈ (0,1).

The proof of Theorem 3 is complete. �

Appendix. Proof of Theorem 6

The proof is inspired by [10] where backward solutions of the heat equation were obtained by
integrating the heat kernel along lines passing through the origin but different from the real
line. Note that backward solutions of parabolic equations were considered for control purposes
in [8, 14]. Introduce the following notations borrowed from [10]. For θ ∈R and R > 0, let

O (θ,R) := {
z ∈C;

∣∣z −Re iθ∣∣< R
}
,

Ω(θ,R) := {
z ∈C; dist

(
z,e iθR

)< R
}
.

(See Figure 2.)

x

y

Reiθ

Figure 4. The set O (θ,R) for π
2 < θ < 3π

2 .

Note that

S(1) =Ω
(
π

4
,

1p
2

)
∩Ω

(
3π

4
,

1p
2

)
.

The first lemma is concerned with separation of singularities.

Lemma 7. Let 1 < l < L and ψ ∈ Hol(S(L)). Then there exist θ1 ∈
(
π, 3π

2

)
, θ2 ∈

(
π
2 ,π

)
, r ∈ ( 1p

2
,+∞)

,

ψ1 ∈ Hol
(
Ω

( θ1
2 ,r

))
and ψ2 ∈ Hol

(
Ω

( θ2
2 ,r

))
such that

S(l ) ⊂Ω
(
θ1

2
,r

)
∩Ω

(
θ2

2
,r

)
,

∂
j
zψi ∈ L∞

(
Ω

(
θi

2
,r

))
, i = 1,2, j ∈N,

ψ=ψ1 +ψ2 in S(l ).
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Proof of Lemma 7. Pick any l̂ ∈ (l ,L). Let γ1(t ) = (1− t + i t )l̂ for t ∈ [0,1], and let(
γ2(t ),γ3(t ),γ4(t )

)= (iγ1(t ),−γ1(t ),−iγ1(t )) for t ∈ [0,1].

Let γ : [0,4] →C be defined by

γ(t ) = γi (t − i +1) for i ∈ {1, . . . ,4}, t ∈ [i −1, i ].

Note that γ([0,4]) = ∂S(l̂ ). We infer from Cauchy formula that for any z ∈ S(l̂ )

ψ(z) = 1

2πi

∫
γ

ψ(ζ)

ζ− z
dζ

= 1

2πi

∫
γ1∪γ3

ψ(ζ)

ζ− z
dζ+ 1

2πi

∫
γ2∪γ4

ψ(ζ)

ζ− z
dζ

=:ψ1(z)+ψ2(z)

where ψ1 ∈ Hol(C\ (γ1 ∪γ3)) and ψ2 ∈ Hol(C\ (γ2 ∪γ4)). Since

S(l ) ⊂ S(l̂ ) =Ω
(
π

4
,

l̂p
2

)
∩Ω

(
3π

4
,

l̂p
2

)
,

there exist r ∈ ( 1p
2

, l̂p
2

)
and θ1 ∈

(
π, 3π

2

)
, θ2 ∈

(
π
2 ,π

)
such that

S(l ) ⊂Ω
(
θ1

2
,r

)
∩Ω

(
θ2

2
,r

)
⊂ S(l̂ ),

ψi ∈ Hol

(
Ω

(
θi

2
,r

))
i = 1,2,

∂
j
zψi ∈ L∞

(
Ω

(
θi

2
,r

))
, i = 1,2, j ∈N

(see Figure 5). The proof of Lemma 7 is complete. �

x

y

l̂l

Ω( θ1

2 , r) Ω( θ2

2 , r)

Figure 5. Separation of singularities.

The second lemma yields a backward solution of the heat equation for the initial dataψ1 (resp.
ψ2). In the context of control theory, backward solutions of parabolic equations were considered
in [8] for 1D semilinear heat equations, and in [14] for the linear heat equation on the unit ball of
RN , using a trick due to Wick to derive backward solutions from forward solutions.
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Lemma 8. Let θ ∈ (
π
2 , 3π

2

)
, r > 1/

p
2, and ψ ∈ Hol

(
Ω

(
θ
2 ,r

))∩L∞(
Ω

(
θ
2 ,r

))
. Then the function

v(z,τ) := 1p
4πτ

∫ ∞ei θ2

−∞ei θ2
e−

ζ2

4τψ(z −ζ)dζ

is well-defined and analytic in z and τ for z ∈Ω(
θ
2 ,r

)
and τ ∈O (θ,R) for any R > 0.2 Furthermore,

v satisfies

vτ− vzz = 0, z ∈Ω
(
θ

2
,r

)
, τ ∈O (θ,R), (11)

lim
τ→0−

v(z,τ) =ψ(z), z ∈Ω
(
θ

2
,r

)
. (12)

If, in addition, ∂ j
zψ ∈ L∞(

Ω
(
θ
2 ,r

))
for all j ∈N and if S(1) ⊂Ω(

θ
2 ,r

)
, then v ∈C∞([−1,1]× [−T,0])

for all T > 0 with −T ∈O (θ,R).

Proof of Lemma 8. For s ∈R and ζ= e i θ2 s, we have∣∣∣e− ζ2

4τ

∣∣∣= ∣∣∣e− s2
4

eiθ
τ

∣∣∣= e−
s2
4 Re eiθ

τ .

But if τ ∈O (θ,R), | τ
eiθ −R| < R, so that Re eiθ

τ = Re τ
eiθ > 0. On the other hand

|ψ(z −ζ)| ≤ ‖ψ‖L∞(Ω( θ2 ,r )), for z ∈Ω
(
θ

2
,r

)
and ζ ∈Re i θ2 .

Straightforward calculations show that

vzz = 1p
4πτ

∫ ∞ei θ2

−∞ei θ2
e−

ζ2

4τψ′′(z −ζ)dζ

= 1p
4πτ

∫ ∞ei θ2

−∞ei θ2

d2

dζ2 [e−
ζ2

4τ ]ψ(z −ζ)dζ

= 1p
4πτ

∫ ∞ei θ2

−∞ei θ2

(
− 1

2τ
+ ζ2

4τ2

)
e−

ζ2

4τψ(z −ζ)dζ,

while

vτ = 1p
4πτ

(
− 1

2τ

)∫ ∞ei θ2

−∞ei θ2
e−

ζ2

4τψ(z −ζ)dζ+ 1p
4πτ

(
1

4τ2

)∫ ∞ei θ2

−∞ei θ2
ζ2e−

ζ2

4τψ(z −ζ)dζ

and hence (11) holds in Ω
(
θ
2 ,r

)×O (θ,R). It remains to show that (12) is fulfilled. First, we notice
that for π

2 < θ < 3π
2 and R > 0, there exists T > 0 such that O (θ,R)∩R = (−T,0) (see Figure 2).

Therefore, taking the limit of v(z,τ) as τ→ 0− is meaningful.

Claim 1. For θ ∈ (
π
2 , 3π

2

)
and τ ∈ (−∞,0), we have

1p
4πτ

∫ ∞ei θ2

−∞ei θ2
e−

ζ2

4τ dζ= 1.

Indeed, if θ ∈ (
π
2 ,π

)
(resp. θ ∈ (

π, 3π
2

)
), we have for κ ∈ (

θ
2 , π2

)
(resp. κ ∈ (

π
2 , θ2

)
), s ∈R, τ ∈ (−∞,0),

and ζ := se iκ, ∣∣∣e− ζ2

4τ

∣∣∣= ∣∣∣e− s2
4τ cos(2κ)

∣∣∣≤ e−
s2

4|τ| |cos(θ)|.

2We pick a branch of the argument function defined in C\R−i (resp. in C\R+i ) if π2 < θ ≤π (resp. if π< θ ≤ 3π
2 ).
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Thus

lim
|s|→+∞

∫ π
2

θ
2

e−
(seiκ)2

4τ si e iκdκ= 0 if θ ∈
(π

2
,π

)
,

(resp. lim
|s|→+∞

∫ θ
2

π
2

e−
(seiκ)2

4τ si e iκdκ= 0 if θ ∈
(
π,

3π

2

)
. )

It follows from the residue theorem that

1p
4πτ

∫ ∞ei θ2

−∞ei θ2
e−

ζ2

4τ dζ= 1p
4πτ

∫ ∞ei π2

−∞ei π2
e−

ζ2

4τ dζ= 1

i
p

4π|τ|
∫ ∞

−∞
e−

s2
4|τ| i ds = 1,

which completes the proof of Claim 1.
Finally, letting ζ=p|τ|ξ, we see that for any z ∈Ω(

θ
2 ,r

)
v(z,τ)−ψ(z) = 1√

4π τ
|τ|

∫ ∞ei θ2

−∞ei θ2
e
− ξ2

4 τ
|τ|

(
ψ(z −

√
|τ|ξ)−ψ(z)

)
dξ

tends to 0 as τ→ 0−, by dominated convergence.
Finally, assume that ∂ j

zψ ∈ L∞(Ω( θ2 ,r )) for all j ∈N and that S(1) ⊂Ω(
θ
2 ,r

)
.

Claim 2. For all j ∈N, we have ∂ j
z [v(z,τ)−ψ(z)] → 0 as τ→ 0− uniformly for z ∈ [−1,1].

Indeed, for all j ∈N, we can write

∂
j
z [v(z,τ)−ψ(z)] = 1√

4π τ
|τ|

∫ ∞ei θ2

−∞ei θ2
e
− ξ2

4 τ
|τ|

(
ψ( j )(z −

√
|τ|ξ)−ψ( j )(z)

)
dξ.

For given ε> 0, we pick a number A > 0 such that

∫
|s|>A

∣∣e− (se
i θ2 )2

4 τ
|τ|

∣∣ds < ε.

Then ∣∣∣∣∣∣∣
1√

4π τ
|τ|

∫
ξ∈(−∞,∞)ei θ2 ,

|ξ|>A

e
− ξ2

4 τ
|τ|

(
ψ( j )(z −

√
|τ|ξ)−ψ( j )(z)

)
dξ

∣∣∣∣∣∣∣≤
2‖ψ j ‖L∞(Ω( θ2 ,r ))εp

4π
·

On the other hand, it follows from the uniform continuity ofψ( j ) on some open neighborhood of
[−1,1] that

1√
4π τ

|τ|

∫
ξ∈(−∞,∞)ei θ2 ,

|ξ|≤A

e
− ξ2

4 τ
|τ|

(
ψ( j )(z −

√
|τ|ξ)−ψ( j )(z)

)
dξ→ 0 as τ→ 0−,

uniformly for z ∈ [−1,1]. Claim 2 is proved.
Using the fact that ∂k

t ∂
j
z v = ∂

2k+ j
z v for k, j ∈ N, τ < 0, and z ∈ [−1,1], we infer that v ∈

C∞([−1,1]× [−T,0]) for any T > 0 such that −T ∈O (θ,R). The proof of Lemma 8 is complete. �

Let us go back to the proof of Theorem 6. Pick ψ1 and ψ2 as given by Lemma 7, and let

v j (z,τ) = 1p
4πτ

∫ ∞ei
θ j
2

−∞ei
θ j
2

e−
ζ2

4τψ j (z −ζ)dζ for j = 1,2, z ∈Ω
(
θ j

2
,r

)
and τ ∈O (θ j ,R).
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Then

v1,τ− v1,zz = 0, inΩ

(
θ1

2
,r

)
×O (θ1,R),

v2,τ− v2,zz = 0, inΩ

(
θ2

2
,r

)
×O (θ2,R).

Let v(z,τ) = v1(z,τ)+v2(z,τ). Then v is well-defined and analytic in D := [
Ω

( θ1
2 ,r

)∩Ω( θ2
2 ,r

)]×
[O (θ1,R)∩O (θ2,R)], and it fulfills

vτ− vzz = 0 in D,

lim
τ→0−

v(z,τ) =ψ1(z)+ψ2(z) =ψ(z) inΩ

(
θ1

2
,r

)
∩Ω

(
θ2

2
,r

)
.

Furthermore, if T̂ > 0 is such that [−T̂ ,0) ⊂O (θ1,R)∩O (θ2,R) and T̂ ≤ T , then v( · ,−T̂ ) is analytic
in the open setΩ

( θ1
2 ,r

)∩Ω( θ2
2 ,r

)
which contains S(1).

To complete the proof, we proceed as in [14], combining the above construction with a null
controllability result. Pick any s ∈ (1,2) and any function ρ ∈ G s ([−T̂ ,0]) such that ρ(t ) = 1 for
−T̂ ≤ t ≤ − T̂

2 and ρ(t ) = 0 for − T̂
4 ≤ t ≤ 0. Let g0(t ) := ρ(t )v(0, t ) and g1(t ) := ρ(t )∂τv(0, t ) for

t ∈ [−T̂ ,0]. Using the fact that v(0, · ),∂τv(0, · ) ∈ Hol(O (θ1,R)∩O (θ2,R)) and [12, Lemma 3.7], we
infer that g0, g1 ∈G s ([−T̂ ,0]). Therefore, for any R > 1 there exists some constant C > 0 such that

|∂ j
t g0(t )|+ |∂ j

t g1(t )| ≤C
(2 j )!

R j
∀ t ∈ [−T̂ ,0], ∀ j ∈N.

According to [12, Proposition 3.1], the problem

v̂ t − v̂ xx = 0, t ∈ (−T̂ ,0), x ∈ (−1,1),

v̂(0, t ) = g0(t ), ∂x v̂(0, t ) = g1(t ), t ∈ (−T̂ ,0)

possesses a solution v̂ ∈ C∞([−1,1]× [−T̂ ,0]). It follows then from the definition of ρ and Holm-
gren’s theorem that

v̂(x, t ) = 0, t ∈
(
− T̂

4
,0

)
, x ∈ (−1,1),

v̂(x, t ) = v(x, t ), t ∈
(
−T̂ ,− T̂

2

)
, x ∈ (−1,1),

so that v̂( · ,0) = 0 and v̂( · ,−T̂ ) = v( · ,−T̂ ). Let

h±1(t ) := v(±1, t )− v̂(±1, t ), for t ∈ (−T̂ ,0),

w(x, t ) := v(x, t )− v̂(x, t ), for t ∈ (−T̂ ,0), x ∈ (−1,1).

Then w satisfies 
wt −wxx = 0, t ∈ (−T̂ ,0), x ∈ (−1,1),

w(x,−T̂ ) = 0, x ∈ (−1,1),

w(±1, t ) = h±1(t ), t ∈ (−T̂ ,0),

w(x,0) =ψ(x), x ∈ (−1,1).

Extending w and h±1 by 0 for t ≤ −T̂ , we obtain the main result in Theorem 6 on the interval
[−T,0]. A simple translation in time gives the result on the interval [0,T ].

Assume in addition that ψ be odd. Then it is easy to see that both ψ1 and ψ2 are odd, and that
v1 and v2 are odd with respect to z. It follows that v and v̂ are odd with respect to z. (Note that
g0 ≡ 0.) Therefore, w is odd with respect to z. �
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