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1. Introduction

Let (εn)n≥1 be independent random matrices taking values in G =GLd (R), d ≥ 2 (the group of in-
vertible d-dimensional real matrices) with common distributionµ. Let ‖·‖ be the euclidean norm
on Rd , and for every A ∈GLd (R), let ‖A‖ = supx,‖x‖=1 ‖Ax‖. Let also N (g ) := max(‖g‖,‖g−1‖). We
shall say that µ has an exponential moment if there exists α> 0 such that∫

G

(
N (g )

)αdµ(g ) <∞ .

We shall say that µ has a polynomial moment of order p ≥ 1 if∫
G

(
log N (g )

)p dµ(g ) <∞ .

Let An = εn · · ·ε1, with the convention A0 =Id. It follows from Furstenberg and Kesten [10] that,
if µ admits a moment of order 1 then

lim
n→∞

1

n
log‖An‖ =λµP-a.s., (1)

where λµ := limn→∞ n−1E log‖An‖ is the so-called first Lyapunov exponent.
Let now X := P (Rd ) be the projective space of Rd and write x̄ as the projection of x ∈ Rd − {0}

to X . An element A of G = GLd (R) acts on the projective space X as follows: Ax̄ = Ax. Let Γµ be
the closed semi-group generated by the support of µ. We say that µ is proximal if Γµ contains a
matrix that admits a unique (with multiplicity 1) eigenvalue of maximal modulus. We say that µ
is strongly irreducible if no proper union of subspaces of Rd is invariant by Γµ. Throughout the
paper, we assume that µ is strongly irreducible and proximal. In particular, there exists a unique
invariant measure ν on B(X ), meaning that for any bounded measurable function h from X toR,∫

X
h(x)dν(x) =

∫
G

∫
X

h(g · x)dµ(g )dν(x) . (2)

Let W0 be a random variable with values in the projective space X , independent of (εn)n≥1 and
with distribution ν. By the invariance of ν, we see that the sequence (Wn := AnW0)n≥1 is a strictly
stationary Markov chain with values in X . Let now, for any integer k ≥ 1,

Xk :=σ(
εk ,Wk−1

)−λµ =σ(
εk , Ak−1W0

)−λµ , (3)

where, for any g ∈G and any x̄ ∈ X , σ(g , x̄) = log(‖g x‖/‖x‖). Note that σ is an additive cocycle in
the sense that σ(g1g2, x̄) =σ(g1, g2x̄)+σ(g2, x̄). Consequently

Sn :=
n∑

k=1
Xk = log

∥∥AnV0
∥∥−nλµ ,

where V0 is a random variable such that ‖V0‖ = 1 and V 0 =W0.
Benoist and Quint [2] proved that if µ has a moment of order 2, then

lim
n→∞

1

n
E
(
S2

n

)
= s2 > 0, (4)

and, for any t ∈R,

lim
n→∞ sup

‖x‖=‖y‖=1

∣∣P(
log

∣∣〈An x, y
〉∣∣−nλµ ≤ t

p
n

)−φ(t/s)
∣∣= 0,

where φ denotes the cumulative distribution function of the standard normal distribution.
Given a matrix g ∈ GLd (R) denote by λ1(g ) its spectral radius (the greatest modulus of its

eigenvalues). Aoun [1] proved that if µ has a moment of order 2, then, for any t ∈R,

lim
n→∞

∣∣P(
log(λ1 (An))−nλµ ≤ t

p
n

)−φ(t/s)
∣∣= 0.

In this paper we provide rates of convergence in these Central Limit Theorems, if µ has either
an exponential moment, or a polynomial moment of order p ≥ 3.
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Before giving our main results, les us recall the known results on this subject. Let µ be a
proximal and strongly irreducible probability measure on B(G).

Ifµ has an exponential moment, then a Berry–Esseen bound of order O(1/
p

n) for the quantity
log‖An x‖−nλµ is proved in [13]. The same rate is obtained in [7] under a polynomial moment of
order 4; in the same paper, the rate O(logn/

p
n) is proved under a moment of order 3. Recently,

the rate O(1/
p

n) has been obtained in [9] under a moment of order 3, in the special case d = 2.
If µ has an exponential moment, then a Berry–Esseen bound of order O(logn/

p
n) for the

quantity log‖An‖−nλµ is proved in [14]. The rate O(1/
p

n) is obtained in [7] under a polynomial
moment of order 4; in the same paper, the rate O(

√
log(n)/n) is proved under a polynomial

moment of order 3.
Ifµ has an exponential moment, then a Berry–Esseen bound of order O(1/

p
n) for the quantity

log |〈An x, y〉| −nλµ has been obtained very recently by Dinh et al. [8] (see also [15] for a more
precise statement). This improves on the rate O(logn/

p
n) of Theorem 1(1) below (note that the

preprint [8] was available on arxiv after this note was submitted).
If µ has an exponential moment, then a Berry–Esseen bound of order O(logn/

p
n) for the

quantity log(λ1(An))−nλµ is proved in [14].
As we can see, with regard to the Berry–Esseen type bounds for the four quantities described

above, the main questions which remain to be treated concern the case of polynomial moments.
In particular, it would be interesting to see if the existing moment conditions are optimal (with
regard to the rates obtained), and also to propose bounds in the case where µ has a polynomial
moment of order between 2 and 3.

2. The case of matrix coefficients

Theorem 1. Let µ be a proximal and strongly irreducible probability measure on B(G).

(1) Assume thatµ has an exponential moment, and let s > 0 be defined by (4). Then there exists
a positive constant K such that, for any integer n ≥ 2,

sup
‖x‖=‖y‖=1

sup
t ∈R

∣∣P(
log

∣∣〈An x, y
〉∣∣−nλµ ≤ t

p
n

)−φ(t/s)
∣∣≤ K lognp

n
. (5)

(2) Assume that µ has a polynomial moment of order p ≥ 3 and let s > 0 be defined by (4).
Then there exists a positive constant K such that, for any integer n ≥ 2,

sup
‖x‖=‖y‖=1

sup
t ∈R

∣∣P(
log

∣∣〈An x, y
〉∣∣−nλµ ≤ t

p
n

)−φ(t/s)
∣∣≤ K

n(p−1)/2p
. (6)

The proof of this theorem is based on Berry–Esseen estimates for log‖An x‖−nλµ (given in [13]
and [7]), and on the following elementary lemma (see [12, Lemma 5.1] for a similar result):

Lemma 2. Let (Tn)n∈N and (Rn)n∈N be two sequences of random variables. Assume that there exist
three sequences of positive numbers (an)n∈N, (bn)n∈N and (cn)n∈N going to infinity as n →∞, and
a positive constant s such that, for any integer n,

sup
t ∈R

∣∣P(
Tn ≤ t

p
n

)−φ(t/s)
∣∣≤ 1

an
, and P

(∣∣Rn
∣∣≥p

2πns/bn

)
≤ 1

cn
.

Then,

sup
t ∈R

∣∣P(
Tn +Rn ≤ t

p
n

)−φ(t/s)
∣∣≤ 1

an
+ 1

bn
+ 1

cn
.
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Proof of Lemma 2. Recall that φ is 1/
p

2π-Lipschitz. We have

P
(
Tn +Rn ≤ t

p
n

)≤P(
Tn −p

2πns/bn ≤ t
p

n, −Rn ≤p
2πns/bn

)
+P

(
−Rn ≥p

2πns/bn

)
≤P

(
Tn −p

2πns/bn ≤ t
p

n
)
+P

(
−Rn ≥p

2πns/bn

)
.

Hence

P
(
Tn +Rn ≤ t

p
n

)−φ(t/s) ≤ 1

an
+

∣∣∣φ(
t/s +p

2π/bn

)
−φ(t/s)

∣∣∣+ 1

cn

≤ 1

an
+ 1

bn
+ 1

cn
.

The lower bound may be proved similarly, by noting that

P
(
Tn +p

2πns/bn ≤ t
p

n
)
−P

(
Rn ≥p

2πns/bn

)
≤P

(
Tn +Rn ≤ t

p
n, Rn ≤p

2πns/bn

)
≤P(

Tn +Rn ≤ t
p

n
)

. �

Proof of Theorem 1 (1). The proof follows the steps used in [5, Section 8.3]. We shall need some
notations. For every x̄, ȳ ∈ X , let

d(x̄, ȳ) := ‖x ∧ y‖
‖x‖‖y‖ ,

where ∧ stands for the exterior product, see e.g. [4, p. 61], for the definition and some properties.
Then, d is a metric on X . Let also

δ(x̄, ȳ) := |〈x, y〉|
‖x‖‖y‖ . (7)

Recall that the function δ is linked to the distance d on X by the following: For every x̄, ȳ ∈ X ,

δ2(x̄, ȳ) = 1−d 2(x̄, ȳ) . (8)

We shall also need the following result due to Guivarc’h [11] (see [3, Theorem 14.1]):

Proposition 3. Letµ be a proximal and strongly irreducible probability measure on B(G). Assume
that µ has an exponential moment. Then, there exists η> 0, such that

sup
ȳ ∈X

∫
X

1

δ(x̄, ȳ)η
dν(x̄) <∞ .

We start with the identity, for ‖x‖ = ‖y‖ = 1,

log
∣∣〈An x, y

〉∣∣= log‖An x‖+ log

∣∣〈An x, y
〉∣∣∥∥An x

∥∥‖y‖
= log‖An x‖+ logδ

(
An · x̄, ȳ

)
.

We shall then apply Lemma 2 to Tn = log‖An x‖−nλµ and Rn = logδ(An · x̄, ȳ). Since µ has an
exponential moment, we know from [13] that we can take an =C

p
n in Lemma 2.

In view of Lemma 2, we see that Theorem 1 will be proved if we can show that there exist
τ,K > 0 such that (recall that δ(·, ·) ≤ 1)

P
(∣∣logδ

(
An · x̄, ȳ

)∣∣> τ logn
)=P(

δ
(

An · x̄, ȳ
)< n−τ)≤ Kp

n
, (9)

which means that the sequences (bn)n∈N and (cn)n∈N are such that bn = p
2πns/(τ logn) and

cn =p
n/K .

Recall the identity (8). As in [5], we have, using that d(·, ·) ≤ 1,

δ2 (
An · x̄, ȳ

)= 1−d 2 (
An · x̄, ȳ

)≥ 1− (
d

(
An · x̄,Wn

)+d
(
Wn , ȳ

))2

≥ δ2 (
Wn , ȳ

)−d 2 (An · x̄,Wn)−2d
(

An · x̄,Wn
)
d

(
Wn , ȳ

)
≥ δ2 (

Wn , ȳ
)−3d

(
An · x̄,Wn

)
.

(10)
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Hence, to prove (9), it suffices to prove that there exist τ,K > 0 such that,

P
(
δ2 (

Wn , ȳ
)< n−2τ+3d

(
An · x̄,Wn

))≤ Kp
n

. (11)

Now, since µ has a polynomial moment of order 3, by [5, Lemma 6], there exists `> 0, such that

P
(
d

(
An · x̄,Wn

)≥ e−`n
)
≤ C

n
(in fact this estimate remains true as soon as µ has a polynomial moment of order 2, via a
monotonicity argument).

Hence, for n large enough (such that 3e−`n ≤ n−2τ), we have

P
(
δ2 (

Wn , ȳ
)< n−2τ+3d (An · x̄,Wn)

)≤P(
δ2 (

Wn , ȳ
)< 2n−2τ)+ C

n
.

On another hand, by Markov’s inequality, since Wn has law ν,

P
(
δ2 (

Wn , ȳ
)< 2n−2τ)= ν{

x̄ ∈ X :
1

δ2(x̄, ȳ)
> n2τ

2

}
≤ 2η/2

nητ
sup
ȳ∈X

∫
X

1

δ(x̄, ȳ)η
dν(x̄) ,

and (11) follows from Proposition 3 by taking τ= 1
2η . �

Proof of Theorem 1 (2). The proof follows the lines of that of Theorem 1(1). Instead of Proposi-
tion 3, we shall use the following result due to Benoist and Quint (see [2, Proposition 4.5]):

Proposition 4. Letµ be a proximal and strongly irreducible probability measure on B(G). Assume
that µ has a polynomial moment of order p > 1. Then

sup
ȳ ∈X

∫
X

∣∣logδ(x̄, ȳ)
∣∣p−1 dν(x̄) <∞ .

We shall then apply Lemma 2 to Tn = log‖An x‖−nλµ and Rn = logδ(An · x̄, ȳ). Since µ has a
moment of order 3, we know from [7] that we can take an =C

√
n/log(n) in Lemma 2 (and even

an =C
p

n if p ≥ 4).
In view of Lemma 2, we see that Theorem 1 will be proved if we can show that there exists K > 0

such that

P
(∣∣logδ

(
An · x̄, ȳ

)∣∣> n1/2p)≤ K

n(p−1)/2p
, (12)

which means that the sequences (bn)n∈N and (cn)n∈N are such that bn = p
2πns/n1/2p and

cn = n(p−1)/2p /K .
Starting again from (10), we see that it suffices to prove that there exists K > 0 such that,

P
(
δ2 (

Wn , ȳ
)< e−2n1/2p +3d(An · x̄,Wn)

)
≤ K

n(p−1)/2p
. (13)

Proceeding as in the proof of Theorem 1, we deduce that, for n large enough (such that
e−`n ≤ e−2n1/2p

), we have

P
(
δ2 (

Wn , ȳ
)< e−2n1/2p +3d

(
An · x̄,Wn

))≤P(
δ2 (

Wn , ȳ
)< 4e−2n1/2p

)
+ C

n
.

On another hand, by Markov’s inequality, since Wn has law ν, and for n large enough,

P
(
δ2 (

Wn , ȳ
)< 4e−2n1/2p

)
=P(∣∣logδ

(
Wn , ȳ

)∣∣> n1/2p − log2
)

= ν{
x̄ ∈ X :

∣∣logδ(x̄, ȳ)
∣∣> n1/2p − log2

}
≤ 1(

n1/2p − log2
)p−1 sup

ȳ ∈X

∫
X

∣∣logδ(x̄, ȳ)
∣∣p−1 dν(x̄) ,

and (13) follows from Proposition 4. �
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3. The case of the spectral radius

We now prove similar results for the spectral radius. Given a matrix g ∈GLd (R) denote byλ1(g ) its
spectral radius (the greatest modulus of its eigenvalues). The first result (Theorem 5(1) below),
assuming an exponential moment for µ, has been recently proved by Xiao et al. [14] (in fact, a
stronger result is proved in [14]). We state it only for completeness.

Theorem 5. Let µ be a proximal and strongly irreducible probability measure on B(G).

(1) Assume thatµ has an exponential moment, and let s > 0 be defined by (4). Then there exists
a positive constant K such that, for any integer n ≥ 2,

sup
t ∈R

∣∣P(
logλ1 (An)−nλµ ≤ t

p
n

)−φ(t/s)
∣∣≤ K lognp

n
. (14)

(2) Assume that µ has a polynomial moment of order p ≥ 3, and let s > 0 be defined by (4).
Then there exists a positive constant K such that, for any integer n ≥ 2,

sup
t ∈R

∣∣P(
logλ1 (An)−nλµ ≤ t

p
n

)−φ(t/s)
∣∣≤ K

n(p−1)/2p
. (15)

The proof of Item (2) is based on a Berry-Esseen estimate for log‖An‖−nλµ given in [7], and
on Lemma 2.

A key ingredient in the proof of Item (1) by Xiao et al. [14] is [3, Lemma 14.13].
To prove Item (2), we shall need a suitable version of [3, Lemma 14.13]. The proof of

Lemma 14.13 relies on [3, Lemma 14.2] (of geometrical nature) and on large deviations, leading
to Lemma 14.3.

We shall need the following consequence of large deviation estimates of Benoist and Quint [2]
(see also [6] for related results under proximality).

Lemma 6. Let µ be a strongly irreducible probability measure on B(G). Assume that µ has a
polynomial moment of order p > 1. Let ε> 0. There exists C > 0 such that, for any integer n ≥ 1,

sup
‖x‖=1

P

(
max

1≤k ≤n

∣∣log
∥∥Ak x

∥∥−kλµ
∣∣> εn

)
≤ C

np−1 , (16)

P

(
max

1≤k ≤n

∣∣log
∥∥Ak

∥∥−nλµ
∣∣> εn

)
≤ C

np−1 , (17)

P

(
max

1≤k ≤n

∣∣log
∥∥Λ2 (Ak )

∥∥−k
(
λµ+γµ

)∣∣> εn

)
≤ C

np−1 . (18)

Remark 7. Let us recall that, for any A ∈ GLd (R), Λ2(A) is the matrix on Λ2(Rd ) defined by
Λ2(A)(x ∧ y) = Ax ∧ Ay . In addition, in (18),γµ is the second Lyapunov exponent of µ. With the
notations of [3, Section 14], λµ is denoted either λ1,µ or λ1, while γµ is denoted either λ2,µ or λ2.

Proof of Lemma 6. Let un be any of the left-hand side in (16), (17) or (18). It follows from [2,
Proposition 4.1 and Corollary 4.2] that ∑

n≥1
np−2un <∞ . (19)

In fact, in [2], (19) is proved for un defined without the maximum over k ∈ {1, . . . , n} under the
probability. However, it is easy to see that the maximum over k can be added: it suffices to follow
the proof of [2, Theorem 2.2] with obvious changes, and to use a maximal version of Burkholder’s
inequality for martingales. Now, once (19) has been proven, it is easy to infer (via a monotonicity
argument) that (16), (17) and (18) are satisfied. �

Using Lemma 6 one can reproduce the proof of [3, Proposition 14.3] to prove the following
version of it.
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Lemma 8. Letµ be a strongly irreducible and proximal probability measure on B(G). Assume that
µ has a polynomial moment of order p > 1. Then, the estimates [3, (14.5), (14.6), (14.7) and (14.8)]
hold with 1− C

np−1 in the right-hand side instead of 1−e−cn .

Lemma 8 implies the next result.

Lemma 9. Let µ be a strongly irreducible probability measure on B(G). Assume that µ has a
polynomial moment of order p > 1. For every ε > 0, there exist C > 0 and `0 > 0 such that for
every `0 ≤ `≤ n,

P
(
log(λ1 (An))− log

∥∥An
∥∥≥−ε`)≥ 1− C

`p−1 .

Proof of Lemma 9. The lemma is a version of [3, Lemma 14.13] with the following difference:
Lemma 14.13 holds under an exponential moment while in Lemma 9 we assume polynomial
moments.

Now, it happens that there is a small imprecision in the proof of [3, Lemma 14.13] which can
be easily fixed thanks to a slight modification of the original argument.

One of the steps in the proof of Lemma 14.13 consists in proving that the property (14.38)
is true on an exponentially small set (see the end of [3, page 233] for the definition on an
exponentially small set). A second step of the proof consists in proving the equivalence of the
fact that [3, the properties (14.38) and (14.43)] are true on an exponentially small set.

The problem then comes from the fact that it does not seem possible to deduce straightfor-
wardly from (14.7) that the property (14.43) is true on an exponentially small set, as mentioned
in [3]. Yet the weaker property (20) below follows from (14.7). Notice that since we prove below
that the property (14.38) is true on an exponentially small set, from the above mentioned equiv-
alence, it will follow that the property (14.43) is also true on an exponentially small set.

We choose to explain how to fix the proof of the original Lemma 14.13. Then, the proof of our
Lemma 9 may be done similarly, using our Lemma 8 instead of [3, Lemma 14.3].

From [3, (14.7)] it follows that, with the notations of [3], for every n ≥ n0

µ⊗n
({(

b1, . . . , bn
) ∈Gn : δ

(
xM

bn ···b[n/2]+1
, ym

b[n/2] ···b1

)
≥ e−ε[n/2]

})
≥ 1−e−c[n/2] . (20)

Using (14.39), (14.40), (14.41) and (14.42), this yields that

µ⊗n
({(

b1, . . . , bn
) ∈Gn : δ

(
xM

bn ···b1
, ym

bn ···b1

)
≥ e−ε`

})
≥ 1−e−c` ∀ [n/2] ≤ `≤ n , (21)

for some c > 0 that may differ from the above one (and from the other c’s below).
Let `0 ≤ `< [n/2], with `0 ≥ n0, where n0 is such that Lemma 14.3 be true.
By [3, (14.6)], we have

µ⊗n
({(

b1, . . . , bn
) ∈Gn : d

(
xM

bn ···bn−` ,bn · · · b1x0

)
≤ e−(λ1,µ−λ2,µ−ε)`

})
≥ 1−e−c` . (22)

By (14.7), we have

µ⊗n
({(

b1, . . . , bn
) ∈Gn : δ

(
xM

bn ···bn−` , ym
b[n/2] ···b1

)
≥ e−ε`

})
≥ 1−e−c` , (23)

where we used that bn · · ·bn−` and b[n/2] · · ·b1 are independent since n −`> [n/2].
Using the fact that (14.39), (14.41) and (14.42) are true except on an exponentially small set,

combined with (22) and (23), we infer that

µ⊗n
({(

b1, . . . , bn
) ∈Gn : δ

(
xM

bn ···b1
, ym

bn ···b1

)
≥ e−ε`

})
≥ 1−e−c` ∀ `0 ≤ `< [n/2] . (24)

Combining (21) and (24), we see that the property (14.38) is true on an exponentially small set.
Then, the proof of Lemma 14.13 may be finished as in [3], combining Lemma 14.14 with the

facts that the properties (14.37) and (14.38) are true on exponentially small sets. �
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Proof of Theorem 5 (2). We shall apply Lemma 2 to Tn = log‖An‖−nλµ and Rn = log(λ1(An))−
log‖An‖. Since µ has a moment of order 3, we know from [7] that we can take an =C

√
n/log(n)

in Lemma 2 (and even an =C
p

n if p ≥ 4).
In view of Lemma 2, we see that Theorem 5(2) will be proved if we can show that there exists

K > 0 such that

P
(∣∣log(λ1 (An))− log‖An‖

∣∣> n1/2p)≤ K

n(p−1)/2p
, (25)

which means that the sequences (bn)n∈N and (cn)n∈N are such that bn = p
2πns/n1/2p and

cn = n(p−1)/2p /K .
Recall that λ1(g ) ≤ ‖g‖ for every g ∈GLd (R). Hence (25) follows from Lemma 9 by taking ε= 1

and `= n1/2p . �
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