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1. introduction

For a real number x, let

‖x‖ = min{|x −m| : m ∈Z}

denote the distance to its nearest integer. Not much is known on the distribution of the sequence
(‖αn‖)n≥1 for a given real number α greater than 1. For example, we do not know whether the
sequence (‖(3/2)n‖)n≥1 is dense in [0,1/2], nor whether ‖en‖ tends to 0 as n tends to infinity.
In 1957 Mahler [15] applied Ridout’s p-adic extension of Roth’s theorem to prove the following
result.

Theorem 1. Let r /s be a rational number greater than 1 and which is not an integer. Let ε be a
positive real number. Then, there exists an integer n0 such that

‖(r /s)n‖ > s−εn ,

for every integer n exceeding n0.

In a breakthrough paper, Corvaja and Zannier [11] applied ingeniously the p-adic Schmidt
Subspace Theorem to extend Theorem 1 to real algebraic numbers. Recall that a Pisot number is
a real algebraic integer greater than 1 with the property that all of its Galois conjugates (except
itself) lie in the open unit disc.

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.314
mailto:bugeaud@math.unistra.fr
https://comptes-rendus.academie-sciences.fr/mathematique/


460 Yann Bugeaud

Theorem 2. Let α be a real algebraic number greater than 1 and ε a positive real number. If there
are no positive integers h such that the real number αh is a Pisot number, then there exists an
integer n0 such that

‖αn‖ >α−εn ,

for every integer n exceeding n0.

Let α > 1 be a real algebraic number and h a positive integer such that αh is a Pisot number
of degree d . Then there exists a positive real number η such that the modulus of any Galois
conjugate (except itself) of αh is no greater than α−η. Let n be a positive integer. Since the trace
of αhn is a rational integer, we get ‖αhn‖ ≤ dα−ηn . This shows that the restriction in Theorem 2 is
necessary.

Theorems 1 and 2 are ineffective in the sense that their proof does not yield an explicit value for
the integer n0. To get an effective improvement on the trivial estimate ‖(r /s)n‖ ≥ s−n , Baker and
Coates [1] (see also [7] and [8, Section 6.2]) used the theory of linear forms in p-adic logarithms,
for a prime number p which divides s.

Theorem 3. Let r /s be a rational number greater than 1 and which is not an integer. Then, there
exist an effectively computable positive real number τ and an effectively computable integer n0

such that
‖(r /s)n‖ > s−(1−τ)n ,

for every integer n exceeding n0.

The purpose of this note is to extend Theorem 3 to real algebraic numbers exceeding 1. At first,
we have to see which estimate follows from a Liouville-type inequality, which boils down to say
that any nonzero rational integer has absolute value at least 1. To simplify the discussion, take α
a real algebraic integer greater than 1 and of degree d ≥ 2 such that each of its Galois conjugates
has absolute value at most equal to α. For a positive integer n, let An be the integer such that

‖αn‖ = |αn − An |.
Observe that every Galois conjugate of αn − An has modulus less than 3αn . Noticing that the
absolute value of the norm of the nonzero algebraic integer αn − An is at least equal to 1, we
derive that

‖αn‖ ≥ 3−(d−1)α−n(d−1). (1)

This is much weaker than what follows from Theorem 2, but this is effective. For an arbitrary real
algebraic number greater than 1, a similar argument gives the following statement. In the sequel,
an empty product is understood to be equal to 1.

Lemma 4. Let α be a real algebraic number greater than 1 and of degree d ≥ 1. Let ad denote the
leading coefficient of its minimal defining polynomial over Z and α1, . . . ,αd its Galois conjugates,
ordered in such a way that |α1| ≤ · · · ≤ |αd |. Let j be such that α=α j . Set

C (α) = ad α
d−1

∏
i> j

|αi |
α

.

If α is not the d-th root of an integer, then we have

‖αn‖ ≥ 3−(d−1) C (α)−n , for n ≥ 1. (2)

Otherwise, (2) holds only for the positive integers n such that αn is not an integer.

We will see how the theory of linear forms in logarithms allows us to slightly improve (2),
unless there exists a positive integer h such that αh is an integer or a quadratic Pisot unit. In the
latter case, αh is a root of an integer polynomial of the shape X 2 −aX +b, with a ≥ 1, b ∈ {−1,1},
and (a,b) ∉ {(1,1), (2,1)}, thus α = (a +

p
a2 −4b)/2 and ‖αhn‖ = α−hn . Except in these cases, we

establish the following effective strengthening of Lemma 4.
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Theorem 5. Let α be a real algebraic number greater than 1. Let C (α) be as in the statement
of Proposition 4. Let h be the smallest positive integer such that αh is an integer or a quadratic
Pisot unit and put Nα = {hn : n ∈ Z≥1}. If no such integer exists, then Nα is the empty set. There
exist a positive, effectively computable real number τ= τ(α) and an effectively computable integer
n0 = n0(α), both depending only on α, such that

‖αn‖ ≥C (α)−(1−τ)n , for n > n0 not in Nα.

Theorem 5 should be compared with the effective improvement of Liouville’s upper bound
for the irrationality exponent of an irrational, algebraic real number. Recall that the irrationality
exponent µ(ξ) of an irrational real number ξ is given by

µ(ξ) = 1+ limsup
q→+∞

− log‖qξ‖
log q

.

Let µeff(ξ) denote the infimum of the real numbers µ for which there exists an effectively com-
putable positive integer q0 such that 1+(− log‖qξ‖)/(log q) ≤µ holds for q ≥ q0. Letα be an alge-
braic real number of degree d ≥ 2. Roth’s theorem asserts that µ(α) = 2, while Liouville’s theorem
says that µeff(α) ≤ d . By means of the theory of linear forms in logarithms, Feldman [14] proved
the existence of an effectively computable positive real number τ′ = τ′(α), depending on α, such
that µeff(α) ≤ (1−τ′)d .

Here, the situation is similar. For a real number ξ not an integer, nor a root of an integer, define

ν(ξ) = limsup
n→+∞

− log‖ξn‖
n

and let νeff(ξ) denote the infimum of the real numbers ν for which there exists an effectively
computable integer n0 such that (− log‖ξn‖)/n ≤ ν for n ≥ n0.

Let α > 1 be an algebraic real number. Theorem 2 asserts that ν(α) = 0, unless α is an integer
root of a Pisot number. Lemma 4 says that νeff(α) ≤ logC (α), while Theorem 5 slightly improves
the latter inequality. Furthermore, the positive real number τ(α) occurring in Theorem 5 is very
small and of comparable size as the real number τ′(α), when α is an algebraic integer (otherwise,
it also depends on the prime factors of the leading coefficient of the minimal defining polynomial
of α over Z).

Among the many open questions on the function ν, let us mention that we do not know
whether ν(e) is finite or not (see [8, Problem 13.20] and [10] for further results and questions).
Mahler and Szekeres [16] established that, with respect to the Lebesgue measure, almost all real
numbers ξ satisfy ν(ξ) = 0. Furthermore, the set of real numbers ξ such that ν(ξ) is infinite has
Hausdorff dimension zero [10, Theorem 3].

Sometimes, the hypergeometric method yields effective improvements of (2). This is the case
for the algebraic numbers

p
2 and 3/2, see Beuker’s seminal papers [4, 5] and the subsequent

works [2, 19] where it is shown that

νeff(
p

2) ≤ 0.595, νeff(3/2) < 0.5443,

respectively.
As pointed out by the referee, we have C (αn) ≤C (α)n for n ≥ 1, with equality ifαn has the same

degree asα. However, in some cases, the inequality can be strict, for example, forα= (3/2)1/3, we
have C (α3) = 2 and C (α)3 = 18. Following Dubickas [12], if the set of positive integers

U (α) := {n : deg(αn) < deg(α)}

is nonempty, then there is a finite set F (α) = {m1, . . . ,mk } of positive integers such that

U (α) = {`m : `≥ 1,m ∈ F (α)}.
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Applying Theorem 5 toαm for m in F (α), we get that there exist a positive, effectively computable
real number τm and an effectively computable integer `m , both depending only on α, such that

‖αm`‖ ≥C (αm)−(1−τm )`, for `> `m such that m` is not in Nαm .

Continuing like this with the sets U (αm) for m in F (α), and the sets U
(
(αm)m′)

for m in F (α)
and m′ in F (αm), etc., we conclude that in Theorem 5 and also in Lemma 4 the quantity C (α)n

can be replaced by C (αn). Thereby, we obtain slightly stronger statements when U (α) is non-
empty. However, we have decided not to highlight these minor improvements, mainly because
the definition of νeff is very natural in view of the current statement of Theorem 5.

2. Proofs

Proof of Lemma 4. We keep the notation of the lemma and follow the proof of [16, Assertion (a)]
with a slight improvement.

Let n be a positive integer. Observe that the polynomial

fn(X ) = an
d (X −αn

1 ) · · · (X −αn
d )

has integer coefficients and denote by An the integer such that

‖αn‖ = |αn − An |.
If αn is not an integer, then fn(An) is a nonzero integer and we get

| fn(An)| ≥ 1, (3)

thus,

|αn − An | ≥ a−n
d

∏
1≤i≤d ,i 6= j

|αn
i − An |−1.

For i = 1, . . . ,d , note that

|αn
i − An | ≤ |αi |n +αn +1 ≤ 3(max{|αi |,α})n .

Consequently, we obtain the lower bound

‖αn‖ ≥ 3−(d−1) a−n
d α−(d−1)n

∏
i> j

αn

|αi |n
,

as claimed. This inequality reduces to (1) if ad = 1 and j = d . �

The proof of Theorem 5 makes use of the following result of Boyd [6].

Lemma 6. Let f (X ) be an irreducible polynomial of degree d with integer coefficients. Let m
denote the number of roots of f (X ) of maximal modulus. Assume that one of these roots is real and
positive. Then m divides d and there is an irreducible polynomial g (X ) with integer coefficients
such that f (X ) = g (X m).

Proof of Theorem 5. We proceed in a similar way as when dealing with Thue equations. In view
of Theorem 3 we assume thatα is irrational. Let K denote the number fieldQ(α). Let h denote the
logarithmic absolute Weil height. For convenience, we define the function h∗( · ) = max{h( · ),1}.
The constants c1,c2, . . . below are positive, effectively computable, and depend only on α.

Let ad denote the leading coefficient of the minimal defining polynomial ofα overZ and S the
set of places of K composed of all the infinite places and all the places corresponding to a prime
ideal dividing ad . Let NS denote the S-norm. We direct the reader to [13, Chapter 1] for definitions
and basic results. Let us only mention that if the absolute value of the norm of a nonzero element
β in K is written as |NormK /Q(β)| = aS b, where aS and b are positive integers, every prime divisor
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of aS divides ad , and no prime divisor of b divides ad , then NS (β) = b. In particular, if ad = 1, then
NS is the absolute value of the norm NormK /Q.

Let n be a positive integer and An denote the integer such that

‖αn‖ = |αn − An |.
Put δn = αn − An . We will establish a lower bound of the form κn with κ > 1 for the S-norm of
the nonzero S-integer δn . Since the S-norm is multiplicative, NS (δn) divides NS ( fn(An)), thus it
divides | fn(An)|d . Consequently, by replacing in the proof of Lemma 4 the right hand side of (3)
by κn/d , we then obtain the expected improvement.

Let η1, . . . ,ηs be a fundamental system of S-units in K . By [13, Proposition 4.3.12], there exist
integers b1, . . . ,bs such that

h
(
δnη

−b1
1 · · ·η−bs

s
)≤ log NS (δn)

d
+ c1. (4)

Since

h(δn) ≤ nh(α)+ log An + log2 ≤ nh(α)+n logα+2log2,

it follows from [13, Proposition 4.3.9(iii)] and (4) that

B := max{|b1|, . . . , |bs |} ≤ c2h∗(δn) ≤ c3n.

Set γn = δnη
−b1
1 · · ·η−br

r .
Assume first that there exists a Galois conjugate β of α such that |β| > α and consider the

quantity

Λn = βn − An

βn .

Observe that

0 < |Λn −1| ≤ 2−c4n .

Let σ denote the embedding sending α to β and observe that

Λn −1 =σ(γn)β−nσ(η1)b1 · · ·σ(ηr )br .

We apply the theory of linear forms in logarithms: it follows from [17, Theorem 9.1] (or see [8,
Theorem 2.1]) that

log |Λn −1| ≥ −c5h∗(γn) log

(
B +n

h∗(γn)

)
, (5)

giving

n ≤ c6h∗(γn) log

(
n

h∗(γn)

)
.

We derive that

n ≤ c7h∗(γn) ≤ c8 log NS (δn)+ c9,

by (4), thus

NS (δn) ≥ 2c10n , for n ≥ c11.

This improves the trivial lower bound NS (δn) ≥ 1 used in the proof of Lemma 4.
Like for Feldman’s result [14], the key point for our improvement of the trivial bound is the

quantity B ′ occurring in the estimates for linear forms in logarithms (see [8, Theorem 2.1]), which
allows us to get in (5) the factor log B+n

h∗(γn ) instead of log(B +n), and similarly in (9). For other
consequences of the quantity B ′, see [8, 9] and the references quoted therein.

Secondly, we assume that the modulus of every Galois conjugate of α is less than or equal to
α. By Lemma 6, there exist a divisor m of d and an irreducible integer polynomial g (X ) of degree
d/m such that f (X ) has exactly m roots of modulusα and the minimal defining polynomial f (X )
over Z satisfies f (X ) = g (X m).
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Assume that d/m ≥ 2. If f (X ) has a root β of modulus at least equal to 1 and different from α,
then An −αn cannot be equal to βn , thus the quantity

Λ′
n = An −βn

αn (6)

satisfies

0 < |Λ′
n −1| ≤ 2−c12n . (7)

We get a lower bound for |Λ′
n −1| by proceeding exactly as above, and it takes the same shape as

our lower bound for |Λn −1|. We then deduce the lower bound

|NS (δn)| ≥ 2c13n , for n ≥ c14.

Now, we assume that all the roots of f (X ), except α, lie in the open unit disc.
If α has two real Galois conjugates in the open unit disc, then one of them, denoted by β, is

such that the quantity Λ′
n defined as in (6) is not equal to 1 and (7) holds. We argue as above to

get a similar lower bound for NS (δn).
If d/m ≥ 3 and αm has a complex nonreal Galois conjugate βm in the open unit disc, then β j

is complex nonreal for every positive integer j and we proceed as above, since the quantity Λ′
n

defined as in (6) is not equal to 1.
Consequently, we can assume that d/m = 2 and g (X ) is the minimal defining polynomial over

Z of the quadratic number αm .
If n is not a multiple of m, then there exists a Galois conjugate β of α such that βn is complex

nonreal, thus the quantity Λ′
n defined above is not equal to 1, and we can proceed exactly as

above to get a similar lower bound for NS (δn).
Assume now that n is a multiple of m. Write g (X ) = a2X 2 −uX − v . Denote by σ(α) a Galois

conjugate of α such that αm and σ(αm) are the distinct roots of g (X ). If αm is not an algebraic
integer, then there exists a prime number p such that vp (αm) < 0. Since vp (αm) ≤−1/2, it follows
from [8, Theorem B.11] that the p-adic valuation of αn +σ(α)n satisfies

vp
(
αn +σ(α)n)= vp

(
(αm)n/m +σ(αm)n/m)≤ n

m
vp (αm)+ c15 logn ≤− n

3m
,

for n ≥ c16. In particular, for n greater than c16, the algebraic number αn +σ(αn) cannot be a
rational integer. Then, the quantityΛ′

n defined above is not equal to 1, and we can proceed exactly
as above to get a similar lower bound for NS (δn).

If αm is an algebraic integer, then a2 = 1 and αn +σ(αn) is equal to the nearest integer An to
αn . Thus, we have

‖αn‖ = |σ(αn)| = |v |n/m

αn ,

while Lemma 4 asserts that

‖αn‖ ≥ 3−1α−n .

Consequently, we obtain the desired improvement on (2) if |v | ≥ 2. As already noticed, (2) is
essentially best possible if |v | = 1.

It only remains for us to consider the case d = m. Then, there exist coprime nonzero integers
u, v with u > v > 0 such that the minimal defining polynomial of α over Z is v X d −u. If v = 1,
then α is the d-th root of the integer u. If d = 2, then

‖puum‖ ≥ u−(1−c17)m , for m ≥ 1,

by [3, Theorem 1.2] (see also [8, Theorem 6.3]). If d ≥ 3 and j = 1, . . . ,d −1, then it follows from
an effective improvement of Liouville’s bound d for the irrationality exponent of u j /d (see [8,
Section 6.3]) that

‖u j /d um‖ ≥ u−(1−c18)(d−1)m , for m ≥ 1.
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In both cases, noticing that C ( d
p

u) = u(d−1)/d , we get

‖( d
p

u)n‖ ≥C ( d
p

u)−(1−c19)n , for n ≥ 1 not a multiple of d ,

as expected. Now, assume that v ≥ 2. We argue in a similar way as in the proof of Theorem 3. Let
p be a prime divisor of v . Write

δn

vn/d
=

(
d

√
u

v

)n

− An

and note that the p-adic valuation of

Ωn = vn/d An = (u1/d )n −δn

satisfies vp (Ωn) ≥ c20n. Let L denote the number field generated by u1/d and v1/d . Let S be the
set of places of L composed of all the infinite places and all the places corresponding to a prime
ideal dividing v . Let η1, . . . ,ηs be a fundamental system of units in L. By [13, Proposition 4.3.12],
there exist integers b1, . . . ,br such that

h
(
δnη

−b1
1 · · ·η−br

r
)≤ log NS (δn)

d
+ c21. (8)

Since h(δn) ≤ c22n, it follows from [13, Proposition 4.3.9(iii)] and (8) that

B := max{|b1|, . . . , |br |} ≤ c23h∗(δn) ≤ c24n.

Set γn = δnη
−b1
1 · · ·η−br

r and note that

Ωn = (u1/d )n −γnη
b1
1 · · ·ηbr

r .

It follows from the theory of linear forms in p-adic logarithms, more precisely, from an estimate
of [18] (or see [8, Theorem 2.11]), that

vp (Ωn) ≤ c25h∗(γn) log

(
B +n

h∗(γn)

)
. (9)

This gives

n ≤ c26h∗(γn) log

(
n

h∗(γn)

)
,

and we derive that

n ≤ c27h∗(γn) ≤ c28 log NS (δn)+ c29,

thus

NS (δn) ≥ 2c30n , for n ≥ c31.

This improves the trivial lower bound NS (δn) ≥ 1 used in the proof of Lemma 4. This concludes
the proof of the theorem. �
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