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1. Introduction

The aim of this note is to state the results of [2], give brief indications on their proofs, and
provide the motivation behind them. Let X be a smooth complex algebraic variety and r > 0
an integer. The Betti moduli space MB (X ,r ) is an affine scheme defined over Q whose complex
points parametrize semisimple local systems on X an of rank r , cf. Section 2.1. Certain points in
MB (X ,r )(C) are of particular interest: they correspond to the local systems of geometric origin.
For instance, local systems that are direct summands of higher pushforwards R i f∗C, where i ≥ 0
and f : Y → X is a smooth projective morphism, are of geometric origin (the precise definition of
geometric origin is given in [1, 6.2.4]).

It is a subtle problem to describe the distribution of these “special” points in MB (X ,r ).
A natural question, analogous to the André–Oort problem in the case of Shimura varieties, is to

describe the Zariski closure Σ
Zar

where Σ ⊂ MB (X ,r )(C) is a subset of points of geometric ori-
gin. We recall here the corresponding picture for the Shimura variety Ag parametrizing princi-
pally polarized complex abelian varieties. The role of the points of geometric origin in MB (X ,r )
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is played by the CM points in Ag , i.e. points in Ag (C) parametrizing abelian varieties with com-
plex multiplication. If Σ ⊂ Ag (C) is a subset of CM points then the André–Oort conjecture (now

a theorem) states that the irreducible components of Σ
Zar

are connected Shimura subvarieties
of Ag . Roughly speaking, Shimura subvarieties of Ag parametrize abelian varieties whose associ-
ated weight one Hodge structure has more tensor Hodge classes than a very general abelian vari-
ety. Shimura subvarieties of Ag also contain a dense set of CM points for the Euclidean topology.
The counterparts in MB (X ,r ) of the Shimura subvarieties of Ag are the absolute Q-constructible
subsets, that we define in Section 2. They were first defined by Simpson in [12] when X is a pro-
jective variety. We follow a less constrained definition of [3] available also in the non-projective
case. The essential ingredient needed for their definition is the Riemann–Hilbert correspondence
between complex local systems on X an and regular algebraic flat connections on X . The absolute
Q-constructible subsets of dimension 0 give yet another collection of interesting points: as con-
jectured by Simpson, they should correspond exactly to the local systems of geometric origin
(see point (A3) below). One can formulate a set of conjectures in analogy with the Shimura case.
This is done in [3]:

Conjecture A. Let X be a smooth complex algebraic variety, and r > 0 an integer. The following
hold in MB (X ,r ):

(A1) The collection of absolute Q-constructible subsets is generated from the absolute Q-closed
subsets via finite sequences of taking unions, intersections, and complements; the Eu-
clidean (or equivalently, the Zariski) closure of an absolute Q-constructible set is abso-
lute Q-closed; and an irreducible component of an absolute Q-closed subset is absolute
Q-closed.

(A2) Any non-empty absoluteQ-constructible subset contains a Zariski dense subset of absolute
Q-points.

(A3) A point is an absolute Q-point if and only if it is a local system of geometric origin.
(A4) The Zariski closure of a set of absolute Q-points is Q-pseudo-isomorphic to an absolute

Q-constructible subset of some MB (X ′,r ′), for possibly a different smooth complex alge-
braic variety X ′ and rank r ′. Moreover, the Q-pseudo-isomorphism restricts to a bijec-
tion between the sets of absolute Q-points. (See Definition 3 for the notion of Q-pseudo-
morphisms.)

In this note we address a modification of Conjecture A for certain subvarieties of MB (X ,r ),
which are themselves absolute Q-constructible subsets MB (X ,r ). They correspond to the sub-
moduli of simple local systems (Section 3) and cohomologically rigid local systems (Section 4).
We give a description up to a quasi-finite morphism of the absoluteQ-constructible sets of simple
cohomologically rigid local systems. Conjecture A for this kind of absolute sets is then: reduced
to (A3) (Theorem 7), and shown to hold if dim X = 1 or if r = 2 (Theorem 8). If r = 1, or if X is a
complex affine torus or an abelian variety, Conjecture A is known by [3]. One can find in [5] an
arithmetic analog of our results.

2. The Betti moduli space and absolute sets

2.1. Betti moduli

Let X be a smooth complex algebraic variety with a base point x0 ∈ X (C). Let r > 0 be an integer.
The space of representations of rank r of the (topological) fundamental group π1(X , x0) is

RB (X , x0,r ) := Hom
(
π1 (X , x0) ,GLr

)
,

the Q-scheme representing the functor associating to a Q-scheme T the set Hom(π1(X , x0),
GLr (Γ(T,OT ))). There is an action of GLr on RB (X , x0,r ) by conjugation: on T -valued points
RB (X , x0,r )(T ), the group GLr (Γ(T,OT )) acts by conjugation on the target.
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The moduli space of local systems of rank r is defined as the affine GIT quotient of RB (X , x0,r )
with respect to this action,

MB (X ,r ) := RB (X , x0,r )//GLr .

It is an affine scheme defined over Q. The complex points of MB (X ,r ) are in one-to-one corre-
spondence with the isomorphism classes of complex semisimple local systems of rank r on X an.
For a representation ρ : π1(X , x0) → GLr (C) we denote the associated local system on X an by Lρ .
We denote by

qB : RB (X , x0,r ) → MB (X ,r )

the quotient morphism. The fiber over a complex point L ∈ MB (X ,r )(C) is the set of representa-
tions ρ such that Lρss ∼= L, where ρss is the semisimplification of ρ. By RB (X , x0) we will mean the
disjoint union over all r of RB (X , x0,r ) and similarly for MB (X ).

2.2. Unispaces

Unispaces, defined in [3], enlarge the class of spaces for which constructibility can be defined in a
useful way. Let Al g f t ,r eg (C) be the category of finite type regular C-algebras and Set the category
of sets. A unispace C is a functor

C : Al g f t ,r eg (C) → Set .

Given R ∈ Al g f t ,r eg (C) elements of C (R) will be denoted by FR . If R → R ′ is a morphism in
Al g f t ,r eg (C) and FR ∈ C (R), the image of FR in C (R ′) under the morphism C (R) → C (R ′) will
be denoted FR ?R R ′. We think of an element of C (R) as a family of objects in C (C) parametrized
by Spec(R). A subset S ⊂ C (C) is called C-constructible (respectively, C-closed) with respect to the
unispace C if for every R ∈ Al g f t ,r eg (C) and every FR ∈C (R), the subset of maximal ideals{

m ∈ Spec(R)(C)
∣∣FR ?R R/m ∈ S

}
is the set of complex points of a constructible subscheme of Spec(R).

Examples

Let X be a complex algebraic variety.

(1) We denote by LocSy s f r ee (X ,_) the unispace associating to R ∈ Al g f t ,r eg (C) the set of
isomorphism classes of local systems of free R-modules of finite rank on X an.

(2) We denote by Db
c (X ,_) the unispace associating to R ∈ Al g f t , sr eg (C) the set of isomor-

phism classes of objects of Db
c (X ,R), the bounded derived category of constructible

sheaves of finite type R-modules on X an.

In the notation of the previous example, there is a natural transformation of functors

LocSy s f r ee (X ,_) → Db
c (X ,_) . (1)

For R ∈ Al g f t ,r eg (C), it sends a local system LR ∈ LocSy s f r ee (X ,R) to the complex in Db
c (X ,R)

whose only nonzero term is LR placed in degree zero.

2.3. Q-constructibility

Consider the unispace LocSy s f r ee (X ,_) (the same discussion applies verbatim to Db
c (X ,_)). We

can modify its definition in the obvious way to define a functor Al g f t ,r eg (K ) → Set , where K is a
field of characteristic zero and Al g f t ,r eg (K ) is the category of finite type regular K -algebras. Fix an
embedding ι :Q ,→ C. We write Q⊂ L ⊂ C to denote a tower of field extensions whose composite
is ι. A subset S ⊂ LocSy s f r ee (X ,C) is Q-constructible (resp. Q-closed) if it is C-constructible (resp.
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C-closed) and for all field extensionsQ⊂ L ⊂C, for all R ∈ Al g f t ,r eg (L) and LR ∈ LocSy s f r ee (X ,R)
the set {

m ∈ HomL(R,C) : LR ⊗R,m C ∈ S
}

is the set HomL(Spec(C),YR ) of complex points of a constructible (resp. closed) L-subscheme YR
of Spec(R). One checks that the choice of a different embedding ι′ :Q ,→ C gives rise to the same
notion ofQ-constructibility for subsets of LocSy s f r ee (X ,C). We record here that there is a general
theory of K -structures for unispaces, where K is a subfield of C, developed in [3, Section 3]. The
previous definition coincides with [3, Definition 3.4.1], when phrased in terms of the indicator
function of S.

2.4. Absolute sets

Assume now that X is a smooth complex algebraic variety. We denote by DX the sheaf (of non-
commutative C-algebras) of differential operators on X . The Riemann–Hilbert correspondence
is an equivalence of categories

RH : Db
r h (DX ) → Db

c (X ,C)

where the left hand side denotes the category of regular holonomic DX -modules, cf. [6].
For each σ ∈ Gal(C/Q), let Xσ → X be the base change of X via σ. Consider the diagram

Db
r h (DX )

RH
��

pσ // Db
r h (DXσ )

RH
��

Db
c (X ,C) Db

c (Xσ,C) ,

(2)

where pσ is the pullback of DX -modules under the base change over σ (it is an equivalence of
categories as well). For a subset T of the isomorphism classes of objects in Db

c (X ,C), define

Tσ := RH ◦pσ ◦RH−1(T ), (3)

a subset of the isomorphism classes of objects in Db
c (Xσ,C). In the remainder of the section we

let K =C or Q. The key definition is the following:

Definition 1.

(1) A set T of isomorphism classes of objects in Db
c (X ,C) is absolute K -constructible (resp.

absolute K -closed) with respect to the unispace Db
c (X ,_) if the set Tσ of isomorphism

classes of objects in Db
c (Xσ,C) is K -constructible (resp. K -closed) with respect to Db

c (Xσ,_)
for all σ ∈ Gal(C/Q).

(2) A set T of isomorphism classes of objects in LocSy s f r ee (X ,C) is absolute K -constructible
(resp. absolute K -closed) with respect to the unispace LocSy s f r ee (X ,_) if its image in
Db

c (X ,C) under the natural transformation (1) is absolute K -constructible (resp. absolute
K -closed) with respect to the unispace Db

c (X ,_).

Any subset of isomorphism classes in Db
c (X ,C) or LocSy s f r ee (X ,C) defined via a composition

of the usual functors on derived categories of bounded K -constructible complexes on smooth
complex algebraic varieties is absolute K -constructible in the above sense, by [3, Section 6].

The previous definition deals with abstract isomorphism classes of objects. We now define the
notion of absoluteness for subsets of MB (X )(C). Let

l : RB (X , x0) (C) → LocSy s(X ,C)

be the map sending a representation ρ to the isomorphism class of Lρ .
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Definition 2. A subset S ⊂ MB (X )(C) is absolute K -constructible (resp. absolute K -closed) if
S = qB (l−1(T )) where T ⊂ LocSy s(X ,C) is absolute K -constructible (resp. absolute K -closed) with
respect to the unispace LocSy s f r ee (X ,_). Ifσ ∈ Gal(C/Q) the set Sσ ⊂ MB (Xσ)(C) is defined as in (3)
with the points of S corresponding to isomorphism classes of semisimple local systems.

Notice that an absolute K -constructible subset of MB (X ,r )(C) is indeed the set of complex
points of a constructible K -subscheme of MB (X ,r ). For equivalent definitions of absoluteness
and some basic properties, see [2, Section 4.3]. In Conjecture A we use the notion of “Q-pseudo-
isomorphism”. The definition is as follows and it is related with the theory of motivic measures
and the Grothendieck group of varieties, see [8, 9]:

Definition 3. Let K be a field, Y (resp. Y ′) a K -scheme, and S (resp. S′) a constructible subscheme
of Y (resp. Y ′). The sets S(C) and S′(C) are K -pseudo-isomorphic if there exist n ∈N, constructible
K -subschemes Si of S (resp. S′

i of S′), for i = 1, . . . ,n, such that S(C) = ∐n
i=1 Si (C) (resp. S′(C) =∐n

i=1 S′
i (C)) and such that there exist K -isomorphisms Si → S′

i , i = 1, . . . ,n. The ambient schemes Y
and Y ′ will be clear from the context.

2.5. Restricting Conjecture A to submoduli

Let M ⊂ MB (X )(C) be an absolute K -constructible subset. Let M̃ = l (q−1
B (M)) ⊂ LocSy s(X ,C).

Define the unispace

M : R 7→ {
LR ∈ LocSy s f r ee (X ,R)

∣∣LR ⊗R R/m ∈ M̃ , ∀ m ∈ Spec(R)(C)
}

together with the usual base change. Clearly M (C) = M̃ . There is a natural transformation

M → LocSy s f r ee (X ,_) (4)

of unispaces defined over K given by inclusion. For σ ∈ Gal(C/Q), we let MXσ be the unispace
associated to Mσ (the latter set is defined in Definition 2). Note that (_)̃ and (_)σ commute, and
M =MX . We adapt Definition 1 to the collection of unispaces MXσ . We say that a subset S ⊂ M̃
is absolute K -constructible (resp. absolute K -closed) with respect to M if Sσ is K -constructible
(resp. K -closed) with respect to MXσ for all σ ∈ Gal(C/Q). At the level of the Betti moduli space,
the corresponding definition is:

Definition 4. A subset S of M is called absolute K -constructible (resp. absolute K -closed) in M
if S = qB (l−1(T )) for some subset T of M̃ that is absolute K -constructible (resp. absolute K -closed)
with respect to the unispace M .

One can then restrict the formulation of Conjecture A to M : we replace MB (X ) by M and
replace all instances of the phrase “absolute Q-constructible subset” (resp. “absolute Q-closed
subset”) by “absolute Q-constructible subset of M” (resp. “absolute Q-closed subset of M”).
Conjecture (A3) will deal only with the equivalence for absolute Q-points in M . We shall refer
to the restricted version of the conjecture as “Conjecture A for M”.

3. Simple local systems

Let M s
B (X ,r ) be the Zariski open subscheme of MB (X ,r ) whose complex points parametrize

simple local systems. It is easy to see that M s
B (X ,r )(C) is absoluteQ-constructible. Our main result

concerning the locus of simple local systems is:

Theorem 5. Conjecture (A1) for M s
B (X ,r )(C) holds.
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Let us say some words on the proof. The notion of absoluteQ-constructibility given in Defini-
tion 2 has a more geometric version, which however is less flexible. Embed X in a smooth projec-
tive variety X with D := X \ X a simple normal crossing divisor. It is proved by Nitsure [10, The-
orem 3.5] and Simpson [13, Theorem 4.10] that there exists a coarse moduli space MDR (X /D,r )
for Jordan equivalence classes of rank r semistable logarithmic connections on X with poles on
D . It is a countable disjoint union of finite type C-schemes. The underlying OX -module of a log-
arithmic connection is, by definition, only a torsion-free OX -module, locally free over X . The
Riemann-Hilbert correspondence induces a complex analytic map

RH an : MDR

(
X /D,r

)an → MB (X ,r )an. (5)

One can then give a definition of absoluteness as in 2 but using MB (X ,r ) (resp. MDR (X /D,r ))
in place of Db

c (X ,C) (resp. Db
r h(DX )), see [2, Section 5.3]. The advantage of this definition is the

possibility of working with geometric objects rather than abstract sets of isomorphism classes.
On the other hand, there are some drawbacks. First, it is much easier to define functors at
the categorical level rather than at the level of coarse moduli spaces. Second, the condition of
semistability on connections, needed to ensure the existence of a coarse moduli space, leads to
some complications: for example, it is not known whether RH an is surjective (notice that without
semistability the surjectivity is clear, e.g. using Deligne extensions). However, many difficulties
disappear, and the two definitions of absoluteness agree, if we restrict RH an to the analytic open
subpace M g ood

DR (X /D,r ) ⊂ MDR (X /D,r )an which parametrizes simple logarithmic connections
such that no two distinct eigenvalues of the residue along a component of D differ by an integer
(it is the complement of a locally finite, countable collection of Zariski closed subchemes). Then,
the map RH0 := RH an : M g ood

DR (X /D,r ) → M s
B (X ,r )an is surjective. The key ingredient for the

proof of Theorem 5 is a result of Nitsure-Sabbah [11, Section 8] stating that RH0 is a local analytic
isomorphism.

4. Cohomologically rigid local systems

We continue to consider a smooth complex variety X with a good compatification j : X → X .

Definition 6. Let L be a simple complex local system on X . We say that L is cohomologically rigid
if H1(X , j!∗End 0(L)) = 0 where End 0(L) denotes the local system of traceless endomorphisms of L
and j!∗ is the intermediate extension functor.

In general the vector space H1(X , j!∗End 0(L)) is the Zariski tangent space at L of the Betti
moduli space of complex local systems with prescribed determinant and prescribed local mon-
odromies at infinity. Thus a cohomologically rigid complex local system is rigid, in the sense that
L is an isolated point of this moduli space, and in addition it is a smooth point. Without fixing
the determinant nor the monodromy at infinity, the set of simple cohomologically rigid local sys-
tems in MB (X ,r )(C) is the set of complex points of a possibly high-dimensional constructible
subscheme M cohr i g

B (X ,r ) ⊂ MB (X ,r ). From the results of [3] and the cohomological characteri-

zation H1(X , j!∗End 0(L)) = 0, one deduces that M cohr i g
B (X ,r )(C) is an absolute Q-constructible

subset, see [2, Proposition 6.2(2)]. Our second main result is:

Theorem 7. Conjectures (A1), (A2), (A4) for M cohr i g
B (X ,r ) hold. Conjecture (A3) is equivalent

to Simpson’s conjecture that cohomologically rigid simple local systems with quasi-unipotent
determinant and conjugacy classes at infinity are of geometric origin.

Simpson’s conjecture is proved when X is a curve and the rank is arbitrary in [7], and when X
is arbitrary and the rank is 2 in [4]. Therefore we obtain:

Theorem 8. Conjecture A for M cohr i g
B (X ,r ) holds if X is a curve or if the rank r = 2.
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We provide some indications on the proof. Let X be a smooth compactification of X with com-
plement D , a simple normal crossing divisor. Let D = ∪s

i=1Di be the irreducible decomposition.
We consider the open subscheme MDR (X /D,r )lf ⊂ MDR (X /D,r ) of logarithmic connections of
rank r whose underlying OX -module is locally free. Consider the diagram:

MDR

(
X /D,r

)lf
(C)

RH an

��

det×r es // MDR

(
X /D,1

)
(C)×Cr s

RH an× f

��

MDR

(
X /D,1

)
(C)×Cr si d×r ootoo

i d×E xp

��
MB (X ,r )(C)

det×mon // MB (X ,1)(C)× (
(C∗)(r ))s

MB (X ,1)(C)× (C∗)r s .
i d×r ootoo

(6)
defined as follows. Here r es = (r es1, . . . , r ess ) and r esi : MDR (X /D,r )lf → Cr is the alge-
braic morphism which associates to a locally free connection (E ,∇) the r -tuple of coefficients,
excluding the top degree, of the characteristic polynomial of the residue homomorphism Γi ∈
Hom(E |Di , E |Di ). This is well-defined, since over a point of Di the residue homomorphism de-
termines a conjugacy class in GLr (C) which remains constant as the point varies. Similarly,
mon = (mon1, . . . ,mons ) and moni : MB (X ,r ) → Cr−1 ×C∗ is the algebraic morphism that as-
sociates to a representation ρ : π1(X , x0) → GLr (C) the coefficients of the characteristic polyno-
mial of the matrix associated to a small loop around Di . The constant term coefficient is nonzero.
By identifying a monic polynomial with the unordered set of its roots, one identifiesCr−1×C∗ with
the r th symmetric product (C∗)r /Sr denoted (C∗)(r ). The two maps det correspond to taking the
determinant of a logarithmic connection and of a local system, respectively.

Each of the two maps r oot is the product s times of the quotient maps by the action of
the symmetric group Sr . The quotient map is a finite map of algebraic varieties, given by the
symmetric polynomials, such that the fiber over (a0, . . . , ar−1) is the set of roots of the polynomial
t r +ar−1t r−1+ . . .+a0 and their distinct permutations. The map E xp takes z to e2πi z component-
wise. The map f is the unique map that makes the diagram commutative. We can restrict the
left-most column of (6) to RH an : MDR (C) → M s

B (X ,r )(C), where MDR (C) ⊂ MDR (X /D,r )lf(C) is
the inverse image of the set M s

B (X ,r )(C) of simple local systems. We keep using the same names
for the restricted maps, which will be the ones used below. Viewing (C∗)r s as the complex points
of the Betti moduli of rank one local systems on the affine torus Gr s

m , the first step in the proof of
Theorem 7 is:

Proposition 9.

(1) If S ⊂ M s
B (X ,r )(C) is an absolute Q-constructible subset, then (i d × r oot )−1((det ×

mon)(S)) an absolute Q-constructible subset of MB (X ×Gr s
m ,1)(C).

(2) If S′ ⊂ MB (X ×Gr s
m ,1)(C) is an absolute Q-constructible subset, then (det ×mon)−1((i d ×

r oot )(S′)) is an absolute Q-closed subset of M s
B (X ,r )(C).

This allows one to pass from an absoluteQ-constructible subset of Betti moduli of higher rank
to one in Betti moduli of rank one. In rank one, one has a precise description of absolute Q-
constructible subsets: these are the subsets generated from torsion-translated algebraic subtori
via a finite sequence of taking unions, intersections, and complements, [3, Theorem 9.1.2]. The
last step is to observe that the restriction of det ×mon to M cohr i g

B (X ,r )(C) has finite fibers. These
ingredients prove Theorem 7.
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