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Abstract. A review of stable boundary integral equation methods for solving the Navier equation with either
Dirichlet or Neumann boundary conditions in the exterior of a Lipschitz domain is presented. The conven-
tional combined-field integral equation (CFIE) formulations, that are used to avoid spurious resonances, do
not give rise to a coercive variational formulation for nonsmooth geometries anymore. To circumvent this
issue, either the single layer or the double layer potential operator is composed with a compact or a Steklov–
Poincaré type operator. The later can be constructed from the well-know elliptic boundary integral operators
associated to the Laplace equation and Gårding’s inequalities are satisfied. Some Neumann interior eigen-
value computations for the unit square and cube are presented for forthcoming numerical investigations.
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1. Introduction and problem settings

LetΩ denote a bounded domain inRd , d = 2 or 3 and letΩc denote the exterior domainRd \Ω. We
assume that the boundary Γ of Ω is a Lipschitz continuous (in the sense of [14, Definition 2.4.5]
or [21, p. 89]), simply connected and oriented closed curve or surface. Let n denote the outward
unit normal vector on the boundary Γ. We assume that the Lamé parameters µ and λ and
the density ρ are positive constants. The propagation of time-harmonic elastic waves in the
three-dimensional isotropic and homogeneous elastic medium (with e−iωt time-dependence)
is described by the Navier equation

∆∗u +ρω2u =µ∆u + (λ+µ)∇divu +ρω2u = 0, (1)

where ω> 0 is the frequency. In this work we discuss solution methods based on boundary inte-
gral equation formulations for the following exterior boundary value problems in elastodynam-
ics: Given an incident field uinc which is assumed to solve the Navier equation in the absence
of scatterer, find the solution u to the Navier equation (1) in Ωc which satisfies either a Dirichlet
boundary condition

u +uinc = 0 on Γ (2)
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or a Neumann boundary condition

T (u +uinc) = 0 on Γ, (3)

where the traction operator is defined by

T u = 2µn · (∇u)|Γ +λn(divu)|Γ +µn × (curlu)|Γ when d = 3. (4)

When d = 2, by setting u = (u1,u2,0) and n = (n1,n2,0), we get

T u = 2µn · (∇u)|Γ +λn(divu)|Γ −µn⊥(curl|| u)|Γ when d = 2, (5)

where n⊥ = (−n2,n1) and curl|| u = ∂x1 u2 −∂x2 u1. Incident plane waves satisfy the homogeneous
Navier equation in Rd . Other incident fields are assumed to be generated by the incident source
t inc with compact support inΩc , so that ∆∗uinc+ρω2uinc = t inc. In addition the scattered field u
has to satisfy the Dirichlet-to-Neumann type radiation condition [12]

lim
|x |→∞

|x | d−1
2 |T u − iKωu| = 0, (6)

which has to be satisfied uniformly for all unitary directions x̂ = x
|x | and where

Kω = κp (λ+2µ) Idx̂ +κsµ
(

Id− Idx̂
)
,

Idx̂ = x̂Tx̂ , κp = ω
√

ρ
λ+2µ and κs = ω

√
ρ
µ are the P- and S-wave numbers associated to longitu-

dinal and transverse wave propagation, respectively. This radiation condition (6) is equivalent to
the Kupradze radiation conditions and avoids the splitting of scattered waves as the sum of share
(divu = 0) and pressure (curl|| u = 0 for d = 2 or curlu = 0 for d = 3) waves in the analysis. Unique-
ness of the solution to problems (1)–(2)–(6) and (1)–(3)–(6) is guaranted by [16, Lemma 2.1] for
the two dimensional case. The analogous uniqueness results for the three-dimensional case will
be detailed in [20].

A classical tool for establishing existence results for the solution to such elliptic boundary
value problems is the reduction to coercive combined-field boundary integral equations. How-
ever, if the boundary Γ is not smooth, the conventional linear combination of the single and dou-
ble layer potential operators (required to avoid spurious frequencies) do not satisfy Gårding’s in-
equalities anymore. This issue has been the subject of several works in acoustic and electromag-
netic scattering [3, 10, 11, 25]. From these three-dimensional studies, two different techniques
emerge. Either we regularize one of the potential operators by a compact operator or else we
modify them by the introduction of a Steklov–Poincaré type operator. Both of the ideas extend to
the elastic case in two and three dimensions.

The sequel is organized as follows. In Section 2, collecting theories presented in [17, 21], we
recall some standard results about trace mappings and regularity properties of the boundary
integral operators in suitable Sobolev spaces for Lipschitz boundaries. With the help of the
radiation condition (6), we then extend from acoustics to elastodynamics some well-known
positivity results satisfied by the weakly and hypersingular boundary integral operators. Instead
of constructing the Steklov–Poincaré type operators from the purely elastic potential theory we
suggest to reuse the elliptic operators associated to the Laplace equation case. The regularized
or modified CFIEs are presented and analysed in Section 3. We only describe the so-called
indirect approach (with non physical unknown density) since the direct one leads to the L2-
adjoint form of the proposed modified CFIEs. Finally, we outline concluding remarks and
discuss possible research lines in the final section of the paper. The content is completed by
two appendices providing the principal symbols of the boundary integral operators and explicit
Neumann eigenvalue computations.
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2. Potential theory for linear elastic waves scattering

2.1. Trace mapping properties for Lipschitz domains

We summarize some well known results about traces of vector fields and variational formulations
for time-harmonic elastodynamic waves in a Lipschitz domain.

Notation. For G ⊂Rd , we denote by H s (G) the usual L2-based Sobolev space of order s ∈R, and
by H s

loc(G) the space of functions whose restrictions to any bounded subdomain B of G belong
to H s (B), with the convention H 0 ≡ L2. Spaces of vector functions will be denoted by boldface
letters; thus H s = (H s )d . We set :

H 1(G ,∆∗) := {
u ∈ H 1(G) : ∆∗u ∈ L2(G)

}
,

H 1
loc(G ,∆∗) :=

{
u ∈ H 1

loc(G) : ∆∗u ∈ L2
loc(G)

}
.

The space H 1(Ω,∆∗) is a Hilbert space endowed with the natural graph norm.

Definition 1. For a vector function u ∈ (C∞(Ω))d we define the traces :

γ−0 u = u|Γ (Dirichlet)

γ−1 u = T u (Neumann)

γ−g u = n · (∇u)|Γ −n(divu)|Γ +n × (curlu)|Γ , when d = 3,

= n · (∇u)|Γ −n(divu)|Γ −n⊥(curl|| u)|Γ , when d = 2, (Günter derivative).

We use standard Sobolev spaces H t (Γ), t ∈ [−1,1], endowed with standard norms || · ||H t (Γ) and
with the convention H 0(Γ) = L2(Γ). Spaces of vector densities are denoted by boldface letters,
thus H t (Γ) = (

H t (Γ)
)d . By density arguments we extend the Definition 1 to Sobolev spaces. The

trace maps

γ−0 : H s+ 1
2 (Ω) −→ H s (Γ),

are continuous for all s > 0, if the domain is smooth (see [21, Theorem 3.37]). Whereas for a
bounded Lipschitz domain in general, the validity is only given for s ∈ (0,1) (see [5, Lemma 3.6]
or [21, Theorem 3.38]). The dual spaces of H t (Γ) with respect to the L2 scalar product are
denoted by H−t (Γ). The brackets 〈 · , · 〉 1

2
represents the duality product defined for (ϕ,ψ) ∈

H− 1
2 (Γ)×H

1
2 (Γ) as

〈ϕ,ψ〉 1
2
=

∫
Γ
ϕ ·ψds = 〈ψ,ϕ〉 1

2
.

By the Gauss divergence theorem [21, p. 115], we derive the mapping properties of γ−1 and γ−g .
Let set

σ(u) =λ(divu) Id+2µξ(u), with ξ(u) = 1
2 ([∇u]+T[∇u]),

χ(u) = T[∇u]− (divu) Id,

where Id is the d-by-d identity matrix, TM is the tranpose of matrix M and [∇u] is the matrix
whose the j th column is the gradient of the j -th component of u.

For two d-by-d matrices A and B whose columns are denoted by (a1, . . . , ad ) and (b1, . . . ,bd ),
respectively, we set A : B = a1 ·b1 +·· ·+ad ·bd . From the identities

div
(
σ(u)v

)=∆∗u ·v +σ(u) : ε(v ), T[n ·σ(u)|Γ] = T u,

div
(
χ(u)v

)=χ(u) : [∇v ], T[n ·χ(u)|Γ] = γ−g (u),
(7)

we deduce the following two Lemmas.
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Lemma 2. For vector functions u and v in H 1(Ω,∆∗), we have the following first Green formula,∫
Ω
∆∗u ·v dx +

∫
Ω
σ(u) : ξ(v )dx =

∫
Γ

T u ·v ds. (8)

The symmetry of the product σ(u) : ε(v ) = λ(divu)(div v )+ 2µξ(u) : ξ(v ) = σ(v ) : ξ(u) yields the
second Green formula, ∫

Ω

(
u ·∆∗v −∆∗u ·v

)
dx =

∫
Γ

(
u ·T v −T u ·v

)
ds. (9)

If u and v solve the Navier equation inΩ, then each term in (9) vanishes.

Lemma 3. For vector functions u and v in H 1(Ω,∆∗), we have the following formula,∫
Ω
χ(u) : [∇v ]dx =

∫
Γ
γ−g (u) ·v ds. (10)

The symmetry of the product χ(u) : [∇v ] = χ(v ) : [∇u] yields the symmetry property of the Günter
derivative, ∫

Γ

(
u ·γ−g (v )−γ−g (u) ·v

)
ds = 0. (11)

The first Green formulæ (8)-(10) yield the continuous trace mappings

γ−1 : H 1(Ω,∆∗) −→ H− 1
2 (Γ),

γ−g : H 1(Ω,∆∗) −→ H− 1
2 (Γ).

For u ∈ H 1
loc(Ωc ,∆∗) we define γ+0 u, γ+1 u and γ+g v in the same way and the same mapping

properties hold true.
Now we introduce some surface differential operators: The tangential gradient denoted by ∇Γ

and the surface divergence denoted by divΓ for non tangential vector fields. For their definitions
we refer to [14, paragraph 5.4.3] and we have divΓψ = (Trace[∇Γψ]). Their extensions to the
Sobolev space of fractional order t = 1

2 are both derived from [2, Proposition 3.6]. From the
decomposition of the gradient and divergence operators given in [14, Definitions 4.5.5 and 4.5.6],
we deduce the following identity first derived in [17, Chapter V , Eq. (1.6)]

γ±g (u) = [∇Γu|Γ]n − (divΓu|Γ)n :=M (u|Γ),

so that the tangential derivative M is symmetric and continuous from H
1
2 (Γ) to H− 1

2 (Γ). In
particular, we will use the following rewritting of the traction trace

T u = 2µM u|Γ+ (λ+2µ)n(divu)|Γ +µ(curlu)|Γ ×n, when d = 3,

= 2µM u|Γ+ (λ+2µ)n(divu)|Γ +µn⊥(curl|| u)|Γ , when d = 2.
(12)

2.2. Boundary integral reformulation of the elastodynamic system

In this paragraph, we introduce the classical potential theory associated to elastodynamic wave
scattering problems and we establish some positivity criteria for the two boundary integral
operators with either a weakly or a hypersingular kernel.

Denoting by G(κ, z) the fundamental solution to the Helmholtz equation

(∆+κ2 Id)G(κ, z) =−δ0(|z |),

the fundamental solution to the Navier equation is then given by

Φω(z) = 1

µ

(
G(κs , z) IdRd + 1

κ2
s
∇z

T∇z

(
G(κs , z)−G(κp , z)

))
.

It is a d ×d symmetric matrix-valued function and behaves asΦω(z) =O

(
1

|z | d−1
2

)
as |z |→+∞.
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For a solution to the Navier equation (1) in Ωc that satisfies the Kupraze radiation condition,
one can derive from (9) the Somigliana integral representation formula for x ∈Ωc :

u(x) =
∫
Γ

(
T[

T yΦω(x − y)
]
u(y)−Φω(x − y)T y u(y)

)
ds(y), (13)

where the lower subscript y indicates differentiation with respect to y and T yΦω(x − y) is the
matrix obtained by applying the traction operator T y to each column of Φω(x − y). Interior
solutions to the Navier equation satisfy for x ∈Ω

u(x) =−
∫
Γ

(
T[

T yΦω(x − y)
]
u(y)−Φω(x − y)T y u(y)

)
ds(y). (14)

Conversely, boundary integral equation methods consider ansatz based on the following result.

Lemma 4.

(i) The single layer potential operatorΨS
ω defined by

ΨS
ωϕ(x) =

∫
Γ
Φω(x − y)ϕ(y)ds(y)

is continuous from H− 1
2 (Γ) to H 1(Ω,∆∗)∪H 1

loc(Ωc ,∆∗). Forϕ ∈ H− 1
2 (Γ) we have

(∆∗+ρω2 Id)ΨS
ωϕ= 0 in Rd \Γ,

andΨS
ωϕ satisfies the radiation condition (6) and

(
ΨS
ωϕ

)
(x) =O

(
1

|x | d−1
2

)
as |x |→+∞.

(ii) Similar results hold true for the double layer potential operator ΨD
ω defined for ψ ∈

H
1
2 (Γ) by

ΨD
ωψ(x) =

∫
Γ

T[
T yΦω(x − y)

]
ψ(y)ds(y).

The Calderón projectors for the time-harmonic Navier equation are

P±
ω =

(± 1
2 Id+Dω −Sω

Nω ± 1
2 Id−D ′

ω

)
,

where the boundary integral operators are defined by

Sωϕ(x) = 1

2
{γ+0 +γ−0 }ΨS

ωϕ=
∫
Γ
Φω(x , y)ϕ(y)ds(y), (15)

Dωψ(x) = 1

2
{γ+0 +γ−0 }ΨD

ωψ=
∫
Γ

T[T yΦω(x , y)]ψ(y)ds(y), (16)

D ′
ωϕ(x) = 1

2
{γ+1 +γ−1 }ΨS

ωϕ=
∫
Γ

T x
{
Φω(x , y)ϕ(y)

}
ds(y), (17)

Nωψ(x) = 1

2
{γ+1 +γ−1 }ΨD

ωψ=
∫
Γ

T x

{
T[T yΦω(x , y)]ψ(y)

}
ds(y). (18)

The operator Sω has a pseudo-homogeneous kernel of order −1 (see Appendix A) and is thus
bounded from H− 1

2 (Γ) to H
1
2 (Γ). The operators Dω and D ′

ω have a pseudo-homogeneous kernel
of order 0 and are bounded on H

1
2 (Γ) and H− 1

2 (Γ) respectively. The operator Nω has a pseudo-
homogeneous kernel of order +1 and is bounded from H

1
2 (Γ) to H− 1

2 (Γ). More precisely we have

P±
(
ψ

ϕ

)
=

(
γ±0Ψ

D
ωψ

γ±1Ψ
D
ωψ

)
−

(
γ±0Ψ

S
ωϕ

γ±1Ψ
S
ωϕ

)
, (19)

so that the potential operatorsΨS
ω andΨD

ω satisfy the following jump relations across Γ(
γ+0 −γ−0

)
ΨS
ω = 0,

(
γ+0 −γ−0

)
ΨD
ω = Id,(

γ+1 −γ−1
)
ΨS
ω =− Id,

(
γ+1 −γ−1

)
ΨD
ω = 0.

(20)
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For numerical implementation purpose, the integration by part formula (11) (initially estab-
lished in [17, Chapter V Theorem 1.3] for smooth boundaries and still valid for Lipschitz bound-
aries) permits to express the above four boundary integral operators in terms of other opera-
tors with weakly singular kernels and surface differential derivatives. Adapting the computations
in [15, p. 47-49] to the dynamic case ω ̸= 0, the double layer boundary integral operator and the
traction derivative of the single layer potential operator can be rewritten for x ∈ Γ as:

(Dωψ)(x) = 2µ(SωMψ)(x)−
∫
Γ

G(κs , x − y)Myψ(y)ds(y)+
∫
Γ

∂

∂n(y)
G(κs , x − y)ψ(y)ds(y)

+
∫
Γ
∇y

(
G(κp , x − y)−G(κs , x − y)

)(
n(y) ·ψ(y)

)
ds(y), (21)

and

(D ′
ωϕ)(x) = 2µ(MSωϕ)(x)− Mx

∫
Γ

G(κs , x − y)ϕ(y)ds(y)+
∫
Γ

∂

∂n(x)
G(κs , x − y)ϕ(y)ds(y)

+n(x)
∫
Γ
ϕ(y) ·∇x

(
G(κp , x − y)−G(κs , x − y)

)
ds(y). (22)

The treatment of the hypersingularity derived in [18] for smooth boundaries extends to the
Lipschitz case without any changes and we have:

Nω = 2µD ′
ωM +2µM (Dω−2µSωM )+Cω, (23)

with

Cωψ(x) = ρω2 n(x)×
∫
Γ

G(κs , x − y)(ψ(y)×n(y))ds(y)−µcurlΓ

∫
Γ

G(κs , x − y)curlΓψ(y)ds(y)

+ρω2n(x)
∫
Γ

G(κp , x − y)
(
n(y) ·ψ(y)

)
ds(y), when d = 3, (24)

where we have curlΓ =−n ×∇Γ and curlΓ = divΓ( ·×n) , and

Cωψ(x) = ρω2 n⊥(x)
∫
Γ

G(κs , x − y)(ψ(y) ·n⊥(y))ds(y)

+ρω2n(x)
∫
Γ

G(κp , x − y)
(
n(y) ·ψ(y)

)
ds(y), when d = 2. (25)

In virtue of [21, Theorems 7.6 and 7.8], the boundary integral operators Sω and Nω satisfy
Gårding’s inequalities. By strong ellipticity of (−∆∗) (see [21, Chapter 10]) we can formulate the
following theorem

Theorem 5.

(i) There exists a positive constant cS and a compact operator LS : H− 1
2 (Γ) → H

1
2 (Γ) such that

Re
(
〈Sωϕ,ϕ〉 1

2
+〈LSϕ,ϕ〉 1

2

)
≥ cS∥ϕ∥2

H− 1
2 (Γ)

, for allϕ ∈ H− 1
2 (Γ).

(ii) There exists a positive constant cN and a compact operator LN : H
1
2 (Γ) → H− 1

2 (Γ) such that

Re
(
〈−Nωψ,ψ〉 1

2
+〈LNψ,ψ〉 1

2

)
≥ cN∥ψ∥2

H
1
2 (Γ)

, for allψ ∈ H
1
2 (Γ).

Remark 6. As for the Helmholtz and Maxwell equation cases [3, 6, 10, 11, 25], the boundary
integral operators arising from the elastodynamic case ω ̸= 0 are compact perturbations of their
counterpart arising from the static case ω= 0, even in the Lipschitz case. Therefore, when d = 3,
the first item for the operator Sω = S0+(Sω−S0) can also be justified by the ellipticity of S0 (see [21,
Theorem 10.7] or [7]). The two dimensional case seems more involved [24].
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The operators Sω and Nω are then Fredholm operators of index zero. However, we have
a loss of injectivity when ρω2 is either a Dirichlet or a Neumann eigenvalue of (−∆∗). Some
Neumann eigenvalues for the unit square and cube are shown in Appendix B. Then combined
field integral equation methods are usually considered to circumvent this issue. The following
theorem established in [1, Theorem 2.11] (see also [4, Theorems 3.17 and 3.22]) will be help
full to get injectivity of the modified combined-field boundary integral equations presented in
Section 3.

Theorem 7. For any ω> 0, we have

Ker( 1
2 Id−D ′

ω) = {
γ−1 (u) ; u ∈ H 1(Ω), ∆∗u +ρω2u = 0, u|Γ = 0

}
,

Ker( 1
2 Id+Dω) = {

γ−0 (u) ; u ∈ H 1(Ω), ∆∗u +ρω2u = 0, T u = 0
}

.

In the next two Lemmas we extend [10, Lemma 3.1] also required for the injectivity analysis of
the proposed boundary integral equation operators.

Lemma 8. Let u be a radiating solution to the Navier equation inΩc . Then

lim
R→+∞

Im

(∫
|x |=R

T u ·u
)
≥ 0,

in which the normal vector is taken outward the boundary |x | = R, namely it is x̂ = x
|x | .

Proof. Radiating solutions satisfy the same asymptotic behavior as the potential operators intro-
duced in Lemma 4 so that their Günter deivative on the circle |x | = R behaves as

M u(x) =O

(
1

R
d+1

2

)
as R −→+∞.

It follows from (12) that

lim
R→+∞

∫
|x |=R

|T u − iKωu|2 = 0 ⇐⇒ lim
R→+∞

∫
|x |=R

∣∣(T −2µM )u − iKωu
∣∣2 = 0.

Next, we restrict the computations to the two-dimensional case. The three-dimensional com-
putations are identical [20]. Spliting the above integral according to the normal and tangential
components of the traction derivative (12), we get equivalently

lim
R→+∞

∫
|x |=R

|divu − iκp x̂ ·u|2 = 0 and lim
R→+∞

∫
|x |=R

|curl|| u − iκs x̂⊥ ·u|2 = 0. (26)

The symmetry property (11) of the Günter derivative leads to∫
|x |=R

M u ·u =
∫
|x |=R

u ·M u =
∫
|x |=R

M u ·u ,

so that

Im

(∫
|x |=R

T u ·u
)
= (λ+2µ) Im

(∫
|x |=R

(divu)(x̂ ·u)

)
+µ Im

(∫
|x |=R

(curl|| u)(x̂⊥ ·u)

)
.

Expending the square modulus in (26), we finaly get

lim
R→+∞

Im

(∫
|x |=R

T u ·u
)

= lim
R→+∞

λ+2µ

2κp

∫
|x |=R

|divu|2 +|κp (x̂ ·u)|2 + µ

2κs

∫
|x |=R

|curlu|2 +|κs (x̂⊥ ·u)|2 ≥ 0,

which ends the proof. □

Lemma 9. For anyϕ ∈ H− 1
2 (Γ) andψ ∈ H

1
2 (Γ), we have

Im〈Sωϕ,ϕ〉 1
2
≥ 0 and Im〈Nωψ,ψ〉 1

2
≥ 0.
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Proof. Let ϕ ∈ H− 1
2 (Γ) and u =ΨS

ωϕ. We apply the first Green formula (8) to u and v = u in Ω
and in BR \Ωc where BR is a sufficiently large ball of radius R > 0 centered at origin and containing
Ω. We have ∫

Ω
λ|divu|2 +2µ|ξ(u)|2 −ρω2

∫
Ω
|u|2 =< γ−1 (u),γ−0 (u)〉 1

2

and ∫
BR \Ω

λ|divu|2 +2µ|ξ(u)|2 −ρω2
∫

BR \Ω
|u|2 =

∫
|x |=R

T u ·u −〈γ+1 (u),γ+0 (u)〉 1
2

.

From (19)–(20) and adding the two equalities, we get∫
BR

λ|divu|2 +2µ|ξ(u)|2 −ρω2
∫

BR

|u|2 =
∫
|x |=R

T u ·u −〈
(γ+1 −γ−1 )(u),γ+0 (u)

〉
1
2

=
∫
|x |=R

T u ·u −〈
(−ϕ),Sωϕ

〉
1
2

.
(27)

Taking the imaginary part and passing to the limit as R →+∞ we get from Lemma 8

Im
〈

Sωϕ,ϕ
〉

1
2
=− Im

〈
ϕ,Sωϕ

〉
1
2
= lim

R→+∞
Im

(∫
|x |=R

T u ·u
)
≥ 0.

Letψ ∈ H
1
2 (Γ). Substituing u =ΨD

ωψ in the above equalities, we get in the same way∫
BR

λ|divu|2 +2µ|ξ(u)|2 −ρω2
∫

BR

|u|2 =
∫
|x |=R

T u ·u −〈
γ+1 (u), (γ+0 −γ−0 )(u)

〉
1
2

=
∫
|x |=R

T u ·u −〈
Nωψ,ψ

〉
1
2

.

Taking the imaginary part and passing to the limit as R →+∞ we get from Lemma 8

Im
〈

Nωψ,ψ
〉

1
2
= lim

R→+∞
Im

(∫
|x |=R

T u ·u
)
≥ 0. □

3. The modified field boundary integral equations

For smooth boundaries, uniquely solvable boundary integral equations equivalent to the scatter-
ing problems (1)–(2)–(6) and (1)–(3)–(6) rely on the following layer ansatz for any radiating solu-
tion to the Navier equation:

u(x) = a(ΨD
ωϕ)(x)−b(ΨS

ωϕ)(x), for all x ∈Ωc ,

where a, b are non zero complex constants that have to be chosen such that the associated
interior boundary value problem:

∆∗u +ρω2u = 0 inΩ

aγ−1 u −bγ−0 u = 0 on Γ,
(28)

do not admit any spurious frequencies ρω2. Choosing v = u in the first Green’s formula (2) leads
to the choice b

a = iηwhere η is a non zero real number for positive Lamé parameters and η> 0 for
complex valued Lamé parameters (viscoelastic model with e−iωt time dependence). As for the
acoustic case, one can even replace the scalar number η by the matrix Kω given in the radiation
condition (6) for an improved eigenvalue clustering for an application of the GMRES solver [9].
Even with the lack of compactness of the operators Dω and its adjoint D ′

ω, on can prove that the
resulting boundary integral equations discussed in [18] are Fredholm of index zero.

In the case of Lipschitz boundaries, we have to regularize or modify either the single or the
double layer potential operator. Extending earlier work in the acoustic case [3, 10, 11], we present
various approaches for deriving well-posed boundary integral equations in linear elasticity.
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3.1. Positivity results for the Laplace equation case

In this paragraph we introduce the symmetric positive definite boundary integral operators
arising from the Laplace equation studies that may define a norm on H± 1

2 (Γ). More precisely
we vectorize several results presented in [10, 11, 22, 23] and [21, Chapter 8].

A fundamental solution for the Laplace equation is

G(κ= 0, z) =
{

1
2π log r

|z | when d = 2 for any r > 0,
1

4π|z | when d = 3.

Let us introduce first the single layer operator

V 0 : H− 1
2 (Γ) −→ H

1
2 (Γ)

ϕ 7−→
{

x 7→
∫
Γ

G(0, x − y)ϕ(y)ds(y)

}
,

(29)

Theorem 10.

(i) When d = 2, under the asumption r > capΓ the operator V 0 is positive and bounded below.
Then it admits a bounded inverse and there exists a positive constant c2

V such that

〈V −1
0 ψ,ψ〉 1

2
≥ c2

V ∥ψ∥2

H
1
2 (Γ)

for allψ ∈ H
1
2 (Γ).

The logarithmic capacity capΓ is defined in [21, p. 262].
(ii) When d = 3, the operator V 0 is positive and bounded below. Then it admits a bounded

inverse and there exists a positive constant c3
V such that

〈V −1
0 ψ,ψ〉 1

2
≥ c3

V ∥ψ∥2

H
1
2 (Γ)

for allψ ∈ H
1
2 (Γ).

Now we turn to the hypersingular operator for the three dimensional case [23]. Let consider

W 0 : H
1
2 (Γ) −→ H− 1

2 (Γ)

ψ 7−→
{

x 7→
∫
Γ

∂2G(0, x − y)

∂n(x)∂n(y)
ψ(y)ds(y)

}
.

We perturbe −W 0 as follows

W̃ 0ψ= (〈ψi ,1〉 1
2

)
1≤i≤3 −W 0ψ whereψ= T(ψ1,ψ2,ψ3). (30)

Theorem 11. The operator W̃ 0 defines an isomorphism from H
1
2 (Γ) to H− 1

2 (Γ). Moreover W̃ 0 is
positive and bounded below. Then it admits a bounded inverse and there exists a positive constant
cW such that

〈W̃ 0
−1
ϕ,ϕ〉 1

2
≥ cW ∥ϕ∥2

H− 1
2 (Γ)

, for allϕ ∈ H− 1
2 (Γ).

3.2. The Dirichlet boundary condition case

For an equivalent reduction of the volume problem (1)–(2)–(6) as a well-posed integral equation
on the Lipschitz boundary Γ one can use the layer ansatz

u(x) = iη
(
ΨD
ω(Rϕ)

)
(x)+ (ΨS

ωϕ)(x), for all x ∈Ωc , (31)

where the operator R might be chosen as follows

R = (Id−∆Γ)−1, when d = 2 or 3, (32)

R = W̃
−1
0 ( 1

2 Id+D ′
−ω), when d = 3. (33)
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The first choice is proposed in [3] and here we consider the two- and three-dimensional modified
Laplace–Beltrami operator variationally defined as∫

Γ

(
(Id−∆Γ)ϕ

) · ϕ̃=
∫
Γ
ϕ · ϕ̃+

∫
Γ

[∇Γϕ] : [∇Γϕ̃], for all ϕ̃ ∈ H 1(Γ).

This operator is a symmetric definite positive operator bounded from H 1(Γ) to H−1(Γ) and its
inverse has a regularizing property since it is bounded from H− 1

2 (Γ) to H 1(Γ) and is thus compact
from H− 1

2 (Γ) to H
1
2 (Γ). The second choice is a Steklov–Poincaré type operator bounded from

H− 1
2 (Γ) to H

1
2 (Γ). In all cases, we deduce the following theorem

Theorem 12. For all frequencies ω > 0, the solution to the Dirichlet scattering problem can be
equivalently reduced to the solution to the boundary integral equation

Sωϕ+ iη
( 1

2 Id+Dω

)
Rϕ=−uinc, for any η> 0. (34)

More precisely, the operator
[
Sω+ iη( 1

2 Id+Dω)R
]

: H− 1
2 (Γ) → H

1
2 (Γ) satisfies a Gårding’s inequal-

ity and is injective.

Proof. (i). Let us start with R = (Id−∆Γ)−1.
The compactness of R yieds the compactness of ( 1

2 Id+Dω)R : H− 1
2 (Γ) → H

1
2 (Γ). In virtue

of the first item (i) in Theorem 5, the boundary integral equation operator
[
Sω+ iη( 1

2 Id+Dω)R
]

satisfies a Gårding’s inequality.
Now let us assume that uinc = 0. The uniqueness of the solution to the exterior scattering

problem (1)–(2)–(6) ensure that the integral representation (31) vanishes in Ωc so that the jump
relations (20) gives

γ−0 u(x) =−iηRϕ and γ−1 u(x) =ϕ.

Then the ansatz (31) solves the interior problem

∆∗u +ρω2u = 0 inΩ

γ−1 u + [iηR]−1γ−0 u = 0 on Γ.

The positivity of modified the Laplace–Beltrami operator ensures that the above impedance-like
interior problem do not admit any real eigenvalues ρω2. Then u = 0 in Ω and ϕ = 0 on Γ. We
deduce the injectivity of

[
Sω+ iη( 1

2 Id+Dω)R
]
.

(ii). Now let us consider the second choice R = W̃
−1
0 (Id+D ′

ω).
We have

Re
〈[

Sω+ iη( 1
2 Id+Dω)R

]
ϕ,ϕ

〉
1
2
= Re

(
〈Sωϕ,ϕ〉 1

2
+ iη

〈
W̃

−1
0 ( 1

2 Id+D ′
−ω)ϕ, ( 1

2 Id+D ′
−ω)ϕ

〉
1
2

)
= Re〈Sωϕ,ϕ〉 1

2
.

.

In virtue of the first item (i) in Theorem 5, the boundary integral equation operator[
Sω+ iη( 1

2 Id+Dω)R
]

satisfies again a Gårding’s inequality then it is Fredholm of index zero.
Now let us assume that uinc = 0. Taking the imaginary part of (34) we obtain

Im
(
〈Sωϕ,ϕ〉 1

2

)
+η

〈
W̃

−1
0 ( 1

2 Id+D ′
−ω)ϕ, ( 1

2 Id+D ′
−ω)ϕ

〉
1
2

= 0.

From Lemma 9 and the positivity of W̃
−1
0 , both of the two above terms vanish and we have

( 1
2 Id+D ′

−ω)ϕ= 0.

Coming back to the BIE (34) we also get Sωϕ= 0. We deduce that the potentialΨS
ωϕ is a Dirichlet

eigenfunction of the Navier equation. In virtue of Theorem 7, since −ω leads to the same Navier
equation then we also have

( 1
2 Id−D ′

−ω)ϕ= 0,

thenϕ= 0. We deduce again the injectivity of
[
Sω+ iη( 1

2 Id+Dω)R
]
. □
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3.3. The Neumann boundary condition case

For an equivalent reduction of the volume problem (1)-(3)-(6) as a well-posed integral equation
on the Lipschitz boundary Γ one can use the layer ansatz

u(x) = (
ΨD
ωψ

)
(x)− iη(ΨS

ω(Rψ))(x), for all x ∈Ωc , (35)

where
R =V −1

0 ( 1
2 Id−D−ω), when d = 2 or 3, (36)

which is a Steklov–Poincaré type operator too and is bounded from H
1
2 (Γ) to H− 1

2 (Γ).

Theorem 13. For all frequencies ω > 0, the solution to the Neumann scattering problem can be
equivalently reduced to the solution to the boundary integral equation

Nωψ+ iη
( 1

2 Id−D ′
ω

)
Rψ=−T uinc, for any η> 0. (37)

More precisely, the operator
[
Nω+ iη( 1

2 Id−D ′
ω)R

]
: H− 1

2 (Γ) → H
1
2 (Γ) satisfies a Gårding’s inequal-

ity and is injective.

Proof. We have

Re
〈[

Nω+ iη( 1
2 Id−D ′

ω)R
]
ψ,ψ

〉
1
2
= Re

(
〈Nωψ,ψ〉 1

2
+ iη

〈
V −1

0 ( 1
2 Id−D−ω)ψ, ( 1

2 Id−D−ω)ψ
〉

1
2

)
= Re

〈
Nωψ,ψ

〉
1
2

.
.

In virtue of the second item (ii) in Theorem 5, the boundary integral equation operator[
Nω+ iη( 1

2 Id−D ′
ω)R

]
satisfies a Gårding’s inequality then it is Fredholm of index zero.

Now let us assume that uinc = 0. Taking the imaginary part of (37) we obtain

Im
(
〈Nωψ,ψ〉 1

2

)
+η〈V −1

0 ( 1
2 Id−D−ω)ψ, ( 1

2 Id−D−ω)ψ〉 1
2
= 0.

From Lemma 9 and the positivity of V −1
0 , both of the two above terms vanish and we have

( 1
2 Id−D−ω)ψ= 0.

Coming back to the BIE (37) we also get Nωψ = 0. We deduce that the potential ΨD
ωψ is a

Neumann eigenfunction of the Navier equation. In virtue of Theorem 7, we also have

( 1
2 Id+D−ω)ψ= 0,

thenψ= 0. We deduce again the injectivity of
[
Nω+ iη( 1

2 Id−D ′
ω)R

]
. □

4. Conclusion

The aim of establishing Gårding’s inequalities is two fold. On the one hand, one obtains exis-
tence proofs for the solution to the modified combined field boundary integral equations, and
consequently for the equivalent exterior elliptic boundary value problems. On the other hand it
guarantees stability of the aproximate Galerkin scheme for any choice of finite dimensional sub-
spaces of the Sobolev spaces H± 1

2 (Γ). A numerical comparison of the proposed formulations (34)
and (37) with the classical ones discussed in [18] is the subject of a forthcoming work.

For readers interested in the analysis of the elastodynamic transmission problem we refer
to [19] for smooth boundaries and [8] for the case of Lipschitz boundaries. In both cases, the
volume problem is reduced to a couple of boundary integral equations for the unknown Dirichlet
and Neumann traces. However, it is possible to extend the approach of combined field integral
equations for a single unknown to transmission problems that also satisfies Gårding’s inequalities
even for Lipschitz boundaries [6]. In this work, a key point relied on the fact that the double layer
boundary integral operators associated to two different wavenumbers admit the same principal
part. The principal symbols obtained in Appendix A reveal that this property is not valid anymore
and the extension of the work to elasticity is not immediate.
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Appendix A. Pseudo-differential calculus for the Navier system

The principal symbols of the single and the double layer boundary integral operators for the Lamé
system (i.e. ω = 0) where obtained in [1]. In this section, we extend the computations to the
dynamic case in R3 (i.e. ω ̸= 0).

At a fixed regular point x = (x1, x2, x3) ∈ Γ, there exists a neighborhood O ⊂ R3 of x such that
the portion of surface Γ∩O can be defined by the explicit equation y3 = φ(y1, y2). We translate
the origin of the orthonormal system of R3 to the point x by setting the new coordinates

(ỹ1, ỹ2, ỹ3) =ψ−1(y1 −x1, y2 −x2, y3 −φ(y1, y2)
)
,

whereψ−1 rotates the axis in such a way that ỹ3 > 0 indicates the direction of the exterior normal
to Γ and ỹ3 = 0 indicates the tangent plane to Γ at the point x . In this new coordinate system,
the tangential direction is ỹ∥ := T(ỹ1, ỹ2) and the outward normal vector to Γ is T(0,0,1). The
associated Fourier variable of ỹ || is ξ|| := T(ξ1,ξ2) and we set ∥ξ∥ :=√

ξ ·ξ= (|ξ|||2 +|ξ3|2)
1
2 .

Proposition 14. For all ω> 0, the principal symbol of the single layer operator is given by

σS (ξ||) =
1

2ρω2

 1∣∣|ξ|| |2 −κ2
p

∣∣ 1
2

(
ξ||

Tξ|| 0
0 κ2

p −|ξ|| |2
)
+ 1∣∣|ξ|| |2 −κ2

s

∣∣ 1
2

(
κ2

s Id|| −ξ||
Tξ|| 0

0 |ξ|| |2
) ,

where Id|| is the (2×2) identity matrix.

Proof. We first compute the symbol of the volume potential with kernel Φω(x − · ) where Φω is
the fundamental solution to the Navier system : ∆∗Φω+ρω2Φω =−δ0 Id.

∆=∇div−curlcurl =⇒ ∆∗+ρω2 Id = (λ+2µ)∇div−µcurlcurl+ρω2 Id.

The Navier operator has the symbol ℓ(ξ) = −(λ+ 2µ)ξTξ−µ(|ξ|2 − ξTξ)+ρω2 Id , that can be
rewritten:

ℓ(ξ) = (λ+2µ)
(
κ2

p −|ξ|2
) 1

|ξ|2 ξ
Tξ+µ(

κ2
s −|ξ|2)(Id− 1

|ξ|2 ξ
Tξ

)
.

We deduce that the volume potential with kernelΦω(x − · ) has the symbol

−ℓ−1(ξ) = (λ+2µ)−1 1

|ξ|2 −κ2
p

1

|ξ|2 ξ
Tξ+µ−1 1

|ξ|2 −κ2
s

(
Id− 1

|ξ|2 ξ
Tξ

)
.

The boundary integral operator with kernelΦω(x − · ) has the principal symbol

σS (ξ||) =
1

2π

∫ ∞

−∞
−ℓ−1(ξ)dξ3 where ξ= (ξ1,ξ2,ξ3) = (ξ|| ,ξ3). (A1)

We have

ξTξ=
(
ξ||

Tξ|| ξ||ξ3

ξ3
Tξ|| |ξ3|2

)
.

The non diagonal terms are odd so that their partial inverse Fourier transform (A1) vanishes. For
the diagonal term associated to ξ||Tξ||, we simplify

1

|ξ|2 −κ2

1

|ξ|2 = 1

κ2

(
1

|ξ|2 −κ2 − 1

|ξ|2
)

=⇒ [−ℓ−1(ξ)
]
||,|| =

1

ρω2

(
1

|ξ|2 −κ2
p
ξ||Tξ||+

1

|ξ|2 −κ2
s

(
κ2

s Id||−ξ||Tξ||
))

and we use the well-known result from the Helmholtz equation case:

1

2π

∫ ∞

−∞
1

|ξ|2 −κ2 dξ3 = 1

2
∣∣|ξ|||2 −κ2

∣∣ 1
2

.
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For the last diagonal term associated to |ξ3|2, we simplify

1

|ξ|2 −κ2

|ξ3|2
|ξ|2 = −1

κ2

(
|ξ|||2 −κ2

|ξ|2 −κ2 − |ξ|||2
|ξ|2

)
=⇒ [−ℓ−1(ξ)

]
3,3

= 1

ρω2

(
κ2

p −|ξ|||2
|ξ|2 −κ2

p
+ |ξ|||2
|ξ|2 −κ2

s

)
. □

The principal symbol of the tangential Günter derivative M is

σM (ξ||) =
(

0 iξ||
−i Tξ|| 0

)
.

One can derive the principal symbols for the three other operators Dω, D ′
ω and Nω using product

rules in the integral representations (21)–(22)–(23) and the well-known principal symbols of the
acoustic and electromagnetic boundary integral operators.

For a fixed frequencyω and fixed Lamé parameters λ and µ, by using the following asymptotic
expansion when |ξ|||→+∞,

1

(|ξ|||2 −κ2)
1
2

= 1

|ξ|||
(
1+ κ2

2|ξ|||2
+o

( 1

|ξ|||2
))

,

we retrieve the principal symbols of the four boundary integral operators associated to the static
case ω= 0 that are in agreement with the results presented in [9, Proposition 4.1]:

σS0 (ξ||) =


1

2µ|ξ|||

(
Id||− ξ||Tξ||

|ξ|||2 0

0 0

)
+ λ+3µ

4µ(λ+2µ)|ξ|||

(
ξ||Tξ||
|ξ|||2 0

0 1

)
when d = 3,

λ+3µ

4µ(λ+2µ)|ξ|||
Id when d = 2,

σD0 (ξ||) =
(
2µσS0 (ξ||)−

1

2|ξ|||
)
σM (ξ||) =

µ

2(λ+2µ)|ξ|||
σM (ξ||),

and

σN0 (ξ||) =


−µ|ξ|||

2

(
Id||− ξ||Tξ||

|ξ|||2 0

0 0

)
− µ(λ+µ)|ξ|||

λ+2µ

(
ξ||Tξ||
|ξ|||2 0

0 1

)
when d = 3,

=−µ(λ+µ)|ξ|||
λ+2µ

Id when d = 2.

Appendix B. Some Neumann interior eigenvalues for elastic square and cube

For forthcoming numerical investigations, we provide in this appendix some eigenvalues and the
associated eigenfunctions for the Neumann interior elastodynamic problem inspired by the work
presented in [13].

Proposition 15. Let Ω = (0,1)d . For any n ∈ N∗, some Neumann eigenvalues are given by
ρω2 = 2µn2π2 associated to the eigenvector field

us (x1, x2) = curl||
(

cos(nπx1)cos(nπx2)
)
, for d = 2.

us (x1, x2, x3) =
(
curl||

(
cos(nπx1)cos(nπx2)

)
0

)
, for d = 3,

where curl|| = T(∂x2 ,−∂x1 ).

Proof. (i). We start by the two-dimensional case.
Let us = T

(u1
s ,u2

s ) be a share wave (i.e. divus = 0) and up = T
(u1

p ,u2
p ) be a pressure wave (i.e.

curl|| up = 0). Then the boundary condition T (us +up ) = 0 takes the form{
(λ+2µ)∂x1 u1

p +λ∂x2 u2
p +2µ∂x1 u1

s = 0

2µ∂x1 u2
p +µ(∂x1 u2

s +∂x2 u1
s ) = 0

on {0;1}× [0,1],
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and {
(λ+2µ)∂x2 u2

p +λ∂x1 u1
p +2µ∂x2 u2

s = 0

−2µ∂x2 u1
p −µ(∂x1 u2

s +∂x2 u1
s ) = 0

on [0,1]× {0;1}.

One can check that up = 0 and

us (x1, x2) = curl||
(

cos(nπx1)cos(nπx2)
)= (−cos(nπx1)sin(nπx2)

sin(nπx1)cos(nπx2)

)
solves the two systems and −∆∗us =µcurl||

(−∆(cos(nπx1)cos(nπx2))
)=µ(2n2π2)us .

The converse, that is us = 0 and

up (x1, x2) =∇(
φ1(x1)φ2(x2)

)= (
φ′

1(x1)φ2(x2)
φ1(x1)φ′

2(x2)

)
,

where φi (xi ) = cos(niπxi ) or φi (xi ) = sin(niπxi ) for i = 1,2 does not solve the homogeneous
Neumann boundary condition.

(ii). Now we turn to the three-dimensional case. Let consider

us (x1, x2, x3) =
(
curl||

(
cos(nπx1)cos(nπx2)

)
0

)
φ(x3)

be a share wave (i.e. divus = 0). We have

curlus (x1, x2, x3) =
(
φ′(x3)∇(

cos(nπx1)cos(nπx2)
)

−∆(
cos(nπx1)cos(nπx2)

)
φ(x3)

)
.

Then the boundary condition T us = 2µ ∂us
∂n +µn×curlus = 0 leads to the additional equations on

the third component

sin(nπx2)φ′(x3) = 0 when x1 = 0 or 1 and (x2, x3) ∈ [0,1]2,

and
sin(nπx1)φ′(x3) = 0 when x2 = 0 or 1 and (x1, x3) ∈ [0,1]2,

and on the first two components{
cos(nπx1)sin(nπx2)φ′(x3) = 0

sin(nπx1)cos(nπx2)φ′(x3) = 0
when x3 = 0 or 1 and (x1, x2) ∈ [0,1]2.

The choice φ(x3) = cos(n3πx3) cancels the last system. However, the first two equations require
that n3 = 0. □
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