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1. Introduction

Let f : (Cn+1,0) → (C,0) be the germ of a holomorphic function with isolated critical point 0
and Milnor number µ. Its spectrum is a discrete invariant formed by µ rational spectral numbers
(see [12, §II.8.1])

α1, . . . ,αµ ∈Q∩ (0,n +1).

They are certain logarithms of the eigenvalues of the monodromy on the middle cohomology
of the Milnor fibre which correspond to the equivariant Hodge numbers of Steenbrink’s mixed
Hodge structure. In the context of Poincaré polynomials it is convenient to consider the spectrum
as a polynomial

Sp f (t ) :=
µ∑

i=1
tαi ∈Z[Q].
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K. Saito [16] was the first to study the asymptotic distribution of the spectrum. He considered
the normalized spectrum of f ,

χ f (t ) :=
Sp f (T )

µ
= 1

µ

µ∑
j=1

Tα j , T = exp(2πi t ),

as the Fourier transform of the discrete probability density on the interval (0,n +1),

1

µ

µ∑
i=1

δ(s −αi )ds,

where δ(s) is Dirac’s delta function. In the case of Brieskorn–Pham singularities (see Example 9)
he identified a continuous limit probability distribution Nn+1 defined by

Nn+1(s)ds :=
∫

x0+···xn=s
ϕ(x0) · · ·ϕ(xn)dx0 · · ·dxn ,

where ϕ is the indicator function of the unit interval [0,1],

ϕ(x) :=
{

1 if x ∈ [0,1],

0 if x ∉ [0,1].

Under the Fourier transform F , Nn+1 corresponds to the power

F (Nn+1) =F (ϕ)n+1. (1)

K. Saito [16, (2.5) i)] suggested to find singularities for which χ f converges to Nn+1. Our main
result establishes his limit spectral distribution for Newton non-degenerate singularities.

Theorem 1. For a fixed Newton diagram Γ, consider the Newton diagrams$Γ obtained from Γ by
scaling with the factor $. Then we have

lim
$→∞χ f$ =F (Nn+1), (2)

where f$ is any Newton non-degenerate function germ of n+1 variables with Newton diagram$Γ.

The proof is given in Section 4. Combined with the following remark, our result generates new
cases where Saito’s limit distribution is valid for a suitably chosen limit as in (2). The general
choice of limit is unclear.

Remark 2. K. Saito [16, (3.7), (3.9), (3.2.1)] proved the following facts.

(a) For quasihomogeneous f of degree 1 with respect to weights w0, . . . , wn , (2) holds, even
with lim$→∞ replaced by limw0,...,wn→0.

(b) For irreducible plane curve singularities f with Puiseux pairs (n1, l1), . . . , (ng , lg ),

lim
ng →∞χ f =F (N2).

(c) The join f + g of two functions in disjoint sets of variables satisfies

χ f +g =χ f ·χg .

Therefore (2) is compatible with joins by (1).

K. Saito [16, (2.5) ii), (2.8) i)] further suggested to describe up to what extent the spectral
distribution is bounded by Nn+1 and introduced the notion of (weakly) dominating values.
Consider the function

Φ f : [0,1] →R, r 7→
∫ r

0
Nn+1(s)− 1

µ

µ∑
i=1

δ(s −αi )ds

defined by the difference of the continuous and discrete spectral distributions. By definition 0 <
r < n+1

2 is a dominating value if Φ f (r ) > 0 for all f in n +1 variables. A weakly dominating value
is defined by replacing < by ≤ and

∫ r
0 by

∫ r−ε
0 for all ε > 0. In particular, K. Saito [16, (2.8) iv)]
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formulated the following question which by work of M. Saito [17] extends Durfee’s conjecture on
the geometric genus

pg = |{i |αi ≤ 1}| (3)

from the case of surface singularities.

Question 3. Is 1 a dominating value for all n ≥ 2? In other words, for f in n +1 variables, is the
geometric genus bounded by

pg < µ

(n +1)!
?

Kerner and Nemethi [9] give a positive answer for Newton non-degenerate singularities with
Newton diagram $Γ for sufficiently large $.

As opposed to Question 3, Hertling’s variance conjecture [6, Conj. 6.7] addresses the distribu-
tion of the spectrum in its full range.

Conjecture 4 (Hertling’s Variance Conjecture). The variance of spectral numbers α1 ≤ ·· · ≤ αµ
is bounded by

1

µ

µ∑
i=1

(
αi − n

2

)2
≤ αµ−α1

12
.

It was confirmed by Brélivet [2, 3] for Newton non-degenerate singularities and for plane
curves. We refer to Brélivet and Hertling [4] for refined investigations in this direction.

In Section 3, we investigate (the extremal) spectral numbers below 1 for their dominance in
the case n = 1 of irreducible plane curve singularities C = f −1(0). For a single Puiseux pair (p, q)
we describe these spectral values in terms of the value semigroup S = 〈p, q〉 of C (see (10)). This
can be used to visualize the graph ofΦ f as a difference (see Figure 1).

0 1
0

0.5

Figure 1. The functionΦ f as a difference for S = 〈5,9〉.
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One can write the smallest spectral number, the log canonical threshold, as 1
p + 1

q and the

largest below 1 as 1− 1
pq . For these extremal spectral numbers we prove the following

Proposition 5. If f (z0, z1) has a single Puiseux pair (p, q), then

(a) Φ f
( 1

p + 1
q

)> 0 unless p = 2 and q ∈ {3,5}, with limp→∞Φ f
( 1

p + 1
q

)= 0,

(b) Φ f
(
1− 1

pq

)< 0 with limp→∞Φ f
(
1− 1

pq

)= 0.

For general irreducible plane curve singularities, Igusa [8, Thm. 1] showed that the log canon-
ical threshold depends only on multiplicity and the first Puiseux exponent (see also [14, Proof
of Thm. 1.1]). It thus equals 1

β̄0
+ 1

β̄1
where β0,β1 are the two smallest minimal generators of the

value semigroup. The statement of Proposition 5.(a) remains valid in this extended generality.

Theorem 6. For any irreducible plane curve singularity C = f −1(0) with value semigroup different
from 〈2,3〉 and 〈2,5〉, we haveΦ f

( 1
β̄0

+ 1
β̄1

)> 0. In other words, the squared log canonical threshold

is bounded by (
1

β0

+ 1

β1

)2

> 2

µ
.

Moreover, limng →∞Φ f
( 1
β̄0

+ 1
β̄1

)= 0.

In particular, Theorem 6 provides a quite surprising constraint on the first Puiseux pair of an
irreducible plane curve singularity with a given Milnor number.

Acknowledgements

The first named author wants to thank the second named author for his kindness and facilities
for hosting him at TU Kaiserslautern in a pleasant working atmosphere during his research stay
in September–November 2020 despite the difficulties of travels and face to face work due to the
COVID19 pandemic.

2. Spectrum of non-degenerate singularities

Suppose that f : (Cn+1,0) → (C,0) is Newton non-degenerate. This means that there are local
coordinates z0, . . . , zn such that

f = f (z0, . . . , zn) ∈C{z0, . . . , zn} =OCn+1,0 =: O

is a Newton non-degenerate convenient power series (see [11, 1.19 Def.] and [12, §II.8.5]). Let Γ
denote the Newton diagram of f . We write σ ∈ Γ to indicate that σ is a face of Γ. For σ,τ ∈ Γ, write
τ≤σ if τ is a face of σ. By gσ we denote the polynomial obtained from the power series g ∈O by
restricting the monomial support to the cone of σ.

There is a (decreasing) Newton filtration N defined byΓ on O . Following Steenbrink [19, (5.6)],
denote the Newton graded ring associated to O by

A := grN O

and the principal parts of z0
∂ f
∂z0

, . . . , zn
∂ f
∂zn

with respect to N by F0, . . . ,Fn . For σ ∈ Γ let Aσ be the
corresponding graded subring of A and denote by

d(σ) := dim Aσ = dimQσ= dimσ+1

its dimension.
The Brieskorn module (see [15, 18])

Ω f :=Ωn+1
(Cn+1,0)/d f ∧Ωn

(Cn+1,0)

C. R. Mathématique — 2022, 360, 699-710
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also carries a Newton filtration which is induced by the inclusion

Ωn+1
(Cn+1,0)

=Odz0 ∧·· ·∧dzn O

Ω f O
/〈

z0
∂ f
∂z0

, . . . , zn
∂ f
∂zn

〉
.

z0 ···zn
dz0∧···∧dzn

(4)

M. Saito [18] and Varchenko–Khovanskĭı [20] identified the Poincaré series ofΩ f with the singu-
larity spectrum of f defined by Steenbrink [19].

Theorem 7 (M. Saito, Varchenko–Khovanskĭı). For Newton non-degenerate f , the Poincaré series
of the Newton filtered vector spaceΩ f reads

pΩ f (t ) = tα1 +·· ·+ tαµ =: Sp f (t )

where α1, . . . ,αµ are the spectral numbers of f . �

The inclusion (4) identifies

Ω f
∼= z0 · · ·znO

/〈
z0
∂ f

∂z0
, . . . , zn

∂ f

∂zn

〉
, (5)

grN Ω f
∼= A/〈F0, . . . ,Fn〉 =: H f .

Based on results of Kouchnirenko [11] (and Hochster [7]) Steenbrink [19, (5.7)] gave a formula
for Newton non-degenerate f decomposing pH f = Sp f with respect to faces of the Newton
diagram: For a face σ ∈ Γ he first writes the Poincaré series of the subspace of Aσ/〈F0,σ, . . . ,Fn,σ〉
corresponding to the interior of the coneQ≥0σ of σ as

qσ(t ) = ∑
τ≤σ

(−1)d(σ)−d(τ)(1− t )d(τ)p Aσ (t ).

Denote the minimal dimension of a coordinate space containing σ ∈ Γ by

k(σ) := min
{
k ∈Z ∣∣ ∃ i1, . . . , ik ∈ {0, . . . ,n} : σ⊂Qei1 +·· ·+Qeik

}
.

Then Steenbrinks formula is given by

Theorem 8 (Steenbrink). For Newton non-degenerate f in n +1 variables, the Poincaré series of
H f can be written as

pH f (t ) = ∑
σ∈Γ

(−1)n+1−d (σ)(1− t )k(σ)p Aσ (t )

= ∑
τ≤σ∈Γ

(−1)n+1−d(σ)(1− t )k(σ)−d(σ)qσ(t ). �

3. Irreducible plane curve singularities

In this section, we elaborate on the case n = 1 where f defines an irreducible plane curve
singularity C = f −1(0). We first consider the case of a single Puiseux pair and prove Proposition 5,
then move on to the general case and prove Theorem 6.

Suppose first that C has a single Puiseux pair (p, q). Then f is Newton non-degenerate with
Newton diagram Γ consisting of a single line segment [(p,0), (q,0)] and defines an irreducible
plane curve singularity C = f −1(0). The function f is semiquasihomogeneous of weighted de-
gree 1 with respect to weights

w0 = 1

p
, w1 = 1

q
, d := pq, (6)

C. R. Mathématique — 2022, 360, 699-710
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on variables z0, z1 and can be written explicitly as

f (z0, z1) = zp
0 + zq

1 + ∑
i q+ j p>d

ai , j zi
0z j

1 .

The normalization C̃ �C is given by

OC =O/〈 f 〉 OC̃ = ÕC
∼=C{t },

z0 t q +·· · ,
z1 t p +·· · .

(7)

The valuation ν : ÕC →N, ν(t ) = 1, defines the value semigroup

S := ν(OC \ {0}) = 〈p, q〉 ⊂N.

Due to the finiteness of the normalization S has a finite set of gaps N \ S, which yields k +N ⊂ S
for k À 0. The minimal such k is the conductor of S and equals the Milnor number (see [5,
Prop. 1.2.1.1)])

µ= (p −1)(q −1). (8)

The Gorenstein property of C is reflected by the symmetry between elements and gaps (see [13])

S Z\ S,
a µ−1−a.

1:1
(9)

The normalized valuation ν/d induces the filtration OC defined by weights w = (w0, w1) on z0, z1.
By assumption, this is the Newton filtration N . Factoring (7) as

OC C{t }

O
/〈

z0
∂ f
∂z0

, z1
∂ f
∂z1

〉
C{t }/〈t d 〉

and using (4) yields a Newton filtered inclusion

O/N1+w0+w1O Ω f /N1Ω f C{t }/〈t d 〉.dz0∧dz1
∼=

This identifies the corresponding ranges of spectral numbers and of values in the semigroup by
means of

{α ∈ {α1, . . . ,αµ} |α< 1+w0 +w1} S/〈d〉,
α dα−p −q,

k
d +w0 +w1 k.

1:1

(10)

The smallest spectral number w0 +w1 corresponds to 0 ∈ S, and the gap µ−1 of S defining the
Gorenstein symmetry (9) corresponds to the non-spectral number 1. It follows that (3) can be
written explicitly as

pg =
∣∣∣∣{(i , j ) ∈N2

∣∣∣∣ i +1

p
+ j +1

q
< 1

}∣∣∣∣= |N\ S| = µ

2
. (11)

Under (9) the gap 1 ∈N\S is the mirror ofµ−2 ∈ S and corresponds to the largest spectral number
1−w0w1 < 1 by (10).

After these preparations we are ready to give the

C. R. Mathématique — 2022, 360, 699-710
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Proof of Proposition 5.

(a). Using (6) and (8) we compute

µΦ f (w0 +w1) = µ

2
(w0 +w1)2 −1 = (p −1)(q −1)

2

(
1

p
+ 1

q

)2

−1

= (p −1)(q −1)(p +q)2 −2p2q2

2p2q2

= (pq −p −q +1)(p2 +2pq +q2)−2p2q2

2p2q2

= 2pq +p3q −3p2q −p3 +p2 +pq3 −3pq2 −q3 +q2

2p2q2

= 1

pq
+ pq −3q −p +1

2q2 + pq −3p −q +1

2p2 ,

(12)

which tends to 0 for p →∞. If p ≥ 4 and q ≥ 5, then (12) is positive since

pq −3q −p +1 = p(q −1)−3q +1 ≥ 4q −4−3q +1 ≥ q −3 > 0,

pq −3p −q +1 = p(q −3)−q +1 ≥ 4q −12−q +1 ≥ 3q −11 > 0.

If p = 3, then (12) becomes

1

3q
− 2

2q2 + 2q −8

18
= 2q3 −8q2 +6q −18

18q2 ,

which is positive if q ≥ 4. Finally, if p = 2, then (12) becomes

1

2q
− q +1

2q2 + q −5

8
= q3 −5q2 −4

8q2 ,

which is positive if q ≥ 6, but negative if q ∈ {3,5}.

(b). Using (11) and (6) we compute

Φ f (1−w0w1) = 1

2
(1−w0w1)2 − 1

2
=− 1

2d 2 =− 1

2p2q2 < 0,

which tends to 0 for p →∞. �

Consider now an irreducible plane curve singularity C = f −1(0) with arbitrary number g of
Puiseux pairs. To prepare the proof of Theorem 6, we review some standard integer invariants
(see [21, Ch. II, §1-3]): Let

β0 <β1 < ·· · <βg

denote the minimal generators of the value semigroup of C and set

ei := gcd(β0,β1, . . . ,βi ), ni := ei−1

ei
, qi := βi

ei
(13)

for i = 0, . . . , g . These greatest common divisors form a strictly decreasing sequence

β0 = e0 > e1 > ·· · > eg = 1. (14)

Moreover, the minimal generators of the value semigroup satisfy inequalities

ni−1βi−1 <βi (15)

for i = 1, . . . , g . The characteristic Puiseux exponents of C are defined recursively by

β0 :=β0, β1 :=β1, βi :=βi −ni−1βi−1 +βi−1, (16)

for i = 2, . . . , g . By (15) they form a strictly increasing sequence

1 ≤β0 <β1 < ·· · <βg . (17)

C. R. Mathématique — 2022, 360, 699-710
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The Milnor number of f can be written as (see [21, Ch. II, §3, (3.14)])

µ=
g∑

i=1
βi (ei−1 −ei )−β0 +1. (18)

On the other hand, A’Campo showed that (see [1, Thm. 3.(ii)])

µ=
g∑

i=1
eiµi , µi := (ni −1)(qi −1). (19)

Proof of Theorem 6. The case where g = 1 is covered by Proposition 5(a). Using (14) and (17), we
find a lower bound

µ=−βg eg +
g−1∑
i=1

(βi+1 −βi )ei +β1e0 −β0 +1

≥−βg eg +β1e0 −β0 +1

=−βg +β0(β1 −1)+1

>−βg +β0β1 −β0.

(20)

Suppose first that g ≥ 3. Using (18) and (20), we compute

(β0 +β1)2µ−2β2
0β

2
1 = (β2

0 +2β0β1 +β2
1)µ−2β2

0β
2
1

>
g∑

i=1
β2

0βi (ei−1 −ei )−β3
0 +β2

0

+
g∑

i=1
β2

1βi (ei−1 −ei )−β0β
2
1 +β2

1

−2β0β1βg −2β2
0β1

>
g−1∑
i=1

β2
0βi +

g−1∑
i=1

β2
1βi −β3

0 −β0β
2
1

+ (β0 −β1)2βg −2β2
0β1

> 2β2
0β1 +2β3

1 −β3
0 −β0β

2
1 −2β2

0β1 > 0.

It follows that

Φ f

(
1

β0

+ 1

β1

)
= 1

2

(
1

β0

+ 1

β1

)2

− 1

µ
= (β0 +β1)2µ−2β2

0β
2
1

2β2
0β

2
1µ

> 0.

Suppose now that g = 2. By (19), (13), (14) and (15),

e1µ1 = (n1 −1)(β1 −e1) = n1β1 −β1 −e0 +e1 < n1β1 ≤β2 −1 = q2 −1

and hence

µ−e2
1µ1 = e1µ1 +e2µ2 −e2

1µ1 (21)

> e1(1+e2(n2 −1)−e1)µ1

= e1(1+e1 −e2 −e1)µ1

= e1(1−e2)µ1 = 0.

If (n1, q1) ∉ {(2,3), (2,5)}, then by (13), Proposition 5 and (21)

Φ f

(
1

β0

+ 1

β1

)
= 1

e2
1

1

2

(
1

n1
+ 1

q1

)2

− 1

µ
> 1

e2
1

1

µ1
− 1

µ
= µ−e2

1µ1

e2
1µ1µ

> 0.
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Otherwise, we have n1 = 2 ≤ e1 = n2 and (15) yields q2 > 2e1q1. Using (19) it follows that

µ= (e1 −1)(q2 −1)+e1(q1 −1)

> (e1 −1)(2e1q1 −1)+e1(q1 −1)

= 2e1q1(e1 −1)+e1(q1 −2)+1

= 2q1e2
1 − (q1 +2)e1 +1

and hence

(2+q1)2µ−8e2
1q2

1 =
{

78e2
1 −125e1 +25 if q = 3,

290e2
1 −343e1 +49 if q = 5.

In both cases e1 ≥ 2 implies

Φ f

(
1

β0

+ 1

β1

)
= (n1 +q1)2µ−2e2

1n2
1q2

1

2e2
1n2

1q2
1µ

= (2+q1)2µ−8e2
1q2

1

8e2
1q2

1µ
> 0

which tend to 0 for ng →∞ since this entails e1 →∞ by (14) and µ→∞ by (19) �

4. Limit spectral distribution

In this section we return to the general setup of Section 2 and prove our main result Theorem 1.
Our approach is to subdivide the Newton diagram and mimic an argument of K. Saito (see [16,
(2.2), (3.7)]). We begin with his motivating

Example 9 (Brieskorn–Pham type singularities). Suppose first that n = 0 and f = f (z) = zd

is quasihomogeneous of degree 1 with respect to the weight w = 1/d on z with Milnor number
µ= d −1. By (5), H = 〈z〉 ⊂C{z}/〈zd 〉 and hence

pH f (t ) = t (t w−1 −1)

1− t w = t − t w

t w −1
.

By Theorem 8, using L’Hôpital’s rule in the second step,

lim
w→0

χ f (t ) = lim
w→0

pH (T )

µ
(22)

= lim
w→0

w

1−w

exp(2πi t )−exp(2πi t w)

exp(2πi t w)−1

= lim
w→0

exp(2πi t )−exp(2πi t w)−2πi t w exp(2πi t w)

1−exp(2πi t w)+2πi t (1−w)exp(2πi t w)

= exp(2πi t )−1

2πi t
= exp(πi t )

πt

exp(πi t )−exp(−πi t )

2i

= exp(πi t )

πt
sin(πt ) =F (ϕ)(t ).

Consider now f = f0 + ·· ·+ fn , where f j = f j (z j ) = z
d j

j , which is quasihomogeneous of degree 1
with respect to weights w0 = 1/d0, . . . , wn = 1/dn on the variables z0, . . . , zn with Milnor number
µ=µ f =

∏n
j=0µ f j . Then H = H f = H f0 ⊗C · · ·⊗C H fn and hence, by the first part and (1),

lim
w0,...,wn→0

χ f (t ) =
n∏

i=0
lim

wi→0
χ fi (t ) =F (ϕ)n+1(t ) =F (Nn+1)(t ).

In this sense the normalized spectrum converges in distribution to the continuous probability
distribution Nn+1.

For our purpose we adapt the calculation (22) as follows.

Lemma 10. limw→0 w 1−T
1−T w =F (ϕ)(t ).

C. R. Mathématique — 2022, 360, 699-710
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Proof. Using L’Hôpital’s rule in the second step and (22), we compute

lim
w→0

w
1−T

1−T w = lim
w→0

w · (1−exp(2πi t ))

1−exp(2πi t w)

= lim
w→0

1−exp(2πi t )

−2πi t exp(2πi t w)

= 1−exp(2πi t )

−2πi t
=F (ϕ)(t ). �

For the subdivision of the Newton diagram we rely on the following general result. The basis
of a rational pointed cone σ are the irreducible integral vectors α0, . . . ,αk on its rays. If it extends
to a lattice basis, then σ is called regular. In this case σ is a simplicial cone and the convex hull of
{0,α0, . . . ,αk } has k-dimensional volume 1 (see [10, §1.1]). A rational fan is called regular if all its
cones are regular. Varchenko [10, Thm. 1, Remark] pointed out the following

Theorem 11. Any finite rational fan has a regular subdivision. �

Finally, we make use of Kouchnirenko’s formula [11, Thm. I] for the Milnor number of Newton
non-degenerate singularities in terms of volumes.

Theorem 12 (Kouchnirenko). The Milnor number of any Newton non-degenerate f in n + 1
variables can be written as

µ= (n +1)!Vn+1 −n!Vn +·· ·+1!(−1)nV1 + (−1)n+1,

where Vk is the sum of k-dimensional volumes of the intersection of the convex hull of Γ∪ {0} with
the k-dimensional coordinate planes. �

We are now ready for the

Proof of Theorem 1. By Theorem 11, Γ has a subdivision Γ̃ corresponding to a regular subdivi-
sion of its fan of cones. For any τ ∈ Γ̃ let wτ

0 , . . . , wτ
k be the weights of the basis ofQ≥0τ∩Z. Then

p Aσ (t ) = ∑
Γ̃3τ≤σ

(−1)d(σ)−d(τ)p Aτ (t ), p Aτ (t ) =
dimτ∏
j=0

1

(1− t
wτ

j )
.

Substituting into Steenbrink’s formula from Theorem 8 yields

pH f (t ) = ∑
Γ̃3τ≤σ∈Γ

(−1)n+1−d(τ) (1− t )k(σ)∏dimτ
j=0 (1− t

wτ
j )

.

Passing to $Γ, wτ
j is preplaced by εwτ

j where ε$= 1 and hence

pH f$
(t ) = ∑

Γ̃3τ≤σ∈Γ
(−1)n+1−d(τ) (1− t )k(σ)∏dimτ

j=0 (1− t
εwτ

j )
.

By Theorems 7 and 12,

lim
$→∞χ f$ (t ) = lim

$→∞
pH fω

(T )

µ f$
(23)

= ∑
Γ̃3τ≤σ∈Γ

(−1)n+1−d(τ) lim
$→∞

1

µ f$

(1− t )k(σ)∏dimτ
j=0 (1− t

εwτ
j )

,

µ f$ =
n+1∑
j=0

(−1)n+1− j j !$ j V j . (24)
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Fix Γ̃ 3 τ≤σ ∈ Γ. Let V (τ) be the d(τ)-dimensional volume of the convex hull of τ∪ {0}. Note that∑
τ∈Γ̃

d(τ)=n+1

V (τ) =Vn+1, (25)

1/V (τ) = d(τ)!
d(τ)∏
j=0

wτ
j . (26)

The summand in (23) indexed by τ is then computed using (26), Lemma 10 and (24):

lim
$→∞

1

µ f$

(1−T )k(σ)∏dimτ
j=0 (1−T

εwτ
j )

= lim
$→∞

∏dimτ
j=0

$
wτ

j

µ f$
(1−T )k(σ)−d(τ)

dimτ∏
j=0

lim
ε→0

εwτ
j

1−T

1−T
εwτ

j

= lim
$→∞

d(τ)!V (τ)$d(τ)

µ f$
(1−T )k(σ)−d(τ)

(
lim
w→0

w
1−T

1−T w

)d(τ)

= lim
$→∞

d(τ)!V (τ)$d(τ)

µ f$
(1−T )k(σ)−d(τ)F (Nd(τ))(t )

=
{

V (τ)
Vn+1

F (Nn+1)(t ) if d(τ) = n +1,

0 if d(τ) < n +1.

The claim now follows by substituting into (23) and applying (25). �
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