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a Institutul de Matematică Simion Stoilow al Academiei Române, 21 Calea Grivit,ei,
010702 Bucures, ti, România

b University of Glasgow, School of Mathematics and Statistics, 132 University Pl,
Glasgow G12 8TA, United Kingdom

E-mails: mpanghel@imar.ro, artsou@hotmail.fr

Abstract. We give a simple topological construction of the Burau representations of the loop braid groups.
There are four versions: defined either on the non-extended or extended loop braid groups, and in each case
there is an unreduced and a reduced version. Three are not surprising, and one could easily guess the correct
matrices to assign to generators. The fourth is more subtle, and does not seem combinatorially obvious,
although it is topologically very natural.

Résumé. Nous donnons une construction topologique simple et naturelle des représentations de Burau des
groupes de tresses soudées. Il en existe en fait quatre versions : ces représentations peuvent être définies
pour les groupes de tresses soudées étendues ou non étendues, et dans ces deux cas, il y a une version
réduite et une autre non réduite. Pour trois d’entre elles, d’un point de vue rigoureusement algébrique, on
peut aisément déterminer les matrices correspondant aux générateurs des groupes considérés. En revanche,
la quatrième est plus subtile et ne semble pas évidente à déterminer d’un strict point de vue combinatoire,
alors qu’elle est topologiquement très naturelle à définir.
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Introduction

Loop braid groups appear in many guises in topology and group theory. They may be seen
geometrically as fundamental groups of trivial links in R3, diagrammatically as equivalence
classes of welded braids (closely related to virtual braids and virtual knot theory), algebraically
as subgroups of automorphism groups of free groups or combinatorially via explicit group
presentations.

Loop braid groups have been studied, from the topological viewpoint of motions of trivial
links in R3, by Dahm [13], Goldsmith [17], Brownstein and Lee [9] and Jensen, McCammond and
Meier [20]. In parallel, the symmetric automorphism groups and the braid-permutation groups
(subgroups of Aut(Fn), which may also be interpreted in terms of welded braids) were studied
by McCool [26], Collins [12] and Fenn, Rimányi and Rourke [16]. In particular, Fenn, Rimányi
and Rourke found a finite presentation of the braid-permutation groups. Later, Baez, Wise and
Crans [1, Theorem 2.2] showed that their presentation is also a presentation of the group of
motions of a trivial link, thus bringing together the two different points of view. Loop braid
groups, as well as related groups of “wickets”, have also been studied more recently by Brendle
and Hatcher [8]. For a detailed survey of the many different facets of loop braid groups, see
Damiani’s survey [14].

The definition that we shall use is the following.

Definition 1. Let D3 denote the closed unit ball in R3 and choose a trivial n-component link Un

in its interior. Let Emb(Un ,D3) denote the set of all smooth embeddings of Un into the interior of
D3, equipped with the smooth Whitney topology, and write Embu(Un ,D3) for the path-component
containing the inclusion (the superscript u stands for “unknotted and unlinked”). There is a
natural action of the diffeomorphism group Diff(Un) ∼= Diff(S1) oSn on this space, and we define

E (Un ,D3) := Embu(Un ,D3)/Diff(Un).

The n-th extended loop braid group is the fundamental group LB′
n :=π1(E (Un ,D3)). Similarly, we

define
E+(Un ,D3) := Embu(Un ,D3)/Diff+(Un),

where Diff+ denotes orientation-preserving diffeomorphisms, and the n-th (non-extended) loop
braid group is the fundamental group LBn :=π1(E+(Un ,D3)).

Thus elements of LB′
n are thought of as loops of n-component unlinks in R3, and elements of

LBn are thought of as loops of oriented n-component unlinks inR3. Since Diff+(Un) is an index-2n

subgroup of Diff(Un), the natural quotient map

E+(Un ,D3) −� E (Un ,D3)

is a 2n-sheeted covering map, and thus induces an injection

LBn ,−→ LB′
n (1)

of fundamental groups. Thus we view the (non-extended) loop braid group LBn as a subgroup (of
index 2n) of the extended loop braid group LB′

n .

Generators

We fix a basepoint for E+(Un ,D3) where the n circles are arranged on the x y-plane in a row from
left to right, as pictured in Figure 4. With respect to this basepoint, the loop braid group LBn is
generated by the elements τ1, . . . ,τn−1 and σ1, . . . ,σn−1 illustrated in Figure 1. The elements τi

and σi involve only the i -th and (i + 1)-st loops, which are exchanged; for τi , no loop passes
through the other; forσi , the i -th loop passes through the (i +1)-st loop. The extended loop braid
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group LB′
n is generated by these elements together with the elements ρ1, . . . ,ρn , also illustrated in

Figure 1. For finite presentations of LBn and LB′
n using these generators, see Fenn, Rimanyi and

Rourke [16, Section 1] and Brendle and Hatcher [8, Propositions 3.3 and 3.7]. We note that there
are many conflicting conventions for the names of these generators in the literature; in particular,
our notation is consistent with [16] but inconsistent with [8].

Figure 1. The loop braid group LBn is generated by the loops of loops τ1, . . . ,τn−1 and
σ1, . . . ,σn−1. Together with ρ1, . . . ,ρn , these generate the extended loop braid group LB′

n .

Burau representations of classical braid groups

The classical braid groups Bn are the fundamental groups of the configuration spaces Cn(R2) of
points in the plane. One of the oldest interesting representations of Bn is the Burau representa-
tion [10]

Bn −→ GLn(Z[t±1]), (2)

which was defined originally by assigning explicit matrices to the standard generators of Bn , but
which is most naturally understood as a homological representation, as follows. The braid group
Bn is naturally isomorphic to the mapping class group MCG(D2

n) = π0(Diff∂(D2,Qn)), the group
of isotopy classes of diffeomorphisms of the 2-disc that act by the identity on its boundary and
that preserve a subset Qn of n points in its interior. In this way, Bn acts (up to homotopy) on
the complement D2

n = D2 rQn . There is a projection π1(D2
n) � Z sending a loop to the sum

of its winding numbers around each of the points Qn , and it turns out that the Bn action on
D2

n lifts to the corresponding regular covering space π : D̃2
n � D2

n and commutes with the deck
transformations. The induced Bn action on the first homology H1(D̃2

n) therefore respects its
structure as a module over the group-ring of the deck transformation group, Z[Z] ∼= Z[t±1], so
we obtain a representation

Bn −→ AutZ[t±1]

(
H1

(
D̃2

n

))
.

The homology group H1(D̃2
n) is in fact a free Z[t±1]-module of rank n−1, so choosing a free basis

we may rewrite this as
Bn −→ GLn−1(Z[t±1]). (3)

This is the reduced Burau representation. To obtain the unreduced Burau representation (2), we
consider instead the induced Bn action on the relative first homology H1(D̃2

n ,π−1(∗)), where ∗ is
a basepoint in the boundary of the disc. This is now a freeZ[t±1]-module of rank n, so choosing a
free basis we obtain (2). The canonical map H1(D̃2

n) → H1(D̃2
n ,π−1(∗)) is injective, so the reduced

Burau representation (3) is a subrepresentation of the Burau representation (2).
Choosing appropriate ordered free generating sets for H1(D̃2

n) and H1(D̃2
n ,π−1(∗)) over Z[t±1],

the representations (2) and (3) may be written explicitly as

σi 7−→ Ii−1 ⊕
[

1− t 1
t 0

]
⊕ In−i−1 and σi 7−→ Ii−2 ⊕

 1 0 0
t −t 1
0 0 1

⊕ In−i−2 (4)

respectively. We note that the Burau representation is sometimes defined using the transposes of
these matrices, such as in [22], but this is not an essential difference, since the Burau representa-
tion is equivalent to its transpose. For more details of these representations, see [22].
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From classical braids to loop braids

There is an obvious map
t : Cn(R2) −→ E+(Un ,D3) (5)

given by replacing each point in the given configuration with a small circle, oriented positively
in R2, and then including this unlinked configuration of circles into R3. On fundamental groups,
this induces a homomorphism Bn → LBn sending the standard generators of Bn to the elements
τ1, . . . ,τn−1 of LBn . In particular, this map factors through the projection Bn → Sn onto the
symmetric group on n letters. There is also a more interesting map

s : Cn(R2) −→ E+(Un ,D3) (6)

defined as follows. Let us identify R2 with the right-hand xz-plane (the half where the x-
coordinate is positive) and the interior of D3 with R3. Given a configuration of n points in the
right-hand xz-plane, we produce an n-component unlink by rotating the configuration about
the z-axis, tracing out n circles while doing so, which all lie in planes parallel to the x y-plane;
see Figure 2. We orient these circles positively with respect to the parallel copy of the x y-plane in
which they lie.

Figure 2. Given a configuration of (blue) points in the right-hand xz-plane, we rotate about
the z-axis as shown to produce a configuration of unlinked circles in R3.

To see that the induced homomorphism on fundamental groups is injective, let us take a
basepoint in Cn(R2) where the configuration points are arranged in a line along the x-axis; this
corresponds to a basepoint of E+(Un ,D3) with n concentric circles in the x y-plane, centred at the
origin. The standard generators of Bn are sent to loops of the form illustrated on the left-hand side
of Figure 3. Changing the basepoint of E+(Un ,D3) to the one chosen earlier, with non-concentric
circles on the x y-plane, this corresponds to the loop on the right-hand side of Figure 3, which is
the generatorσi of LBn . By [8, Proposition 4.3], the group homomorphism Bn → LBn sending the
standard generators of Bn to the elementsσ1, . . . ,σn−1 ∈ LBn is injective. As we have just seen, the
map (6) realises this homomorphism at the space level, and so:

Proposition 2. The map (6) induces an injection on π1.

Remark 3. The map (6) has also been described in Section 6 of [3], where its image is called the
configuration space of linear necklaces. In particular, [3, Theorem 6.1] is equivalent to Proposi-
tion 2 under this interpretation. A small difference is that the map of [3] has the space URn as
target (see [8] for this notation), whereas (6) has E+(Un ,D3) as target. But (6) factors as

Cn(R2) −→URn −→R+
n −→ E+(Un ,D3),

where the left-hand arrow is the map of [3]. The middle map is a π1-isomorphism by [8, Proposi-
tion 2.3] and the right-hand map is a homotopy equivalence by [8, Theorem 1].
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Figure 3. The image of the i -th standard generator of Bn under the map s∗ (left) corre-
sponds, by a change of basepoint, to the element σi of LBn (right).

Burau representations of loop braid groups

A natural question is whether, and how, one may extend the Burau representations (2) and (3)
along the inclusions

Bn LBn LB′
n .

(6)∗ (1)

(7)

The unreduced Burau representation (2) has been extended to LBn by Vershinin [33], using a
presentation of LBn and by assigning explicit matrices to generators. (More precisely, Vershinin’s
representation of LBn restricts to the transpose of the unreduced Burau representation of Bn ,
according to our conventions.)

Our approach will instead be topological, analogous to the description above of the classical
Burau representations of Bn , via the homology of covering spaces. In each case, we will find
a natural generating set of the relevant homology group, and calculate the matrix that each
standard generator of the loop braid group is sent to.

Notation 4. We write R =Z[Z] =Z[t±1] and S =Z[Z/2] =Z[t±1]/(t 2 −1).

In this notation, the unreduced and reduced Burau representations are R-linear actions
Bn y R⊕n and Bn y R⊕n−1 respectively. The case of the non-extended loop braid groups is
straightforward:

Theorem A. These R-linear actions extend to R-linear actions LBn yR⊕n and LBn yR⊕n−1.
Explicit matrices are given in equations (15) and (17) respectively.

To extend further to the extended loop braid groups is a little more subtle. We must first
reduce modulo t 2 − 1, in other words tensor −⊗R S to obtain S-linear actions LBn y S⊕n and
LBn y S⊕n−1. The unreduced Burau representation then extends directly:

Theorem B. The S-linear action LBn y S⊕n extends to an S-linear action LB′
n y S⊕n .

Explicit matrices are given in equations (15) and (21).

The reduced Burau representation does not extend directly; instead:

Theorem C. The S-linear action LBn y S⊕n−1 is a subrepresentation of an S-linear action
LBn y S⊕n−1 ⊕S/(t −1), and this extends to an S-linear action LB′

n y S⊕n−1 ⊕S/(t −1).
Explicit matrices are given in Table 1.

We emphasise that these extensions of the Burau representations to LBn and LB′
n are precisely

those that arise naturally via actions on first homology groups of covering spaces, mirroring the
topological construction of the classical Burau representations. As a partial summary, we have

x1, . . . , xn−1 x1, . . . , xn−1 x1, . . . , xn−1, y a1, . . . , an

R⊕n−1 S⊕n−1 S⊕n−1 ⊕S/(t −1) S⊕n

H1(D̃3
n ;Z) H1(D̃3

n ;Z)⊗R S H1(D̂3
n ;Z) H1(D̂3

n , {v, t v};Z),

= = = = (8)
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where from left to right we have

(1) the reduced Burau representation of LBn over R =Z[t±1] (Theorem A),
(2) its reduction modulo t 2 −1 over S =Z[t±1]/(t 2 −1),
(3) the inclusion of (2) into the reduced Burau representation of LB′

n over S (Theorem C) and
(4) its further inclusion into the unreduced Burau representation of LB′

n (Theorem B).

In each case, an ordered generating set corresponding to the direct sum decomposition is given
in blue.

Remark 5. The matrices of the representations in Theorems A and B are the “obvious” matrices
that one may guess by analogy with the matrices for the classical (reduced and unreduced) Burau
representations. However, the matrices for the reduced Burau representation of the extended
loop braid groups, from Theorem C, do not seem combinatorially or algebraically obvious.
However, they arise very naturally topologically. Two additional subtleties in this case are the
appearance of torsion in the S/(t −1) summand and the non-locality of the matrices for the ρi

generators.

Remark 6. It is stated in Theorem C that the LBn-representation S⊕n−1 is a subrepresentation of
an LBn-representation S⊕n−1 ⊕S/(t −1). We remark that it is however not a direct summand of
the LBn-representation S⊕n−1 ⊕S/(t −1).

See Section 4 for further remarks on reducibility, kernel and other properties of these repre-
sentations.

Remark 7. The Burau representations of the classical braid groups Bn form the first of an infinite
family of Lawrence-Bigelow representations [6, 23], and the Burau representations of the loop
braid groups LBn (or extended loop braid groups LB′

n) may be extended, in more than one
way, to an analogous infinite family of representations; see [30]. Explicit bases for some of these
representations are computed in [31, Section 3] and further investigation of these families of
representations of LBn and of LB′

n will be the subject of forthcoming work.
These representations are particularly interesting as the representation theory of the loop

braid groups is in the early stages: so far, few other results are known on extensions of representa-
tions of the braid groups to loop braid groups and some of their particular subgroups; see Kádár,
Martin, Rowell and Wang [21] and Bellingeri and the second author [4]. Furthermore, Damiani,
Martin and Rowell [15] have recently studied a finite dimensional quotient LHn of the group
algebra of LBn , mimicking the braid group/Iwahori–Hecke algebra paradigm. In particular, the
unreduced Burau representation of LBn (Theorem A) factors through this quotient algebra LHn ;
see [15, Section 3.2].

Acknowledgements
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1. Action on the homology of covering spaces

Let ϕ be a diffeomorphism of the 3-ball D3 that restricts to the identity near the boundary. We
may restrictϕ to our chosen unlink Un in the interior ofD3 to obtain a new embedding Un ,→D3.
Since ϕ is isotopic to a diffeomorphism that acts by the identity on Un (it may be isotoped to
act by the identity on a larger and larger collar neighbourhood of the boundary, until this collar
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neighbourhood contains Un), this new embedding is isotopic to the inclusion, hence an element
of Embu(Un ,D3). We therefore have a restriction map

Diff∂(D3) −→ Embu(Un ,D3), (9)

where Diff∂(D3) denotes the topological group of diffeomorphisms that are the identity on a
neighbourhood of the boundary, equipped with the smooth Whitney topology. The map (9) is
a locally trivial fibration [11, 24, 28] and the quotient map

Embu(Un ,D3) −� Embu(Un ,D3)/Diff(Un) = E (Un ,D3) (10)

is also a locally trivial fibration [7] (see also [29, Section 4] for both of these). Putting together (9)
and (10), we have a locally trivial fibration

Diff∂(D3) −→ E (Un ,D3). (11)

If we modify (10) to quotient only by Diff+(Un), it remains a locally trivial fibration, and together
with (9) we obtain a locally trivial fibration

Diff∂(D3) −→ E+(Un ,D3). (12)

Together with Hatcher’s proof [18] of the Smale conjecture, this implies the following, where
Diff∂(D3,Un) 6 Diff∂(D3) is the subgroup of diffeomorphisms that preserve Un (setwise) and
Diff∂(D3,U+

n ) 6 Diff∂(D3) is the subgroup of diffeomorphisms that preserve Un and its orienta-
tion.

Lemma 8. There are isomorphisms

LB′
n =π1(E (Un ,D3)) ∼=π0(Diff∂(D3,Un))

LBn =π1(E+(Un ,D3)) ∼=π0(Diff∂(D3,U+
n )).

Proof. The topological group Diff∂(D3) is contractible, in particular simply-connected, by [18],
and these isomorphisms then follow from the long exact sequences associated to (11)
and (12). �

Notation 9. We will abbreviateD3
n =D3rUn , where Un is the n-component unlink in the interior

of D3 chosen previously. See Figure 4 for an illustration of a particular choice.

By the mapping class group interpretation of loop braid groups (Lemma 8), the group LB′
n

(and hence also its subgroup LBn) acts, up to homotopy, on the unlink-complement D3
n by

diffeomorphisms (in particular, homeomorphisms).

Remark 10. We will speak of actions of mapping class groups up to homotopy, which induce
(strict) actions on homology. An alternative, equivalent viewpoint would be that the correspond-
ing diffeomorphism group acts (strictly) at the level of spaces, and then observing that its induced
action on homology factors through the mapping class group, since homology groups are dis-
crete.

Note that the fundamental group ofD3
n is the free group Fn on n generators. This is easy to see:

the unlink-complement D3
n ⊆ D3 deformation retracts onto a wedge of n circles and n copies of

the 2-sphere. The n circles a1, . . . , an are shown in Figure 4. Now let

φ : π1(D3
n) −→Z

be the surjective homomorphism defined by φ(ai ) = 1 for all i = 1, . . . ,n and let

φ′ : π1(D3
n) −→Z/2Z

be the composition of φ with the unique surjection Z→Z/2Z.
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...

Figure 4. The unlink-complement D3
n with free generators a1, . . . , an for π1(D3

n) ∼= Fn .

Definition 11. We denote by D̃3
n the regular covering space corresponding to ker(φ) and by D̂3

n the
regular covering space corresponding to ker(φ′). We therefore have regular coverings

η : D̃3
n −→D3

n and η′ : D̂3
n −→D3

n

whose deck transformations groups are Z and Z/2Z respectively.

In general, if a group G acts (up to homotopy) on a based space X and we choose a surjection
ψ : π1(X )�Q that is invariant under the induced action of G on π1(X ), then the G-action on X
lifts uniquely to the regular covering space corresponding to ψ and commutes with the action of
Q by deck transformations.

Let us first take G = LBn and X =D3
n with basepoint ∗ ∈ ∂D3 = ∂D3

n . We note that the quotient
φ is invariant under the action of LBn : for this it suffices to check that each generator τi ,σi of
LBn sends each generator a j of π1(D3

n) to an element in φ−1(1), and this follows since, up to
conjugation, τi and σi simply permute the generators a j . We therefore have an induced action
(up to homotopy) of LBn on D̃3

n commuting with the deck transformation action of Z. Thus the
first integral homology groups

H1
(
D̃3

n ;Z
)

and H1
(
D̃3

n ,η−1(∗);Z
)

(13)

are Z[Z]-modules via the deck transformation action, and are LBn-representations over Z[Z] via
the lifted LBn-action on D̃3

n .

Definition 12. The LBn-representations (13) are the reduced and the unreduced Burau represen-
tations of loop braid groups over Z[Z] = R.

Let us now take G = LB′
n and again X = D3

n with basepoint ∗ ∈ ∂D3 = ∂D3
n . This time φ is not

invariant under the induced action of LB′
n , since, for example, the generator ρi sends ai ∈φ−1(1)

to a−1
i ∈φ−1(−1). However, the deeper quotient φ′ (namely φ reduced mod 2) is clearly invariant

under the action of LB′
n . We therefore have an induced action (up to homotopy) of LB′

n on D̂3
n

commuting with the deck transformation action ofZ/2Z. Thus the first integral homology groups

H1
(
D̂3

n ;Z
)

and H1
(
D̂3

n , (η′)−1(∗);Z
)

(14)

are Z[Z/2Z]-modules via the deck transformation action, and are LB′
n-representations over

Z[Z/2Z] via the lifted LB′
n-action on D̂3

n .

Definition 13. The LB′
n-representations (14) are the reduced and the unreduced Burau represen-

tations of extended loop braid groups over Z[Z/2Z] = S.



Martin Palmer and Arthur Soulié 789

...

Figure 5. The complement D̊3
n of the interiors and equators of n closed little 3-discs (“lens

shapes”) in the interior of the closed unit 3-discD3. The boundary of D̊3
n decomposes as the

disjoint union of 2n +1 components: ∂D̊3
n = ∂D3 tN1 t·· ·tNn tS1 t·· ·tSn .

...

...

...... ...

... ... ... ...

Figure 6. The deformation retract X of the Z-covering D̃3
n .

Let us make these covering spaces more concrete by building explicit models for each of them.
We embed n pairwise disjoint closed 3-discs into the interior of the unit 3-disc D3 as pictured in
Figure 5, so that each little 3-disc looks like a “lens shape” and the union of their equators is
precisely the n-component unlink that we fixed earlier. Let D̊3

n denote D3
n minus the interiors of

these n little 3-discs, equivalently,D3 minus the interiors and equators of the n little 3-discs. Also,
write Ni for the open northern hemisphere of the boundary of the i -th little 3-disc, and write Si

for the open southern hemisphere of the boundary of the i -th little 3-disc. Now consider

Z× D̊3
n

and glue { j }×Ni to { j −1}×Si via the homeomorphism Ni
∼= Si given by reflection in the plane

passing through the equator. This is an explicit model for D̃3
n . Similarly, we may consider

Z/2Z× D̊3
n

and glue as before, where j is now considered mod 2. This is an explicit model for D̂3
n .

2. Matrices for non-extended loop braid groups

We first consider the LBn-representations (13). The calculations of these representations are
unsurprising, but they are a useful warm-up to the slightly more subtle ones in the next section,
for the LB′

n-representations (14).
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Figure 7. The action ofσi ∈ LBn on the homological generator ai . The right-hand loop may
be decomposed (writing from the left to right) as ai · t ai+1 · t āi .

The modules

As noted above, the unlink-complement D3
n deformation retracts onto a wedge of n circles and

n copies of the 2-sphere. This deformation retraction lifts to a deformation retraction of the
covering space D̃3

n onto the space pictured in Figure 6. This is an infinite 2-dimensional cell
complex X with vertices indexed by Z, with exactly n edges between consecutive vertices (and
none between non-consecutive vertices) and with exactly n copies of the 2-sphere wedged onto
each vertex. Its fundamental group is freely generated by t k .(a2ā1), . . . . . . , t k .(an ān−1) for all k ∈Z,
where ā denotes the reverse of a path a. Abelianising and writing Z[Z] = Z[t±1], we see that its
first homology is freely generated, as a Z[t±1]-module, by x1 := a2ā1, . . . . . . , xn−1 := an ān−1.

The relative homology group H1(D̃3
n ,η−1(∗);Z) is isomorphic to the first homology of X relative

to its set of vertices (since these vertices are fixed by the deformation retraction described
above), which is freely generated, as aZ[t±1]-module, by a1, . . . , an . Summarising, we have natural
isomorphisms

H1
(
D̃3

n ,η−1(∗);Z
)∼=Z[t±1]{a1, . . . , an}

H1
(
D̃3

n ;Z
)∼=Z[t±1]{x1, . . . , xn−1},

and the canonical homomorphism H1(D̃3
n ;Z) → H1(D̃3

n ,η−1(∗);Z) is given under these identifica-
tions by xi 7→ ai+1 −ai .

The unreduced representation

It is easy to calculate visually how the LBn generators τi andσi act on the homological generators
a j . Clearly τi simply interchanges ai and ai+1. On the other hand, σi acts by

σi (ai ) = (1− t ).ai + t .ai+1 σi (ai+1) = ai σi (a j ) = a j (for j 6∈ {i , i +1}),

where the first formula comes from the fact that, at the fundamental group level, σi sends the
loop ai to the loop ai · t ai+1 · t āi , which may be read off from Figure 7. Thus we see that the
matrices for the unreduced Burau representation LBn → GLn(Z[t±1]) are given by

τi 7−→ Ii−1 ⊕
[

0 1
1 0

]
⊕ In−i−1 and σi 7−→ Ii−1 ⊕

[
1− t 1

t 0

]
⊕ In−i−1. (15)

Remark 14. These are precisely the transposes of the matrices used in [33]. Related to this, we
note that, as observed in [19, Theorem 3.2], one may extend the (transpose of the) unreduced
Burau representation to the virtual braid group VBn → GLn(Z[t±1,u±1]) by

τi 7−→ Ii−1 ⊕
[

0 u−1

u 0

]
⊕ In−i−1 and σi 7−→ Ii−1 ⊕

[
1− t t

1 0

]
⊕ In−i−1. (16)
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Figure 8. The action of σi ∈ LBn on the element bi ∈ π2(D̃3
n). The right-hand side is

homotopic to ai ·bi+1, where · denotes the action of π1 on π2.

Figure 9. The action of σi ∈ LBn on the element bi+1 ∈ π2(D̃3
n). The right-hand side is

homotopic to bi +bi+1 −ai ·bi+1, where · denotes the action of π1 on π2.

This factors through the projection VBn � LBn if one sets u = 1, but in general it does not. It
would be interesting to find a topological construction of this representation, in the sense of the
present paper, although it is unclear how this could be done, as we are unaware of a topological
interpretation of the virtual braid group as a motion group, analogous to the realisation of the
loop braid group as the group of motions of an oriented trivial link in R3.

The reduced representation

Using this computation of the unreduced representation, and the explicit formula (xi 7→ ai+1−ai )
for the inclusion of the reduced representation into the unreduced one, it is an easy exer-
cise to read off the following explicit formulas for the reduced Burau representation LBn →
GLn−1(Z[t±1]):

τi 7−→ Ii−2 ⊕
 1 0 0

1 −1 1
0 0 1

⊕ In−i−2 and σi 7−→ Ii−2 ⊕
 1 0 0

t −t 1
0 0 1

⊕ In−i−2. (17)

If i = 1 or i = n −1, one should ignore the “I−1” on the left or right, and instead remove the left
column and top row, respectively the right column and bottom row, from the displayed matrix.

Observe that, when restricted to the σi generators, the formulas (15) and (17) are precisely
the matrices (4) defining the unreduced and reduced Burau representations of the classical braid
groups. This concludes the proof of Theorem A.

Action on the second homology

The other non-trivial homology group of the covering space D̃3
n ' X is in degree two, where we

have H2(D̃3
n ;Z) ∼= Z[t±1]{b1, . . . ,bn}, where bi are illustrated in blue in Figure 6. The generator

τi ∈ LBn clearly acts by swapping the homological generators bi and bi+1. The generatorσi ∈ LBn

acts as illustrated in Figures 8 and 9. It sends bi , considered as an element of π2(D̃3
n), to ai ·bi+1,
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...

...

...

...

Figure 10. The deformation retract of the double covering D̂3
n corresponding to quotienting

Figure 6 by the action of t 2.

where · denotes the canonical action ofπ1(D̃3
n) onπ2(D̃3

n). Inspecting Figure 6, we see that, viewed
as an element of H2(D̃3

n ;Z), this is tbi+1. Similarly, σi sends bi+1, considered as an element of
π2(D̃3

n), to bi + bi+1 − ai · bi+1, which is bi + (1− t ).bi+1 as an element of H2(D̃3
n ;Z). Thus, with

respect to the ordered basis (b1, . . . ,bn) of H2(D̃3
n ;Z), this representation LBn → GLn(Z[t±1]) is

given by

τi 7−→ Ii−1 ⊕
[

0 1
1 0

]
⊕ In−i−1 and σi 7−→ Ii−1 ⊕

[
0 1
t 1− t

]
⊕ In−i−1. (18)

Reversing the ordering, i.e. using instead the ordered basis (bn , . . . ,b1), we obtain

τi 7−→ Ii−1 ⊕
[

0 1
1 0

]
⊕ In−i−1 and σi 7−→ Ii−1 ⊕

[
1− t t

1 0

]
⊕ In−i−1, (19)

which is the transpose of the unreduced Burau representation (15) of LBn , and agrees with the
matrices used in [33].

3. Matrices for extended loop braid groups

The modules

As in Section 2, the deformation retraction of the unlink-complement D3
n onto a wedge of circles

and 2-spheres lifts to a deformation retraction of its covering D̂3
n onto the space pictured in

Figure 10. This is a finite 2-dimensional cell complex with two vertices {v, t v}, 2n edges between
them and with n copies of the 2-sphere wedged onto each vertex. Its fundamental group is freely
generated by the 2n −1 loops

x1 = a2ā1, . . . . . . , xn−1 = an ān−1

t x1 = t a2 t ā1, . . . . . . , t xn−1 = t an t ān−1

y := an t an .

Hence its first homology H1(D̂3
n ;Z) is generated, as an abelian group, by the same 2n −1 loops,

viewed as homology classes. The first 2n −2 of these classes generate a free module of rank n −1
over S = Z[Z/2] = Z[t±1]/(t 2 −1), whereas the last element y generates a summand isomorphic
to Z viewed as a trivial Z[Z/2Z]-module, in other words S/(t −1).

The relative homology group H1(D̂3
n , (η′)−1(∗);Z) is isomorphic to the first homology of this

complex relative to its vertices {t , t v}. This is much simpler: it is a free module over S =
Z[t±1]/(t 2 −1) of rank n, generated by a1, . . . , an . Summarising, we have natural isomorphisms

H1
(
D̂3

n , (η′)−1(∗);Z
)∼= S{a1, . . . , an}

H1
(
D̃3

n ;Z
)∼= S{x1, . . . , xn−1}⊕S/(t −1){y}.
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Figure 11. The action of ρi ∈ LB′
n on the homological generator ai . The right-hand loop is

t āi . Note that it is not simply āi , since this is a path from t v to v , whereas ρi (ai ) is a path
from v = t 2v to t v .

The canonical homomorphism H1(D̂3
n ;Z) → H1(D̂3

n , (η′)−1(∗);Z) is given under these identifica-
tions by xi 7→ ai+1 −ai and y 7→ (1+ t )an . As a matrix, this is:

−1 0 0
1 −1 0
0 1 −1 . . .

−1 0
1 1+ t

 . (20)

Note that this matrix describes an injective homomorphism. (Viewed as an endomorphism of
S⊕n , it is of course not injective, since 1 + t is a zero-divisor. But its kernel is precisely the
submodule 0⊕n−1⊕(t −1) of S⊕n so once we replace the domain with S⊕n−1⊕S/(t −1) it becomes
injective.)

The unreduced representation

The action of the LB′
n generators τi and σi on the homological generators a j is exactly as in

Section 2, and given by the matrices (15), considered now over the ring S =Z[t±1]/(t 2−1) instead
of R = Z[t±1]. The LB′

n generator ρi acts trivially on a j for j 6= i and sends ai to −t ai . This last
formula comes from the fact that, at the fundamental group level, ρi sends the loop ai to the loop
t āi , which may be read off from Figure 11. Thus we see that the matrices for the unreduced Burau
representation LB′

n → GLn(S) are given by

(15) and ρi 7−→ Ii−1 ⊕
[−t

]⊕ In−i . (21)

In particular, the restriction of this representation of LB′
n to the generators τi and σi (i.e. to LBn)

is the reduction modulo t 2 of the representation (15) of Theorem A. This concludes the proof of
Theorem B.

The reduced representation

It is now a purely algebraic exercise, using the formulas (15) and (21) for the unreduced Burau
representation, together with the explicit description (20) of the inclusion, to deduce explicit
formulas for the reduced Burau representation

LB′
n −→ AutS (S⊕n−1 ⊕S/(t −1)).

These are given in Table 1, where we abbreviate δ := 1+ t . Note that the matrices for the extended
generators ρi are, in a sense, “non-local”.
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Remark 15. Since these matrices describe automorphisms of S⊕n−1⊕S/(t −1), each entry above
the bottom row should be considered as an element of S, whereas each element of the bottom row
should be considered as an element of S/(t −1) ∼= Z. In other words, we set t = 1 on the bottom
row. More precisely, the entries in the bottom row lie in HomS (S,S/(t −1)) ∼= S/(t −1), except the
bottom-right entry, which lies in HomS (S/(t − 1),S/(t − 1)) ∼= S/(t − 1). The entries in the right-
hand column (except the bottom-right entry) lie in HomS (S/(t −1),S) ∼= (1+ t )S = δS ⊂ S. (The
S-modules S/(t −1) and δS are abstractly isomorphic, but they are related differently to S.)

In particular, the restriction of this representation of LB′
n to the group generators τi and

σi and to the homological generators x1, . . . , xn−1 is equal to the reduction modulo t 2 of the
representation (17) of Theorem A. This concludes the proof of Theorem C.

Remark 16. It is an amusing exercise to verify explicitly that the matrices in Table 1 indeed
satisfy all of the relations of the extended loop braid group LB′

n , as described for example in [8,
Section 3] or [14, Section 3]. (Warning: the papers [8], [14] and the present paper pairwise disagree
on notation for the three families of generators of LB′

n .) One should bear in mind that braid
words are written from left to right in [8] and [14] (as is usual for composition of loops), whereas
matrix multiplication goes from right to left (as is usual for function composition), so in fact the
matrices in Table 1 satisfy the opposite of the relations of LB′

n described in [8,14]. (Technically, this
means that we have constructed a representation of the opposite group (LB′

n)op, but, except for
computations, we ignore this subtlety, since this is abstractly isomorphic to LB′

n .) For an explicit
verification, using Sage, that the matrices in Table 1 satisfy the 40 relations of the extended loop
braid group LB′

n in the case n = 4, see the supplementary materials [32].

Table 1. Explicit matrices for the reduced Burau representation of the extended loop braid
group LB′

n . Notation: δ = 1+ t . All entries lie in S = Z[t±1]/(t 2 − 1), except for the bottom
row, where they lie in S/(t −1) ∼=Z, in other words we set t = 1 on the bottom row.

i = 1 26 i 6 n −2 i = n −1

τi

[−1 1
0 1

]
⊕ In−2 Ii−2 ⊕

 1 0 0
1 −1 1
0 0 1

⊕ In−i−1 In−3 ⊕
 1 0 0

1 −1 −δ
0 0 1


σi

[−t 1
0 1

]
⊕ In−2 Ii−2 ⊕

 1 0 0
t −t 1
0 0 1

⊕ In−i−1 In−3 ⊕
 1 0 0

t −t −δ
0 0 1


i = 1 26 i 6 n −1 i = n

ρi


−t 0 · · · 0
−δ

In−1
...

−δ
1

 Ii−2 ⊕



1 0 0 · · · 0
δ −t 0 · · · 0
δ −δ

In−i
...

...
δ −δ
−1 1


In−2 ⊕

[
1 0
−1 −1

]

4. Properties

Irreducibility

The unreduced Burau representations (15) of LBn and (21) of LB′
n are clearly reducible, since they

contain the reduced Burau representations (17) and (Table 1) respectively. The reduced Burau
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representation (17) of LBn becomes irreducible when we pass to the field of fractions Q(t ) of
Z[t±1]. This follows because its restriction to the symmetric group Sn ⊂ LBn is the standard
(n −1)-dimensional representation of Sn , which is irreducible over any field.

On the other hand, for the reduced Burau representation (Table 1) of LB′
n , we cannot directly

pass to a field of fractions, since its ground ring S = Z[t±1]/(t 2 − 1) is not an integral domain.
Instead, we may tensor over S withQ, setting either t =−1 or t = 1. In the first case, the additional
S/(t −1) summand is killed and we obtain an (n −1)-dimensional representation of LB′

n over Q,
which is irreducible, again because its restriction to Sn ⊂ LB′

n is the standard representation of
Sn . In the second case, we obtain an n-dimensional representation:

LB′
n −→ GLn(Q). (22)

Lemma 17. The representation (22) of LB′
n is irreducible.

Proof. Suppose that V ⊆Qn is a non-trivial subrepresentation; we will show that V =Qn . Write
v =α1x1 +·· ·+αn−1xn−1 +βy .

Step 1. It suffices to find v ∈V with v 6= 0 and β= 0. First note that spanQ{x1, . . . , xn−1} is an ir-
reducible subrepresentation (it is irreducible since its restriction to Sn is the standard rep-
resentation of Sn). Thus V must contain spanQ{x1, . . . , xn−1}. But then it must also contain
xn−1 −ρn(xn−1) = y , and so V =Qn .

Step 2. It suffices to find v ∈V with v 6= 0 and αn−2 −2αn−1 −2β 6= 0. For such a v , we have
τn−1(v)− v = (αn−2 −2αn−1 −2β)xn−1, and we are done by Step 1.

Step 3. It suffices to find v ∈V with v 6= 0 and αn−1 +2β 6= 0. For such a v , we have ρn(v) − v =
−(αn−1 +2β)y , and we are done by Step 2.

Step 4. Let v ∈V be a non-zero vector. By the previous steps, we may assume that its coefficients
satisfy αn−2 = αn−1 = −2β and β 6= 0. We then have τn−2(v) − v = (αn−3 + 2β)xn−2, so we are
done by Step 1 unless αn−3 = −2β. On the other hand, if αn−3 = −2β, we have τn−3(v) − v =
(αn−4 + 2β)xn−3, so again we are done by Step 1 unless αn−4 = −2β. Repeating this a further
n −5 times, we see that we are done unless α1 = α2 = ·· · = αn−1 = −2β. But in this case we have
τ1(v)− v = 2βx1, and we are done by Step 1. �

Remark 18. The restriction of the representation (22) to Sn ⊂ LB′
n is isomorphic to the regular

representation of Sn . To see this, note that spanQ{x1, . . . , xn−1} is a subrepresentation isomorphic
to the standard representation of Sn , and the quotient is a trivial 1-dimensional representation.
Thus, by Maschke’s theorem, (22)|Sn is isomorphic to the sum of the standard representation and
a trivial 1-dimensional representation, which is isomorphic to the regular representation of Sn .

Kernel

The classical (unreduced) Burau representation Bn → GLn(Z[t±1]) is known to be faithful for n6
3 and unfaithful for n> 5 [5,25,27]. By contrast, the unreduced Burau representation (15) : LBn →
GLn(Z[t±1]) is unfaithful for all n> 2, by [2, Lemmas 4 and 5]. The unreduced Burau representa-
tions for LBn and LB′

n fit together in the commutative square

LBn GLn(R)

LB′
n GLn(S),

(15)

incl. −⊗R S

(21)

(23)
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(recall that R = Z[t±1] and S = R/(t 2 − 1)) so the unreduced Burau representation (21) : LB′
n →

GLn(S) is also unfaithful for all n> 2. In fact, the kernel of the composition LBn → GLn(S) across
the diagonal of (23) is larger than the kernel of (15) : LBn → GLn(R) since, for example, (τ1σ1)2 is
sent to

[
t 2 0
0 1

]⊕ In−2.

The transpose of the Burau representation

As mentioned in the introduction, the (unreduced) Burau representation of the classical
braid group Bn is equivalent to its transpose. Explicitly, conjugation by the diagonal matrix
Diag(1, t , . . . , t n−1) passes between the Burau representation and its transpose. On the other hand:

Lemma 19. The unreduced Burau representation (15) of the loop braid group LBn is not equiva-
lent to its transpose.

Proof. Let (15) = Bur. The aim is to show that there is no invertible matrix M ∈ GLn(Z[t±1]) such
that Bur(g )M = M Bur(g )t for all g ∈ LBn , where (−)t denotes the transpose of a matrix. For n = 2,
the equations Bur(σ1)M = M Bur(σ1)t and Bur(τ1)M = M Bur(τ1)t imply that M is of the form[ a −a−a a

]
, which is not invertible. For n > 3, we will prove by induction on n the statement that

the only matrix M satisfying Bur(g )M = M Bur(g )t for all g ∈ LBn is the zero matrix. We begin
with the base case n = 3. Applying the argument for n = 2 to the top-left and bottom-right

2× 2 blocks of M , we deduce that M must be of the form
[

a −a b−a a −a
c −a a

]
. Given this, the equation

Bur(τ1)M = M Bur(τ1)t then implies that b = c = −a, and the equation Bur(σ1)M = M Bur(σ1)t

implies that a = at , thus a = 0 and M is the zero matrix. For the inductive step, we may apply
the inductive hypothesis to the top-left and bottom right (n −1)× (n −1) blocks of M to see that
the entries of M are all zero except possibly the top-right and bottom-left entries. But then the
equation Bur(τ1)M = M Bur(τ1)t implies that these are zero too. �

Thus the representations (15) and (15)tr are non-equivalent representations of LBn . However,
we have constructed both of these topologically: (15) is the action of LBn on the first homology
group H1(D̃3

n ,η−1(∗);Z) and (15)tr is the action of LBn on the second homology group H2(D̃3
n ;Z),

as shown at the end of Section 2.
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