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Abstract. The Grassmann convexity conjecture, formulated in [8], gives a conjectural formula for the maxi-
mal total number of real zeroes of the consecutive Wronskians of an arbitrary fundamental solution to a dis-
conjugate linear ordinary differential equation with real time. The conjecture can be reformulated in terms
of convex curves in the nilpotent lower triangular group. The formula has already been shown to be a correct
lower bound and to give a correct upper bound in several small dimensional cases. In this paper we obtain a
general explicit upper bound.

Résumé. La conjecture sur la convexité du Grassmannien formulée dans [8] suggère une formule pour le
nombre total maximal de zéros réels des Wronskiens consécutifs d’une solution fondamentale arbitraire
d’un système disconjugué d’équations différentielles ordinaires linéaires à temps réel. La conjecture peut être
formulée en termes de courbes convexes dans le groupe nilpotent triangulaire inférieur. Il a déjà été prouvé
que la formule donne une borne inférieure correcte et que dans plusieurs cas de basse dimension, elle donne
la borne supérieure correcte. Dans cet article nous obtenons une borne supérieure explicite générale.
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1. Introduction

A linear homogeneous differential equation of order n with real time has the form

y (n)(t )+·· ·+ck (t )y (k)(t )+·· ·+c0(t )y(t ) = 0; (1)

the real functions ck : I → R (for 0 ≤ k < n) are called coefficients and are assumed to be
continuous; the set I ⊆ R is assumed to be an interval. Such an equation defined on an open
interval I is called disconjugate on I (see [2, 6]) if any of its nonzero solutions has at most n −1
real zeroes on I , counting multiplicities. Any differential equation as above is disconjugate on a
sufficiently small interval I ⊂R.

The Grassmann convexity conjecture, formulated in [8], says that, for any positive integer
k satisfying 0 < k < n, the number of real zeroes of the Wronskian of any k linearly indepen-
dent solutions to a disconjugate differential equation of order n on I is bounded from above by
k(n − k), which is the dimension of the Grassmannian G(k,n; R). This conjecture can be refor-
mulated in terms of convex curves in the nilpotent lower triangular group (see Section 2 and
also [3–5]). The number k(n−k) has already been shown to be a correct lower bound for all k and
n. Moreover it gives a correct upper bound for the case k = 2 (see [7]). In this paper we obtain a
general explicit upper bound for the above maximal total number of real zeroes which, although
weaker than the one provided by the Grassmann convexity conjecture, still gives an interesting
information.

We now formulate a discrete problem which is equivalent to the above Grassmann convexity
conjecture; the equivalence is discussed in Section 2. The statement and proof of our main
theorem are self-contained and elementary.

Given integers k and n with 0 < k < n, consider a collection (v j )1≤ j ≤n of vectors in Rk , or,
equivalently, a matrix M ∈C =Rk×n . Set v j = Me j , so that v j is the j th column of M :

M =
 | | |

v1 · · · v j · · · vn

| | |

 , v1, . . . , v j , . . . , vn ∈Rk .

For two matrices M0, M1 ∈C , we say that there exists a positive elementary move from M0 to M1 if
there exists j < n and t ∈ (0,+∞) such that M1e j = M0e j + t M0e j+1 and M1e j ′ = M0e j ′ for j ′ ̸= j .
In other words, the vector v j moves towards v j+1 and the other vectors remain constant:

M0 =
 | | | |

v1 · · · v j v j+1 · · · vn

| | | |

 , M1 =
 | | | |

v1 · · · v j + t v j+1 v j+1 · · · vn

| | | |

 , t > 0.

We call a sequence (Ms )0≤ s≤ℓ of k × n-matrices convex if, for all s < ℓ, there exists a positive
elementary move from Ms to Ms+1. The terminology is motivated by their relationship with
convex curves in the lower triangular group Lo1

n ; see Section 2 and [7].
For J = { j1 < ·· · < jk } ⊂ {1, . . . , n}, define the function m J : C →R by

m J (M) = det
(

SubMatrix(M , {1, . . . , k} , J )
)= det

(
v j1 , . . . , v jk

)
. (2)

We are particularly interested in m• = m{1, ...,k}. Define an open dense subset of (k ×n)-matrices

C ∗ = ⋂
J ⊂ {1, ...,n},|J |=k

m−1
J [Rà {0}] ⊂C .

For convex sequences M = (Ms )0≤ s≤ℓ of matrices in C ∗, we are interested in the number of sign
changes of m•:

nsc(M) = ∣∣ {s ∈ [0,ℓ)∩Z | m•(Ms )m• (Ms+1) < 0}
∣∣.

(Notice that M is merely a sequence of matrices, not an actual path of matrices; equivalently, s
assumes integer values only.)
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The Grassmann convexity conjecture, in the discrete model, states that for every convex
sequence M we have:

nsc(M) ≤ k(n −k). (3)

The equivalence between formulations is discussed in Section 2. The case k = 1 is easy; the case
k = 2 is settled in [7]; in the same paper we prove that for all k and n, there exists a convex
sequence M with nsc(M) = k(n −k). In this paper we prove the following estimate.

Theorem 1. For any 2 < k < n and any convex sequence of matrices M, we have

nsc(M) < (n −k +1)2k−3

2k−3
. (4)

Inequality (4) appears to be the first known explicit upper bound for nsc(M) in terms of k and
n. This bound is a polynomial in n of degree 2k −3. Furthermore, by a well-known (Grassmann)
duality interchanging k ↔ (n −k), one can additionally obtain

nsc(M) < min
(
23−k (n −k +1)2k−3, 23−n+k (k +1)2(n−k)−3

)
.

We know however that the bound in Theorem 1 is not sharp; see Remark 5. Our current best guess
is that the Grassmann convexity conjecture indeed holds for all 0 < k < n; this is additionally
supported by our recent computer-aided verification of the latter conjecture in case k = 3,n = 6.

2. Discrete and continuous versions

In this section we present an alternative continuous version of the Grassmann convexity conjec-
ture already discussed in previous papers and prove that it is equivalent to the discrete version
described in the introduction. We follow the notations of [5] and [7].

Consider the nilpotent Lie group of Lo1
n of real lower triangular matrices with diagonal entries

equal to 1. Its corresponding Lie algebra is lo1
n , the space of strictly lower triangular matrices.

For J ⊂ {1, . . . , n}, |J | = k, define m J : Lo1
n → R as in Equation (2); thus, m•(L) = m{1, ...,k}(L) is the

determinant of the lower-left k ×k minor of L. For 1 ≤ j < n, let l j = e j+1e⊤j ∈ lo1
n be the matrix

with only one nonzero entry (l j ) j+1, j = 1. Write λ j (t ) = exp(t l j ).
A smooth curve Γ : [a,b] → Lo1

n is convex if there exist smooth positive functions β j : [a,b] →
(0,+∞) such that, for all t ∈ [a,b],

(Γ(t ))−1Γ′(t ) =∑
j
β j (t )l j .

We prove in [5] that all zeroes of m• ◦Γ : [a,b] → R are isolated (and of finite multiplicity). Let
nz(Γ) be the number of zeroes of m• ◦Γ counted without multiplicity. The Grassmann convexity
conjecture states that nz(Γ) ≤ k(n − k) for all convex Γ. (In fact, following the ideas presented
in [7, the proof of Theorem 2], one can show that the maximal numbers of zeroes of m•◦Γ counted
with and without multiplicity actually coincide.)

Let Sn be the symmetric group with the standard generators a j = ( j , j + 1), 1 ≤ j < n. Let
η ∈ Sn be the permutation with the longest reduced word; its length equals n(n − 1)/2. Using
the notation of [5], we define for each permutation σ ∈ Sn , a subset Posσ ⊂ Lo1

n whose dimension
equals the length of σ as follows. Let σ = ai1 · · ·ail be a reduced word: if L ∈ Posσ then there
exist unique positive t1, . . . , tl such that L = λi1 (t1) · · ·λil (tl ). Conversely, if t1, . . . , tl > 0 then
λi1 (t1) · · ·λil (tl ) ∈ Posσ. The set Posη ⊂ Lo1

n is the semigroup of totally positive matrices, an open
subset (see [1]). The boundary of Posη is stratified as

∂Posη =
⊔

σ∈Sn ,σ ̸=η
Posσ

(the subsets Posσ ⊂ Lo1
n and the above stratification are discussed in [5, Section 5]).
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IfΓ is convex and t0 < t1 then (Γ(t0))−1Γ(t1) ∈ Posη. Conversely, if L−1
0 L1 ∈ Posη then there exists

a convex curve Γ : [0,1] → Lo1
n with Γ(0) = L0 and Γ(1) = L1 (see [5, Lemma 5.7]).

Lemma 2. Fix k,n,r ∈N, with 0 < k < n. If nsc(M) ≤ r for every convex sequence M = (Ms )0≤ s≤ℓ,
then nz(Γ) ≤ r for every convex curve Γ. Conversely, if nz(Γ) ≤ r for every convex curve Γ then
nsc(M) ≤ r for every convex sequence M = (Ms )0≤ s≤ℓ.

Proof. Consider a convex curve Γ0 with nz(Γ0) = r . We use Γ0 to construct a convex sequence
M with nsc(M) ≥ r . Indeed, let t1 < ·· · < tr be such that m•(Γ(ts )) = 0 for all 1 ≤ s ≤ r . Take
M̃s = SubMatrix(Γ(ts ), {n −k +1, . . . , n}, {1, . . . , n}) and corresponding vectors ṽs, j :

Γ(ts ) =
 ∗

M̃s

 , M̃s =
 | | |

ṽs,1 · · · ṽs, j · · · ṽs,n

| | |

 .

By taking a small perturbation we may assume that m J (M̃s ) ̸= 0 for |J | = k, J ̸= {1, . . . , k}.
For ñ = n(n − 1)/2 and a small positive number ϵ > 0, set M(ñ+1)s := M̃sλk (−ϵ), M(ñ+1)s+1 :=
M̃sλk (ϵ). Notice that there exists a positive elementary move from M(ñ+1)s to M(ñ+1)s+1 and
that sign(m•(M(ñ+1)s+1)) ̸= sign(m•(M(ñ+1)s )). If the above perturbation and ϵ> 0 are sufficiently
small, there exists Ls ∈ Posη such that M(ñ+1)(s+1) = M(ñ+1)s+1Ls . Write Ls = λi1 (t1) · · ·λiñ (tñ)
and, for 1 ≤ j ≤ ñ, recursively define M(ñ+1)s+ j+1 = M(ñ+1)s+ jλi j (t j ). This is the desired convex
sequence of matrices.

Conversely, let M = (Ms )1≤ s≤ℓ be a convex sequence of matrices with nsc(M) = r . We use M to
construct a smooth convex curve Γ with nz(Γ) ≥ r . For each s, we have Ms+1 = Msλis (ts ), ts > 0.
Notice that λis (ts ) ∈ Posais

. If needed slightly perturb the matrices (Ms ) to obtain matrices (M̃s )
such that M̃s+1 = M̃s Ls , Ls ∈ Posη. Define Γ(1) ∈ Lo1

n such that M̃1 = SubMatrix(Γ(1), {n − k +
1, . . . , n}, {1, . . . , n}). Recursively define Γ(s + 1) = Γ(s)Ls so that for all s ∈ Z, 1 ≤ s ≤ ℓ, we have
M̃s = SubMatrix(Γ(s), {n − k + 1, . . . , n}, {1, . . . , n}). Notice that for each s, there exists a smooth
convex arc from Γ(s) to Γ(s +1). As discussed in [4, Section 6], these arcs can be chosen in such a
way that Γ becomes smooth at all the integer glueing points as well. □

3. Ranks

For 0 < k < n, define r (k,n) ∈N∪ {∞} = {0,1,2, . . . , ∞} as

r (k,n) = sup
M

nsc(M);

where M runs over all convex sequences of matrices. By the main results of [7], r (2,n) = 2(n −2);
and, additionally for all 0 < k < n, we have r (k,n) ≥ k(n − k). Moreover the examples for
which nsc(M) = k(n − k) provided by [7] imply that the Grassmann convexity conjecture (as in
Equation (3)) is equivalent to

r (k,n) = k(n −k). (5)

Given a subset of k ×n-matrices X ⊆C ∗, a prerank function for X is a function

pr : X →N= {0,1,2, . . .}

with the properties:

(1) if there exists a positive elementary move from M0 ∈ X to M1 ∈ X then pr(M0) ≥ pr(M1);
(2) if there exists a positive elementary move from M0 ∈ X to M1 ∈ X and m•(M0)m•(M1) < 0

then pr(M0) > pr(M1).

When X is not mentioned we assume that X = C ∗. A prerank function for a convex sequence M
is, by definition, a prerank function for its image. A prerank function pr for C ∗ is called regular
if pr(MD) = pr(M) for every M ∈ C ∗ and every positive diagonal matrix D ∈ Rn×n ; in terms of
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sequences of vectors, this means that multiplication of each vector v j by a positive real number
d j does not affect the rank. For k = 2, a regular prerank function pr : C ∗ → [0,2(n−2)]∩Nhas been
constructed in [7]. In the next section, particularly in the proof of Lemma 4, we construct some
prerank functions different from the actual rank function which is currently unknown. Thus,
prerank functions serve as a tool to prove upper bounds for the actual rank.

Lemma 3. For 0 < k < n, the following properties are equivalent:

(1) r (k,n) ≤ r0;
(2) there exists a regular prerank function for C ∗ whose image is contained in [0,r0];
(3) there exists a prerank function for C ∗ whose image is contained in [0,r0];
(4) for every convex sequence M of matrices, there exists a prerank function for M whose image

is contained in [0,r0].

Proof. Assuming the first item, let us construct a regular prerank function. For M ∈C ∗, set

pr(M) = max
M=(Ms )0≤ s≤ℓ, M0=M

nsc(M).

Regularity follows from the observation that if D ∈Rn×n is a positive diagonal matrix and (Ms ) is a
convex sequence then so is (Ms D). The second item trivially implies the third. Assuming the third
item, we obtain a prerank function for C ∗. To prove the fourth item, given a convex sequence,
restrict the above prerank function to the image of M to obtain a prerank function for M.

Given a convex sequence M = (Ms )0≤ s≤ℓ and a prerank function pr for M, we obtain that
nsc(M) ≤ pr(M0)−pr(Mℓ). Thus, the fourth item implies the first, completing the proof. □

4. Step lemma

The following lemma provides the induction step necessary to settle Theorem 1.

Lemma 4. For all 2 < k < n, we have that

r (k,n) ≤ (n −k +1)2

2
r (k −1,n −1).

Proof of Theorem 1. In order to use induction on k, notice first that the inequality (4) holds for
k = 2. By inductive assumption and Lemma 4, we get

nsc(M) ≤ r (k,n) ≤ (n −k +1)2

2
r (k −1,n −1) <

< (n −k +1)2

2
23−(k−1)(n −k +1)2(k−1)−3 = 23−k (n −k +1)2k−3,

completing the proof. □

Proof of Lemma 4. Set r− = r (k−1,n−1) (assumed to be finite) and define r0 := (n−k+1)2r−/2.
Let C ∗− ⊂C− = R(k−1)×(n−1) be the set of matrices M ∈C− with m J (M) ̸= 0 for all J ⊂ {1, . . . , n −1},
|J | = k − 1. By Lemma 3, there exists a regular prerank function pr− : C− → [0,r−]∩N. Given a
convex sequence M = (Ms )0≤ s≤ℓ of matrices in C ∗ ⊂C = Rk×n , we construct a prerank function
for M with image contained in [0,r0]: by Lemma 3 this will complete the proof of Lemma 4.

Define vs, j = Ms e j . Let H0 ⊂ Rk be a generic linear hyperplane, defined by a linear form
ω : Rk → R; fix a basis of H0 in order to identify it with Rk−1. Let H1 = ω−1[{1}] be an affine
hyperplane parallel to H0. We may assume that for all s and j , we have ω(vs, j ) ̸= 0. Furthermore,
we may assume that ω(v0, j ) > 0 for j > n −k, which implies ω(vs, j ) > 0 for j > n −k and all s. Set
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ṽs, j = vs, j /ω(vs, j ) so that ṽs, j ∈ H1. For j < n, set ws, j =ω(vs, j+1)(ṽs, j+1 − ṽs, j ) ∈ H0. For a given s,
the sequence of vectors (ws, j )1≤ j ≤n−1 defines a matrix M̃s ∈C− =R(k−1)×(n−1):

M̃s =
 | | |

ws,1 · · · ws, j · · · ws,n−1

| | |

 .

(The normalized vectors ṽs, j , the vectors ws, j and the matrix M̃s will be the main ingredients in
the current proof.) We assume that m•(Ms ) ̸= 0, which implies m•(M̃s ) ̸= 0.

Define the prerank as pr(Ms ) = prI (Ms )+prI I (Ms ) · r−, where

prI (Ms ) = pr−
(
M̃s

)
, prI I (Ms ) = ∑

1≤ j <n

[
ω

(
vs, j

)
ω

(
vs, j+1

)< 0
] · j .

Here we use Iverson notation, i.e., [ω(vs, j )ω(vs, j+1) < 0] equals 1 if ω(vs, j )ω(vs, j+1) < 0 and 0
otherwise. In particular, if j > n −k then [ω(vs, j )ω(vs, j+1) < 0] = 0. We therefore have

prI (Ms ) ∈ [0,r−]∩Z, prI I (Ms ) ∈
[

0,
(n −k +1)(n −k)

2

]
∩Z,

and thus

pr(Ms ) ∈ [0,r0]∩Z.

Next we need to verify that pr(Ms ) is a prerank function. Indeed, recall that there exists a
positive elementary move from Ms to Ms+1, which we call the sth move in M. There are two kinds
of positive elementary moves. Namely, if sign(ω(vs, j )) = sign(ω(vs+1, j )) for all j then we say the
sth move is of type I ; otherwise it is of type II.

First consider s of type II. Let j be such that vs+1, j = vs, j + t vs, j+1, t > 0. By taking H in general
position and introducing, if necessary, intermediate points we may assume that sign(m•(Ms )) =
sign(m•(Ms+1)). For j ′ ̸= j , we have vs+1, j ′ = vs, j ′ implying that sign(ω(vs+1, j ′ )) = sign(ω(vs, j ′ )).
Therefore we have

sign
(
ω

(
vs+1, j

))= sign
(
ω

(
vs+1, j+1

))= sign
(
ω

(
vs, j+1

))=−sign
(
ω

(
vs, j

))
and thus (again using Iverson notation)[

ω
(
vs, j

)
ω

(
vs, j+1

)< 0
]= 1,

[
ω

(
vs+1, j

)
ω

(
vs+1, j+1

)< 0
]= 0.

For j ′ = j −1, we get[
ω

(
vs, j ′

)
ω

(
vs, j ′+1

)< 0
]= 1− [

ω
(
vs+1, j ′

)
ω

(
vs+1, j ′+1

)< 0
]

;

while for j ′ ∉ { j −1, j }, we get[
ω

(
vs, j ′

)
ω

(
vs, j ′+1

)< 0
]= [

ω
(
vs+1, j ′

)
ω

(
vs+1, j ′+1

)< 0
]

.

Thus, in all cases we obtain that prI I (Ms+1) < prI I (Ms ) which implies that pr(Ms+1) ≤ pr(Ms )
independently of the values of prI (Ms ) and prI (Ms+1).

Consider now s of type I so that prI I (Ms ) = prI I (Ms+1). Again, let j be such that vs+1, j =
vs, j + t vs, j+1, t > 0. For j ′ ̸= j , we obtain vs+1, j ′ = vs, j ′ and therefore ṽs+1, j ′ = ṽs, j ′ . Thus

ṽs+1, j =
ω

(
vs, j

)
ω

(
vs+1, j

) ṽs, j +
tω

(
vs, j+1

)
ω

(
vs+1, j

) ṽs, j+1,
ω

(
vs, j

)
ω

(
vs+1, j

) > 0;

implying that ṽs+1, j is an affine combination of ṽs, j and ṽs, j+1. For j ′ ∉ { j − 1, j }, we obtain
ws+1, j ′ = ws, j ′ . Finally, notice that ws+1, j is a positive multiple of ws, j and ws+1, j−1 is a positive
linear combination of ws, j−1 and ws, j . More exactly,

ws+1, j =
ω

(
vs, j

)
ω

(
vs+1, j

) ws, j , ws+1, j−1 =
ω

(
vs+1, j

)
ω

(
vs, j

) ws, j−1 + t ws, j .
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Therefore, up to multiplication by a positive diagonal matrix, the move from M̃s to M̃s+1 is a
positive elementary move. Thus pr−(M̃s+1) ≤ pr−(M̃s ), or, equivalently, prI (Ms+1) ≤ prI (Ms ).
Finally, notice that the inequality m•(Ms )m•(Ms+1) < 0 implies that m•(M̃s )m•(M̃s+1) < 0 and
therefore prI (Ms+1) < prI (Ms ). □

Remark 5. The careful reader might have noticed that, in fact, the proof of Lemma 4 implies a
somewhat sharper claim which is however more difficult to state explicitly. Together with r (2,n) =
2(n − 2), this results in a somewhat stronger statement than Theorem 1. However under such
minor improvement the leading term of (4) will stay the same. In particular, this refinement will
not be sufficient to obtain a linear upper bound for r (3,n) instead of the cubic one given by (4).
(Recall that the Grassmann convexity conjecture claims that r (3,n) = 3(n −3), see Equation (5).)
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