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Abstract. In this article, we communicate with the glimpse of the proofs of new global regularity results for
weak solutions to a class of problems involving fractional (p, q)-Laplacian, denoted by (−∆)s1

p + (−∆)s2
q , for

s2, s1 ∈ (0,1) and 1 < p, q <∞. We also obtain the boundary Hölder continuity results for the weak solutions
to the corresponding problems involving at most critical growth nonlinearities. These results are almost
optimal. Moreover, we establish new Hopf type maximum principle and strong comparison principle. As an
application to these new results, we prove the Sobolev versus Hölder minimizer type result, which provides
the multiplicity of solutions in the spirit of seminal work [2].

Résumé. Dans cette note, nous présentons de nouveaux résultats de régularité Höldérienne des solutions
faibles d’une classe de problèmes faisant intervenir des opérateurs de diffusion fractionnaire non linéaires et
non homogènes de la forme (−∆)s1

p + (−∆)s2
q avec s2, s1 ∈ (0,1) et 1 < p, q <∞. Précisément, nous obtenons

des résultats de régularité intérieure et près du bord pour les solutions faibles de ces problèmes alors que
la nonlinéarité du membre de droite est de croissance critique au sens de l’injection de Sobolev. Ce résultat
étend les principaux résultats de régularité intérieure de [1] où le cas de l’opérateur homogène (−∆)s1

p est
étudié, améliore de façon optimale et complète ceux de [8].

Nous établissons par ailleurs un lemme de Hopf et un principe de comparaison fort pour cette classe de
problèmes. Nous appliquons ensuite ces résultats pour démontrer la propriété que les minimiseurs locaux
de l’énergie associée dans Cα(Ω) avec α ∈ (0, s1) sont aussi minimiseurs locaux dans W

s1 ,p
0 (Ω) dans l’esprit

de l’article pionnier [2]. Ceci conduit à des nouveaux résultats de muliplicité de solutions pour ces problèmes
non locaux et fortement non homogènes.
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1. Introduction

In this note we study the Hölder continuity results and maximum principle for weak solutions to
the following problem:

(−∆)s1
p u + (−∆)s2

q u = f in Ω, (P )

where Ω ⊂ RN is a bounded domain with C 1,1 boundary, 2 ≤ q, p < ∞, 0 < s2 ≤ s1 < 1 and
f ∈ L∞

loc(Ω). The fractional p-Laplace operator (−∆)s
p is defined as

(−∆)s
p u(x) = 2 lim

ε→0

ˆ
RN \Bε(x)

|u(x)−u(y)|p−2(u(x)−u(y))

|x − y |N+ps
dy.

The leading differential operator, (−∆)s1
p + (−∆)s2

q , in problem (P ) is known as the fractional
(p, q)-Laplacian. The operator is non-homogeneous in the sense that for any t > 0, there does
not exist any σ ∈ R such that ((−∆)s1

p + (−∆)s2
q )(tu) = tσ((−∆)s1

p u + (−∆)s2
q u) holds for all u ∈

W s1,p (Ω)∩W s2,q (Ω).
The regularity results and maximum principles for the equations involving the homogeneous

nonlocal operators are well known, see [1, 4, 9, 10, 12], whereas the regularity issues for the prob-
lems involving the fractional (p, q)-Laplacian is still developing and only few continuity results
are available, see for instance, [6, 7]. The strong non-homogeneity, in this case, feature creates an
additional difficulty while handling the distance function in order to prove the boundary behav-
ior of the weak solutions.

In the present work, we obtain interior regularity results for local weak solutions, which
improves the regularity results of [6] for larger class of exponents. Our proof of the improved local
Hölder continuity result (see Theorem 3) relies on Moser’s iteration technique to obtain suitable
embedding for Besov spaces into the Hölder spaces. Here, we stress that we do not assume any
order relation on the exponents p and q . Subsequently, we establish the asymptotic behavior
of the fractional q-Laplacian ((−∆)s2

q ) of the distance function d s1 near the boundary, which in
turn gives us almost optimal (and optimal in some cases, see Remark 12) boundary behavior
of the weak solution. This coupled with the interior Hölder regularity result of Theorem 3
provides the almost optimal Hölder continuity result. As a consequence of this, we obtain the
Hopf type maximum principle for non-negative solutions. Additionally, under the restriction
that the fractional q-Laplacian of the subsolution is bounded from below, we prove a strong
comparison principle. In the last section, as an application to these results, we obtain the
multiplicity results for problem involving the subcritical nonlinearity by establishing Sobolev
versus Hölder type minimization result for nonlinearities with atmost critical growth. Complete
proofs of the regularity main results and other applications (in particular to singular problems)
can be found in [6].

2. Preliminaries and main results

We denote [t ]p−1 := |t |p−2t , for all p > 1 and t ∈ R. For (`, s) ∈ {(p, s1), (q, s2)} and for S1 × S2 ⊂
RN ×RN , we set

A`(u, v,S1 ×S2) =
ˆ

S1×S2

[u(x)−u(y)]`−1(v(x)− v(y))

|x − y |N+`s
dxdy.

We define the distance function as d(x) := dist(x,RN \Ω) and a neighborhood of the boundary as
Ω% := {x ∈Ω : d(x) < %}, for %> 0.

We will follow the notation p∗
s1

:= N p/(N − ps1) if N > ps1, otherwise an arbitrarily large
number.
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2.1. Function Spaces

For E ⊂RN , p ∈ [1,∞) and s ∈ (0,1), the fractional Sobolev space W s,p (E) is defined as

W s,p (E) := {
u ∈ Lp (E) : [u]W s,p (E) <∞}

endowed with the norm ‖u‖W s,p (E) := ‖u‖Lp (E) + [u]W s,p (E), where

[u]W s,p (E) :=
(ˆ

E

ˆ
E

|u(x)−u(y)|p
|x − y |N+sp

dxdy

)1/p

.

For any (proper) subset E of RN , we have

W s,p
0 (E) := {

u ∈W s,p (RN ) : u = 0 in RN \ E
}

which is a uniformly convex Banach space when equipped with the norm [ · ]W s,p (RN ) (hereafter, it
will be denoted by ‖·‖W

s,p
0 (E)). Next, we define

W (E) :=W s1,p (E)∩W s2,q (E)

equipped with the norm ‖·‖W (E) := ‖·‖W s1,p (E) + ‖·‖W s2,q (E). The space W0(E) is defined anal-
ogously. We say that u ∈ Wloc(E) if u ∈ W (E ′), for all E ′ b E . Note that for 1 < q ≤ p < ∞,
0 < s2 < s1 < 1 and the domain E with Lipschitz boundary, W s1,p

0 (E) coincides with the space
Xp,s1 , as defined in [8]. Indeed, from [8, Lemma 2.1], we have

‖u‖W
s2,q

0 (E) ≤C‖u‖W
s1,p

0 (E), for all u ∈W s1,p
0 (E),

for some C =C (|E |, N , p, q, s1, s2) > 0. Additionally, we define

W̃ s,p (Ω) :=
{

u ∈ Lp
loc(RN ) : ∃Ω′cΩ s.t. u ∈W s,p (Ω′),

ˆ
RN

|u(x)|p−1

(1+|x|)N+ps
dx <∞

}
.

Definition 1. Let u :RN →R be a measurable function and 0 < m,α<∞. We define the tail space
and the nonlocal tail, respectively, as below:

Lm
α (RN ) =

{
u ∈ Lm

loc(RN ) :

ˆ
RN

|u(x)|mdx

(1+|x|)N+α <∞
}

, Tm,α(u; x0,R) =
(
Rα

ˆ
BR (x0)c

|u(y)|mdy

|x0 − y |N+α

) 1
m

.

Set Tm,α(u;R) = Tm,α(u;0,R). We will follow the notation Tp−1(u; x,R) := Tp−1,s1p (u; x,R) and
Tq−1(u; x,R) := Tq−1,s2q (u; x,R), unless otherwise stated.

2.2. Statements of main results

In this subsection, we state our main results. We start with the definition of local weak solution.

Definition 2 (Local weak solution). A function u ∈Wloc(Ω)∩Lp−1
s1p (RN )∩Lq−1

s2q (RN ) is said to be a
local weak solution of problem (P ) if

Ap (u,φ,RN ×RN )+ Aq (u,φ,RN ×RN ) =
ˆ
Ω

f φdx,

for all φ ∈W (Ω) with compact support contained in Ω.

Our first main theorem is the following higher local Hölder continuity result.

Theorem 3. Suppose that (q − p + 2)s2 < 2. Let u ∈ Wloc(Ω)∩ Lp−1
s1p (RN )∩ Lq−1

s2q (RN ) be a locally

bounded local weak solution to problem (P ). Then, for every σ ∈ (0,Θ), u ∈C 0,σ
loc (Ω), where

Θ≡Θ(p, s1, q, s2) =
{

min{1, ps1/(p −1)} if qs2 < ps1 +2(1− s1),

min{1, qs2/(q −1)} if ps1 < qs2.
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Moreover, for B2R0
(x0)bΩ with R0 ∈ (0,1), there holds

[u]Cσ(BR̄0/2(x0)) ≤C
(
K2(u)(‖u‖W s1,p (BR̄0

(x0)) +1)
) j∞

where C =C (N , s1, p, s2, q,σ) > 0 is a constant and K2 is given by

K2 = 1+Tp−1(u; x0,R0)p−1 +Tq−1(u; x0,R0)q−1 +‖u‖
(`1+ j∞)(`1−1)

`1−2

L∞(BR̄0
(x0)) +‖u‖q−1

L∞(BR0 ) +‖ f ‖L∞(BR̄0
(x0))

with `1 = max{p, q} and j∞ ∈N depends only on N ,σ and (p, s1) or (q, s2).

Remark 4. We remark that for 1 < q ≤ p < ∞, the conclusion of Theorem 3 holds for some
σ< min

{ ps1
p−1 , qs2

q−1

}
. See Theorem 2.1 and Corollary 2.1 of [7] for details.

Next, we have the following global Hölder continuity result.

Theorem 5. Suppose that (q − p + 2)s2 < 2. Let u ∈ W0(Ω) be a solution to problem (P ) with
f ∈ L∞(Ω). Then, for every σ ∈ (0, s1), u ∈C 0,σ(Ω). Moreover,

‖u‖Cσ(Ω) ≤C , (1)

where C = C (Ω, N , p, s1, q, s2,σ,‖ f ‖L∞(Ω)) > 0 is a constant (which depends as a non-decreasing
function of ‖ f ‖L∞(Ω)).

Corollary 6. Suppose that 2 ≤ q ≤ p < ∞. Let u ∈ W s1,p
0 (Ω) be a solution to problem (P ) with

f (x) := f (x,u), a Carathéodory function satisfying | f (x, t )| ≤ C0
(
1+ |t |p∗

s1
−1), where C0 > 0 is a

constant. Then, u ∈C 0,σ(Ω), for all σ ∈ (0, s1), and (1) holds.

Now, we mention our strong comparison theorem.

Theorem 7 (Strong Comparison principle). Suppose that 1 < q ≤ p <∞. Let u, v ∈ W s1,p
0 (Ω)∩

C (Ω) be such that 0 < v ≤ u in Ω with u 6≡ v, and for some K ,K1 > 0, the following holds:

(−∆)s1
p v + (−∆)s2

q v ≤ (−∆)s1
p u + (−∆)s2

q u ≤ K and (−∆)s2
q v ≥−K1, weakly in Ω.

Then u > v in Ω. Moreover, for s1 6= q ′s2, u−v
d s1 ≥C > 0 in Ω.

3. Hölder regularity results

We first recall some boundedness results.

Proposition 8 (Local boundedness). Suppose 1 < q ≤ p < ∞. Let u ∈ W s1,p
loc (Ω) ∩ Lp−1

s1p (RN ) ∩
Lq−1

s2q (RN ) be a local weak solution to the problem (P ). Then, u ∈ L∞
loc(Ω), and the following holds

‖u‖L∞(Br /2(x0)) ≤C

( 
Br

|u|p dx

)1/p

+Tp−1

(
u; x0,

r

2

)
+Tq−1

(
u; x0,

r

2

) q−1
p−1 +‖ f ‖1/(p−1)

L∞(Br ) +1,

where C (N , p, q, s1) > 0 is a constant.

Proceeding similar to [3, Theorem 3.3] and noticing that the terms corresponding to the
fractional q-Laplacian will be non-negative (using the similar inequality, as in the fractional p-
Laplacian, for different Gβ in there), we can prove the following boundedness property.

Theorem 9. Let 1 < q ≤ p < ∞. Let u ∈ W s1,p
0 (Ω) be a weak solution to problem (P ) with

f (x) := f (x,u) satisfying | f (x, t )| ≤ C0(1+ |t |p∗
s1
−1), for all t ∈ R and a.e. x ∈ Ω, where C0 > 0 is a

constant. Then, u ∈ L∞(Ω).

Remark 10. We remark that, as in [3, Remark 3.4], the quantity ‖u‖L∞(Ω) depends only on the
constants C0, N , p, s1, ‖u‖W

s1,p
0 (Ω) and the constant M > 0 satisfying

´
{|u|≥M } |u|p

∗
s1 < ε, for given

ε ∈ (0,1).
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Corollary 11. Suppose that 1 < q ≤ p <∞. Let uε ∈ W s1,p
0 (Ω), for ε ∈ (0,1), be the family of weak

solution to problem (P ) with fε(x) := fε(x,uε) satisfying | fε(x, t )| ≤C0
(
1+|t |p∗

s1
−1), for all t ∈R and

a.e. x ∈Ω, where C0 is independent of ε. Assume that the sequence
{‖uε‖W

s1,p
0 (Ω)

}
ε is bounded and

uε→ u0 in Lp∗
s1 (Ω), as ε→ 0. Then the sequence {‖uε‖L∞(Ω)}ε is also bounded.

3.1. Interior regularity

Let u :RN →R be a measurable function and h ∈RN , then we define

uh(x) = u(x +h), δhu(x) = uh(x)−u(x), δ2
hu(x) = δh(δhu(x)) = u2h(x)+u(x)−2uh(x).

For 1 ≤ m <∞ and u ∈ Lm(RN ), we set

[u]
B
β,m
∞ (RN )

:= sup
|h|>0

∥∥∥∥∥δ
2
hu

|h|β

∥∥∥∥∥
Lm (RN )

for β ∈ (0,2).

Now, we prove our improved interior Hölder regularity result for local weak solutions.

Sketch of the proof of Theorem 3. We first consider the case σ ∈ (0, s1). For qs2 < ps1 +2(1− s1),
we claim that, for every 4h0 < R ≤ R0 −5h0, there holds:

sup
0<|h|<h0

∥∥∥∥∥ δ
2
hu

|h|s1

∥∥∥∥∥
m+1

Lm+1(BR−4h0 )

≤C K2(u,m)

 sup
0<|h|<h0

∥∥∥∥∥ δ
2
hu

|h|s1

∥∥∥∥∥
m

Lm (BR+4h0 )

+1

 , (2)

where m ≥ p, h0 = R0/10, C =C (N ,h0, p,m, s1) > 0 (which depends inversely on h0) and

K2(u,m,R0) := 1+Tp−1(u;R0)p−1 +Tq−1(u;R0)q−1 +‖u‖
m(p−1)

p−2

L∞(BR0 ) +‖u‖q−1
L∞(BR0 ) +‖ f ‖L∞(BR0 ).

Indeed, for 2 ≤ q ≤ p < ∞, (2) is proved in [6, Proposition 3.9]. For the other case, we set
S1 = {(x, y) ∈ BR ×BR : |x − y | ≤ 1} and S2 = (BR ×BR ) \ S1. Then, the proof, in this case, runs
similarly by noting the following (using the same notations of the Proposition),(Ï

S1

+
Ï

S2

) |u(x)−u(y)|q−2

|x − y |N+qs2

∣∣∣η p
2 (x)−η p

2 (y)
∣∣∣2 |δhu(x)|β+1

|h|1+νβ dxdy

≤C‖u‖q−p+1
L∞(BR0 )

Ï
S1

|u(x)−u(y)|p−2

|x − y |N+ps1+α−2

|δhu(x)|β
|h|1+νβ dxdy +C‖u‖q−1

L∞(BR0 )

ˆ
BR

|δhu(x)|β
|h|1+νβ dx

≤C K2(u)[u]m

W
s1(p−2−ε)

p−2 ,m
(BR+h0 )

+C K2(u)

ˆ
BR

|δhu(x)|
βm

m−p+2

|h|
(1+νβ)m
m−p+2

dx +1


where we have used Hölder’s and Young’s inequality together with the fact that qs2 ≤ ps1+αwith
α< 2(1− s1) and ε ∈ (0, 2−α

s1
−2). Thus, Ĩ 11(q) (hence I11(q)) is estimated as similar to Ĩ 11(p). Set

s1 −σ> N

p + i∞
, h0 = R0

64i∞
for some i∞ ∈N

and define the following sequences

mi = p + i , Ri = 7R0

8
−4(2i +1)h0 for all i = 0, . . . , i∞.

We take ψ ∈C∞
c (B(5R0)/8) such that

0 ≤ψ≤ 1, ψ= 1 in BR0/2, |∇ψ| and |∇2ψ| ≤C .
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Using the discrete Leibniz rule on δ2
h , we obtain

[uψ]
B

s1,mi∞∞ (RN )
≤C

 sup
0<|h|<h0

∥∥∥∥∥ δ
2
hu

|h|s1

∥∥∥∥∥
Lmi∞ (B(3R̄0)/4)

+‖u‖Lmi∞ (B(3R̄0)/4)

 .

The first term of the right hand side on the above expression is estimated on account of (2).
Therefore, employing the embedding result of the Besov spaces into the Hölder spaces, we get
that u ∈ C 0,σ

loc (Ω), for all σ ∈ (0, s1). For the case 2 ≤ p < q and ps1 < qs2, we proceed exactly as
above by interchanging the role of (p, s1) with (q, s2) and the corresponding spaces. In this case,
Ĩ 11(p) is estimated as above by choosing ε> 0 such that ε< 2

s2
−q +p −2.

The higher regularity result follows by using the above almost s1 (or s2)-Hölder continuity re-
sult and proceeding on the similar lines of the proof of [1, Theorem 5.2] (with minor modification
as in the proof above). �

3.2. Boundary regularity and maximum principle

In this subsection, we prove the boundary behavior of the weak solutions. For α,ρ > 0 and κ≥ 0,
we set

de (x) =


d(x) if x ∈Ω,

−d(x) if x ∈ (Ωc )ρ ,

−ρ otherwise,

wρ(x) =
{

(de (x)+κ1/α)α+ if x ∈Ω∪ (Ωc )ρ ,

0 otherwise,

where (Ωc )ρ := {x ∈Ωc : dist(x,∂Ω) < ρ}.

Sketch of the proof of Theorem 5. We proceed as below.

(a) By flattening the boundary ∂Ω and using suitable C 1,1(RN ,RN ) diffeoemorphisms, we
prove that: there exist κ1,%1 > 0 such that for all κ ∈ [0,κ1) and % ∈ (0,%1),

(−∆)s1
p wρ

{
≥C1(d +κ1/α)−(ps1−α(p−1)) for all α ∈ (0, s1),

= h for all α ∈ [s1,1) with α 6= p ′s1
weakly in Ω%,

where C1 > 0 is a constant and h ∈ L∞(Ω%1 ) (both are independent of κ ∈ (0,1)). Further,
for all κ > 0 and α ∈ (0, s1), wρ ∈ W̃ s1,p (Ω%1 ), and for k = 0, wρ ∈ W̃ s1,p (Ω%1 ), whenever
α> s1 −1/p.

(b) For Γ > 1, max{s1 −1/p, s2 −1/q} < α < s1 and % > 0 (sufficiently small), we have, weakly
in Ω%,

(−∆)s1
p (Γdα)+ (−∆)s2

q (Γdα) ≥C5Γ
p−1d−(ps1−α(p−1)) −Γq−1‖h‖L∞(Ω%)

≥C6Γ
p−1d−(ps1−α(p−1)).

Then, employing the weak comparison principle inΩ%, for suitable Γ, we get that u ≤ Γdα

in Ω. Subsequently, we perform a similar process for −u also.
(c) The proof of the Hölder continuity can be completed by taking into account Theorem 3

and the boundary behavior presented in Step (b). �

Remark 12. We remark that in Theorem 5, the choice of σ can be optimal (that is, σ= s1) for the
case s1 = s2 or s1 > q ′s2. Indeed, for s1 = s2, we can show that the barrier function as constructed
in [9, Lemma 4.3] satisfies (−∆)s1

q w ≥ 0 weakly in Br (eN )\B1. Thus, for appropriate choice ofΓ> 1,
the Step (b) above can be improved. Similar arguments apply to the case s1 > q ′s2 with a careful
reading of the proof of [6, Lemma 3.12].
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Proof of Corollary 6. When f (x) := f (x,u), on account of Theorem 9 and Remark 10, we observe
that

| f (x,u)| ≤C0
(
1+|u|p∗

s1
−1)≤C0

(
1+‖u‖p∗

s1
−1

L∞(Ω)

)
=: K > 0.

Thus, the required result, in this case, follows from Theorem 5. �

Next we state our strong maximum principle. The proof is contained in [7] and done by proving
that continuous weak super-solutions are viscosity super-solutions.

Theorem 13. Suppose that 1 < q ≤ p <∞. Let g ∈C (R)∩BVloc(R) and let u ∈W s1,p
0 (Ω)∩C (Ω) be

such that

(−∆)s1
p u + (−∆)s2

q u + g (u) ≥ g (0) weakly in Ω.

Further, assume that u 6≡ 0 with u ≥ 0 in Ω. Then, there exists c1 > 0 such that u ≥ c1 dist( · ,∂Ω)s1

in Ω.

Sketch of the proof of Theorem 7. By continuity and the fact that u 6≡ v , we can find x0 ∈ Ω,
ρ,ε> 0 such that Bρ(x0) ⊂Ω and

sup
Bρ (x0)

v < inf
Bρ (x0)

u −ε/2. (3)

For Γ> 1 and for all x ∈RN , we define

wΓ(x) =
{
Γv(x) if x ∈ B c

ρ/2(x0)

u(x) if x ∈ Bρ/2(x0).

Taking into account the nonlocal super-position principle [8, Lemma 2.5], we have, weakly in
Ω\ Bρ(x0),

(−∆)s1
p wΓ+ (−∆)s2

q wΓ ≤ (−∆)s1
p u + (−∆)s2

q u + (Γp−1 −1)K + (Γp−1 −Γq−1)K1 −C1ε
p−1 −C2ε

q−1.

We can choose Γ> 1 (close to 1) to employ the weak comparison principle ([8, Proposition 2.6]),
consequently, we get wΓ ≤ u in Ω. Hence, using (3) and Theorem 13, we obtain u ≥ Γv > v in Ω,
and u−v

d s1 ≥ (Γ−1)v
d s1 ≥C > 0 in Ω. �

4. Applications

We consider the problem (P ) with the choice f (x) := f (x,u), where f : Ω × R → R is a
Carathéodory function satisfying the following:

(A1) | f (x, t )| ≤ C0(1 + |t |r−1), for a.a. x ∈ Ω and all t ∈ R, where C0 > 0 is a constant and
r ∈ (1, p∗

s1
].

(A2) For a.a. x ∈Ω, f (x, t )t ≤ 0, for all t ∈ [−ς,ς] (ς> 0) and f (x, t )t ≥−c1t p (c1 > 0) for all t ∈R.
(A3) For F (x, t ) := ´ t

0 f (x,τ)dτ, lim|t |→∞ F (x,t )
|t |p =∞ uniformly for a.a. x ∈Ω.

(A4) Let r ∈ (p, p∗
s1

), there exists ν ∈ (
(r −p)max{N /(ps1),1}, p∗

s1

)
such that

lim
|t |→∞

f (x, t )t −pF (x, t )

|t |ν > 0 uniformly a.e. x ∈Ω.

One example for f satisfying (A1)–(A4) is given by f (x,u) = −c1|t |p−2t + |t |r−2t . The Euler
functional J : W s1,p

0 (Ω) →R associated to problem (P ) is given by

J (u) = 1

p
‖u‖p

W
s1,p

0 (Ω)
+ 1

q
‖u‖q

W
s2,q

0 (Ω)
−
ˆ
Ω

F (x,u)dx.

First we prove the following Sobolev versus Hölder minimizer result.
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Theorem 14. Suppose that 2 ≤ q ≤ p <∞ and (A1) holds. Let u0 ∈W s,p
0 (Ω), then for all α ∈ (0, s1),

the following are equivalent

(i) there exists σ> 0 such that J (u0 + v) ≥J (u0) for all v ∈W s1,p
0 (Ω), ‖v‖W

s1,p
0 (Ω) ≤σ,

(ii) there exists ω > 0 such that J (u0 + v) ≥ J (u0) for all v ∈ W s1,p
0 (Ω) ∩ C 0,α(Ω) with

‖v‖Cα(Ω) ≤ω.

Proof. From (ii) and the density argument, we get that 〈J ′(u0),φ〉 = 0 for all φ ∈ W s1,p
0 (Ω).

Consequently, Theorem 5 implies that u0 ∈ C 0,α(Ω). To prove (i), on the contrary assume that
there exists ũn ∈W s1,p

0 (Ω) such that ũn → u0 in W s1,p
0 (Ω) and J (ũn) <J (u0) for all n ∈N. Set

K (v) = 1

p∗
s1

ˆ
Ω

|v |p∗
s1 , εn :=K (ũn −u0) and Sn := {

u ∈W s1,p
0 (Ω) : K (u −u0) ≤ εn

}
.

By the continuous embedding W s1,p
0 (Ω) ,→ Lp∗

s1 (Ω), we see that εn → 0 and hence Sn is a
closed convex subset of W s1,p

0 (Ω). Next, for all t ∈ R and k > 0, set [t ]k = sign(t )min{|t |,k} and
fk (x, t ) := f (x, [t ]k ) with Fk (x, t ) := ´ t

0 fk (x,τ)dτ. Then, on account of the Lebesgue dominated
convergence theorem, for fixed n ∈N and σn ∈ (0,J (u0)−J (ũn)), there exists kn > ‖u0‖L∞(Ω)+1
such that ∣∣∣∣ˆ

Ω

Fn(x, ũn)dx −
ˆ
Ω

F (x, ũn)dx

∣∣∣∣<σn ,

where Fn = Fkn . Furthermore, we define

Jn(u) = 1

p
‖u‖p

W
s1,p

0 (Ω)
+ 1

q
‖u‖q

W
s2,q

0 (Ω)
−
ˆ
Ω

Fn(x,u)dx.

From the structure of the function Fn , it is clear that there exists a minimizer un ∈ Sn for Jn .
Moreover, by the choice of σn and kn , we see that

Jn(un) ≤Jn(ũn) ≤J (ũn)+σn <J (u0) =Jn(u0). (4)

It is clear that Jn is Gǎteaux differentiable at un . Therefore, there exists µn ≤ 0 such that

(Pn)

{
(−∆)s1

p un + (−∆)s2
q un = fn(x,un)+µn |un −u0|p

∗
s1
−2(un −u0) in Ω,

un = 0 in RN \Ω.

If infn µn := l >−∞, then from the fact that u0 ∈ L∞(Ω), we have

| fn(x,un)+µn |un −u0|p
∗
s1
−2(un −u0)| ≤C (1+|un |p

∗
s1
−1).

If infn µn :=−∞, there exists M > 0 (independent of n) such that

fn(x, t )+µn |t −u0(x)|p∗
s1
−2(t −u0(x)) < 0 for a.a. x ∈Ω, and all t ∈ (M ,∞).

This implies that un ≤ M for all n ∈N. Further, since J ′(u0) = 0, we take w = |un −u0|κ−1(un −u0)
as a test function and using [11, Lemma 2.3] (consequently, the difference of terms involving Aq ,
below, is non-negative), we have

(Cκp−1)−1‖(un −u0)
p−1+κ

p ‖p

W
s1,p

0 (Ω)
≤ Ap (un , [un −u0]κ)− Ap (u0, [un −u0]κ)

+ Aq (un , [un −u0]κ)− Aq (un , [un −u0]κ)

=
ˆ
Ω

( fn(x,un)− f (x,u0))[un −u0]κ+µn

ˆ
Ω

|un −u0|p
∗
s1
−1+κ.

Noting the uniform bound ‖un‖L∞(Ω) ≤ M and using Hölder’s inequality, and subsequently
passing to the limit κ→∞, we obtain

−µn‖un −u0‖
p∗

s1
−1

L∞(Ω) ≤C
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where C > 0 is a constant independent of n. Thus, in all the cases, we obtain∣∣∣ fn(x,un)+µn |un −u0|p
∗
s1
−2(un −u0)

∣∣∣≤C
(
1+|un |p

∗
s1
−1) for all n ∈N.

Moreover, from the construction of un , it is clear that {‖un‖W
s1,p

0 (Ω)}n remains bounded. Then,
applying Corollary 11, we have ‖un‖L∞(Ω) ≤ C , where C > 0 is a constant independent of n.
Consequently, from Corollary 6, we deduce that ‖un‖Cα(Ω) ≤ C , for some positive constant C

independent of n, and all α ∈ (0, s1). Therefore, by Arzela–Ascoli’s theorem, un → u0 in C 0,α(Ω),
for all α< s1. Thus, for sufficiently large n, we have ‖un −u0‖Cα(Ω) ≤ω, and since un is uniformly
bounded in L∞(Ω), Jn(un) = J (un), for sufficiently large n. This along with (4) contradicts the
fact that u0 is a minimizer for J in W s1,p

0 (Ω)∩C 0,α(Ω).
The proof of the other implication is standard. �

Theorem 15. Suppose that 2 ≤ q ≤ p < ∞. Then, there exist at least three non-trivial solutions
u ∈W s1,p

0 (Ω)∩C 0,α(Ω), for all α ∈ (0, s1), to problem (P ) with f (x) := f (x,u) satisfying (A1)–(A4).
Moreover, if u is non-negative and s1 6= q ′s2, then u ≥ cd s1 in Ω.

Sketch of the proof. We consider the truncation of the nonlinear term as f±(x, t ) = f (x,±t±) with
F±(x, t ) := ´ t

0 f±(x,τ)dτ and the corresponding Euler functionals as J±. By using Theorem 14, we
can prove that 0 is a local minimizer for J+ in W s1,p

0 (Ω) topology and it satisfies the mountain
pass geometry. Thus, we obtain a positive solution u+ to problem (P ). Similar procedure yields a
negative solution u−. Subsequently, by using topological tools (such as critical groups and Morse
theory, see [5] for the linear operator case), we establish a third solution of undetermined sign
nature. �
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