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1. Introduction

Let P denote the set of all primes. In 1950, Erdős [5] made the following anecdotal conjecture:

Conjecture 1 (Erdős Conjecture.). Let c be any constant and x sufficiently large,

a1 < a2 < · · · < at É x, t > log x.

Then there exists an integer n so that the number of solutions of n = p + ai (p ∈ P ,1 ≤ i ≤ t ) is
greater than c.

Erdős [5] himself proved this conjecture for the case ai = 2i , which gives an affirmative answer
to a question of Turán. In a former note [3], the second author proved this conjecture for the
case ai | ai+1 with its quantitative form, which is a slight generalization of Erdős’ result. In a
subsequent note, the second author and Zhou [4] proved the conjecture for the case ai = 2pi ,
where pi is the i -th prime. This case was conjectured by the first author [1] years ago. Shortly
after, the authors of the present note recognized that the complete proof of Erdős’ conjecture
actually follows directly from a new achievement of the distributions of the primes established
by Maynard–Tao [7, 8]. We keep record here as the closure of this longstanding conjecture.
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In this note, the following general results are proved. The Erdős Conjecture follows from
Corollary 3.

Theorem 2. For any ` distinct integers a1, . . . , a`, there are infinitely many positive integers n such
that the number of solutions of n = p +ai (p ∈P ,1 ≤ i ≤ `) is greater than

1

8
log`−1.6.

From Theorem 2, we immediately have the following corollaries:

Corollary 3. Let x ≥ 2 and
a1 < a2 < · · · < at É x, t > log x.

Then there exist infinitely many integers n so that the number of solutions of n = p +ai (p ∈P ,1 ≤
i ≤ t ) is greater than

1

8
loglog x −1.6.

Corollary 4. Let A = {ai }∞i=1 be an infinite set of integers and let

fA (n) = #
{(

p, a
)

: n = p +a, p ∈P , a ∈A
}

,

then

limsup
n→+∞

fA (n) =+∞.

2. Proofs

A set {b1, . . . , bk } is called an admissible set if there is no a fixed integer d > 1 such that d |
(n + b1) · · · (n + bk ) for all integers n. It is equivalent that for any prime p, {b1, . . . , bk } modulo
p occupies at most p −1 residues. We begin with the following deep result for the distribution of
the primes due to Maynard–Tao ( [8, Theorem 16]). We will use the following quantitative result
which was given by Granville [6] basing on Maynard [7].

Lemma 5. [6, Theorem 6.2] For any given integer m Ê 2, let k be a positive integer with k logk >
e8m+4. For any admissible set {b1, . . . , bk }, there are infinitely many integers n such that at least m
of n +b1, . . . , n +bk are prime numbers.

Lemma 6 ( [2, Lemma 3]). We have∏
3≤p ≤x

(
1− 1

p

)−1

≤ 0.923log x, x ≥ 74,

where the product is taken over all primes p with 3 ≤ p ≤ x.

Proof of Theorem 2. If `≤ e12, then
1

8
log`−1.6 ≤ 0,

and Theorem 2 is trivial. In the following, we assume that `> e12.
Let pi be the i th prime. Assume that a1, . . . , a` are ` distinct integers. For p1, one of residues

modulo p1 contains at most b`/p1c of a1, . . . , a`. So at least `−b`/p1c of a1, . . . , a` occupy at most
p1 −1 residues modulo p1. Let `0 = ` and `1 = `−b`/p1c. Without loss of generality, we assume
that a1, . . . , a`1 occupy at most p1−1 residues modulo p1. Similarly, without loss of generality, we
may assume that a1, . . . , a`2 occupy at most p2 −1 residues modulo p2, where `2 = `1 −b`1/p2c.
Continuing this process, at the t th step, we may assume that a1, . . . , a`t occupy at most pt − 1
residues modulo pt , where `t = `t−1−b`t−1/pt c. Since `≥ `1 ≥ ·· · and p1 < p2 < ·· · , there exists t
with `t < pt+1. Let s be the least integer with `s < ps+1. It is clear that {a1, . . . , a`s } is an admissible
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set. Let m be largest integer with `s log`s > e8m+4. If m ≥ 2, then by Lemma 5, there are infinitely
many integers n such that at least m of n − a1, . . . , n − a`s are prime numbers. Since there are
infinitely many primes, it follows that there are infinitely many integers n such that at least one
of n −a1, . . . , n −a`s is prime number. So the conclusion is also true for m ≤ 1.

Now we establish an explicit relation between ` and m.
Since

`i+1 = `i −
⌊

`i

pi+1

⌋
≥ `i − `i

pi+1
= `i

(
1− 1

pi+1

)
, i = 0,1, . . . ,

it follows from the definition of s that

ps+1 > `s ≥ `s−1

(
1− 1

ps

)
≥ ·· · ≥ `

(
1− 1

p1

)
· · ·

(
1− 1

ps

)
> e12

(
1− 1

p1

)
· · ·

(
1− 1

ps

)
.

This cannot hold for s ≤ 100. So ps ≥ p100 = 541. Thus, by Lemma 6,

`s ≥ `

(
1− 1

p1

)
· · ·

(
1− 1

ps

)
≥ `

2
· 1

0.923log ps
= `

1.846log ps
.

By the definition of s, ps ≤ `s−1. Thus,

`s ≥
(
1− 1

ps

)
`s−1 ≥

(
1− 1

ps

)
ps = ps −1.

It follows that

`s ≥ `

1.846log ps
≥ log540

1.846log541

`

log
(
ps −1

) > 0.54`

log`s
.

So `s log`s ≥ 0.54`. In view of the definition of m,

e8m+12 ≥ `s log`s ≥ 0.54`.

So

m ≥ 1

8
log`− 12

8
+ log0.54

8
> 1

8
log`−1.6.

This completes the proof of Theorem 2. �

Proof of Corollary 3. Assume that

1 ≤ a1 < ·· · < at ≤ x, t > log x.

By Theorem 2, there are infinitely many positive integers n such that the number of solutions of
n = p +ai (p ∈P ,1 ≤ i ≤ t ) is greater than

1

8
log t −1.6 > 1

8
loglog x −1.6.

This completes the proof of Corollary 3. �

Proof of Corollary 4. By Theorem 2, there is a positive integer n such that the number of solu-
tions of n = p +ai (p ∈P ,1 ≤ i ≤ `) is greater than 1

8 log`−1.6. That is, fA (n) ≥ 1
8 log`−1.6. Now

Corollary 4 follows immediately. �

3. Remarks

It is known that there is a positive proportion of positive odd numbers that can be represented as
p+2k with k ∈N and p ∈P (See Romanoff [9]) and there is an arithmetical progression of positive
odd numbers none of which can be represented as p +2k with k ∈N and p ∈P (see Erdős [5]).

Since one can take k ≤ c exp((4 − 28
157 )m) for some positive constant c in Lemma 5 (see [8,

Theorem 16]), it follows that 1
8 in Theorem 2 and Corollary 3 can be improved to any constant

less than (4− 28
157 )−1.
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