Comptes Rendus

Mathématique

Marian Bocea, Mihai Mihăilescu and Denisa Stancu-Dumitru
The Monotonicity of the Principal Frequency of the Anisotropic p-Laplacian

Volume 360 (2022), p. 993-1000
https://doi.org/10.5802/crmath. 348
(G) Br \quad This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

MERSENNE
Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l'édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569

The Monotonicity of the Principal Frequency of the Anisotropic p-Laplacian

Marian Bocea a, Mihai Mihăilescu*, ${ }^{*, c}$ and Denisa Stancu-Dumitru ${ }^{d}$

${ }^{a}$ Division of Mathematical Sciences, National Science Foundation, 2415 Eisenhower Avenue, Alexandria, VA 22314 U.S.A.
${ }^{b}$ Department of Mathematics, University of Craiova, 200585 Craiova, Romania
c "Gheorghe Mihoc - Caius Iacob" Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, 050711 Bucharest, Romania
${ }^{d}$ Department of Mathematics and Computer Science, Politehnica University of Bucharest, 060042 Bucharest, Romania
E-mails: mbocea@nsf.gov (M. Bocea), mmihailes@yahoo.com (M. Mihăilescu), denisa.stancu@yahoo.com (D. Stancu-Dumitru)

Abstract

Let $D>1$ be a fixed integer. Given a smooth bounded, convex domain $\Omega \subset \mathbb{R}^{D}$ and $H: \mathbb{R}^{D} \rightarrow[0, \infty)$ a convex, even, and 1-homogeneous function of class $C^{3, \alpha}\left(\mathbb{R}^{D} \backslash\{0\}\right)$ for which the Hessian matrix $D^{2}\left(H^{p}\right)$ is positive definite in $\mathbb{R}^{D} \backslash\{0\}$ for any $p \in(1, \infty)$, we study the monotonicity of the principal frequency of the anisotropic p-Laplacian (constructed using the function H) on Ω with respect to $p \in(1, \infty)$. As an application, we find a new variational characterization for the principal frequency on domains Ω having a sufficiently small inradius. In the particular case where H is the Euclidean norm in \mathbb{R}^{D}, we recover some recent results obtained by the first two authors in $[3,4]$.

Mathematical subject classification (2010). 35P30, 47J10, 49R05, 49J40, 58C40.
Funding. The work of the first author was supported by the National Science Foundation under the IR/D Program. The third author has been partially supported by CNCS-UEFISCDI Grant No. PN-III-P1-1.1-TE-2019-0456.

Manuscript received 5 November 2021, accepted 26 February 2022.

1. Introduction and main results

For each positive integer D let \mathscr{E}^{D} be the Euclidean norm in \mathbb{R}^{D}. We define the set \mathscr{C}^{D} as follows: if $D=1, \mathscr{H}^{1}:=\left\{\mathscr{E}^{1}\right\}$; if $D \geq 2$ we let \mathscr{H}^{D} be the family of all maps $H: \mathbb{R}^{D} \rightarrow[0, \infty)$ which are convex, even, 1-homogeneous, and of class $C^{3, \alpha}\left(\mathbb{R}^{D} \backslash\{0\}\right)$ such that the Hessian matrix $D^{2}\left(H^{p}\right)$ is

[^0]positive definite in $\mathbb{R}^{D} \backslash\{0\}$ for all $p \in(1, \infty)$. For $D \geq 2$ and $H \in \mathscr{H}^{D}$, let $H^{\circ}: \mathbb{R}^{D} \rightarrow[0, \infty)$ be the polar function of H, defined by
$$
H^{\circ}(\eta):=\sup _{\xi \in \mathbb{R}^{D}\{\{0\}} \frac{\langle\xi, \eta\rangle}{H(\xi)}, \quad \eta \in \mathbb{R}^{D} .
$$

Next, for each positive integer D and $H \in \mathscr{H}^{D}$, define

$$
\mathscr{P}^{D, H}:=
$$

$\left\{\Omega \subset \mathbb{R}^{D} \mid \Omega\right.$ is a C^{2}, bounded, convex domain with nonnegative anisotropic mean curvature $\}$.
For $\Omega \in \mathscr{P}^{D, H}$ let $\delta_{H, \Omega}: \Omega \rightarrow[0, \infty)$ be the anisotropic distance function to the boundary of Ω, given by

$$
\delta_{H, \Omega}(x):=\inf _{y \in \partial \Omega} H^{\circ}(x-y), \quad x \in \Omega
$$

Further, for $\Omega \in \mathscr{P}^{D, H}$ and $s>0$, define

$$
\mathscr{P}^{D, H}(s):=\left\{\Omega \in \mathscr{P}^{D, H}:\left\|\delta_{H, \Omega}\right\|_{L^{\infty}(\Omega)}=s\right\} .
$$

Finally, for $\Omega \in \mathscr{P}^{D, H}$ and $p \in(1, \infty)$, we define the principal Dirichlet frequency of the anisotropic p-Laplacian by

$$
\begin{equation*}
\lambda_{H}(p ; \Omega):=\min _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega} H(\nabla u)^{p} d x}{\int_{\Omega}|u|^{p} d x} . \tag{1}
\end{equation*}
$$

It is known (see e.g. Belloni, Ferone \& Kawohl [1] or Belloni, Kawohl \& Juutinen [2]) that $\lambda_{H}(p ; \Omega)$ is the lowest eigenvalue λ of the problem

$$
\begin{cases}-\sum_{i=1}^{D} \frac{\partial}{\partial x_{i}}\left[H(\nabla u)^{p-2} \mathscr{K}_{i}(\nabla u)\right]=\lambda|u|^{p-2} u & \text { if } x \in \Omega \tag{2}\\ u=0 & \text { if } x \in \partial \Omega\end{cases}
$$

where $\mathscr{K}_{i}(\xi):=\frac{\partial}{\partial \xi_{i}}\left(\frac{1}{2} H(\xi)^{2}\right)$, for all $\xi \in \mathbb{R}^{D}$ and $i \in\{1, \cdots, D\}$. In the particular case when $H=\mathscr{E}^{D}$, the differential operator involved in the eigenvalue problem (2) reduces to the classical p-Laplace operator Δ_{p}. For this reason, (2) is called the eigenvalue problem for the anisotropic p-Laplacian. The main goal of this paper is to analyze the monotonicity of the function $p \mapsto \lambda_{H}(p ; \Omega)$ with respect to $p \in(1, \infty)$ for given $H \in \mathscr{H}^{D}$ and $\Omega \in \mathscr{P}^{D, H}$.

When $D=1$ and $\Omega=(a, b)$ with $a, b \in \mathbb{R}$, it is well known (see [11]) that the principal frequency of the p-Laplacian $\left(H=\mathscr{E}^{1}\right)$ is given by the explicit formula

$$
\lambda_{\mathscr{E}^{1}}(p ;(a, b))=(p-1)\left(\frac{2}{b-a}\right)^{p}\left(\frac{\pi / p}{\sin (\pi / p)}\right)^{p}
$$

It can be shown that when $\frac{b-a}{2} \in(1, \infty)$ there exists $p^{\star}=p^{\star}\left(\frac{b-a}{2}\right) \in(1, \infty)$ such that $p \mapsto \lambda_{\mathscr{E}^{1}}\left(p ;(a, b)\right.$) is increasing on ($1, p^{\star}$) and decreasing on (p^{\star}, ∞) (see, Kajikiya, Tanaka \& Tanaka [10, Theorem 1.1 (ii)]). On the other hand, it is easy to check that if $\frac{b-a}{2} \leq 1$ then the map $p \mapsto \lambda_{\mathscr{E}^{1}}(p ;(a, b))$ is increasing on ($1, \infty$) (see, Kajikiya, Tanaka \& Tanaka [10, Theorem 1.1 (i)]). A similar result was established in the case when $D \geq 2$ and $H=\mathscr{E}^{D}$ by the first two authors of this paper in [4, Theorem 1]. Our main goal here is to show that the results obtained in [4] continue to hold in the anisotropic case where $H \in \mathscr{H}^{D}$ is a general function as described above. Our main result is stated in the following theorem.
Theorem 1. Let $D \geq 2$ and $H \in \mathscr{H}^{D}$ be fixed, and let M_{H} be defined by

$$
\begin{equation*}
M_{H}:=\sup \left\{s>0 \mid \lambda_{H}(p ; \Omega)<\lambda_{H}(q ; \Omega) \forall 1<p<q<\infty \quad \text { and } \Omega \in \mathscr{P}^{D, H}(s)\right\} . \tag{3}
\end{equation*}
$$

Then $M_{H} \in\left[e^{-1}, 1\right]$, and $\lambda_{H}(p ; \Omega) \leq \lambda_{H}(q ; \Omega)$ whenever $1<p<q<\infty$ and $\Omega \in \mathscr{P}^{D, H}\left(M_{H}\right)$. Moreover, for any $s>M_{H}$ there exists a domain $\Omega \in \mathscr{P}^{D, H}(s)$ for which the map $(1,+\infty) \ni p \mapsto$ $\lambda_{H}(p ; \Omega)$ is not monotone.

Next, using Theorem 1, we obtain a new variational characterization of $\lambda_{H}(p ; \Omega)$ for domains $\Omega \in \mathscr{P}^{D, H}(s)$ with $s \in\left(0, M_{H}\right]$, where M_{H} is defined by (3). Precisely, we prove

Theorem 2. Let $D \geq 2$ and $H \in \mathscr{H}^{D}$ be fixed. For each $\Omega \in \mathscr{P}^{D, H}$ and $p \in(1, \infty)$, define

$$
\Lambda_{H}(p ; \Omega):=\inf _{u \in X_{0} \backslash\{0\}} \frac{\int_{\Omega}\left[\exp \left(H(\nabla u)^{p}\right)-1\right] d x}{\int_{\Omega}\left[\exp \left(|u|^{p}\right)-1\right] d x},
$$

where

$$
X_{0}:=W^{1, \infty}(\Omega) \cap\left(\cap_{q>1} W_{0}^{1, q}(\Omega)\right) .
$$

If $\left\|\delta_{H, \Omega}\right\|_{L^{\infty}(\Omega)}>1$ then $\Lambda_{H}(p ; \Omega)=0$, while if $\left\|\delta_{H, \Omega}\right\|_{L^{\infty}(\Omega)} \leq 1$ we have $\Lambda_{H}(p ; \Omega)>0$. Moreover, if $\left\|\delta_{H, \Omega}\right\|_{L^{\infty}(\Omega)} \leq M_{H}$, with M_{H} defined by (3), then $\Lambda_{H}(p ; \Omega)=\lambda_{H}(p ; \Omega)$.

Note that a similar result was proved in [3, Theorem 2] in the particular case $H=\mathscr{E}^{D}$.

2. The principal frequency of the anisotropic p-Laplacian

In this section we recall a number of known properties of $\lambda_{H}(p ; \Omega)$ (with $H \in \mathscr{H}^{D}, p \in(1, \infty)$ and $D \geq 2$) that will be useful in the sequel. We begin with a result of Belloni, Kawohl \& Juutinen [2] (see also Juutinen, Lindqvist \& Manfredi [9] or Fukagai, Ito \& Narukawa [7] for the case where $\left.H=\mathscr{E}^{D}\right)$. Let $\lambda_{H}(\infty ; \Omega)$ be defined by

$$
\begin{equation*}
\lambda_{H}(\infty ; \Omega):=\min \left\{\left.\frac{\|H(\nabla \varphi)\|_{L^{\infty}(\Omega)}}{\|\varphi\|_{L^{\infty}(\Omega)}} \right\rvert\, \varphi \in X_{0} \backslash\{0\}\right\}, \tag{4}
\end{equation*}
$$

where $X_{0}:=W^{1, \infty}(\Omega) \cap\left(\cap_{q>1} W_{0}^{1, q}(\Omega)\right)$. Then, the minimum in (4) is always achieved at $\delta_{H, \Omega}$, the anisotropic distance function to the boundary of Ω, and

$$
\begin{equation*}
\lambda_{H}(\infty ; \Omega)=\left\|\delta_{H, \Omega}\right\|_{L^{\infty}(\Omega)}^{-1} \tag{5}
\end{equation*}
$$

Moreover, by [2, Lemma 3.1], we have

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \sqrt[p]{\lambda_{H}(p ; \Omega)}=\lambda_{H}(\infty ; \Omega)=\left\|\delta_{H, \Omega}\right\|_{L^{\infty}(\Omega)}^{-1} \tag{6}
\end{equation*}
$$

It is also well known that $\lambda_{H}(\infty ; \Omega)=R_{H}(\Omega)^{-1}$, where $R_{H}(\Omega)$ stands for the anisotropic inradius of Ω with respect to $H \in \mathscr{H}^{D}$. The following lower bound for $\lambda_{H}(p ; \Omega)$ is due to Della Pietra, di Blasio, and Gavitone (see [5, Theorem 5.1]).

$$
\begin{equation*}
\frac{p-1}{R_{H}(\Omega)^{p}}\left(\frac{\pi / p}{\sin (\pi / p)}\right)^{p} \leq \lambda_{H}(p ; \Omega) \quad \forall p>1 . \tag{7}
\end{equation*}
$$

Note that the left-hand side in (7) is exactly $\lambda_{\mathscr{E}^{1}}\left(p ;\left(-R_{H}(\Omega), R_{H}(\Omega)\right)\right.$), i.e. the principal frequency of the p-Laplacian on the interval $\left(-R_{H}(\Omega), R_{H}(\Omega)\right)$ when $D=1$. Moreover, by [5, Theorem 5.8], equality in (7) is achieved when Ω approaches a suitable infinite slab. More precisely, if we define, for $k>0, \Omega(k):=\left(-R_{H}(\Omega)\left(H^{\circ}\left(e_{1}\right)\right)^{-1}, R_{H}(\Omega)\left(H^{\circ}\left(e_{1}\right)\right)^{-1}\right) \times(-k, k)^{D-1}$, then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \lambda_{H}(p ; \Omega(k))=\frac{p-1}{R_{H}(\Omega)^{p}}\left(\frac{\pi / p}{\sin (\pi / p)}\right)^{p} \forall p>1 . \tag{8}
\end{equation*}
$$

By [5, Proposition 2.2 (iii)] (see also [6, Proposition 3.3 (iii)] or [12, Theorem 3.2] for the case $H=\mathscr{E}^{D}$)

$$
\begin{equation*}
p \sqrt[p]{\lambda_{H}(p ; \Omega)} \leq q \sqrt[q]{\lambda_{H}(q ; \Omega)}, \quad \forall 1<p<q<\infty \tag{9}
\end{equation*}
$$

Finally, note that for each $R>0$, considering the rescaled domain $\Omega_{R}:=R \Omega=\{R x \mid x \in \Omega\}$, we have (see, e.g., [5, Proposition 2.2 (i)] or [6, Proposition 3.3 (v)])

$$
\begin{equation*}
\lambda_{H}\left(p ; \Omega_{R}\right)=R^{-p} \lambda_{H}(p ; \Omega) \quad \forall p>1 . \tag{10}
\end{equation*}
$$

Moreover, it is easy to check that in this case $\left\|\delta_{H, \Omega_{R}}\right\|_{L^{\infty}\left(\Omega_{R}\right)}=R\left\|\delta_{H, \Omega}\right\|_{L^{\infty}(\Omega)}$.

3. Proof of the main results

3.1. Proof of Theorem 1

First, in view of [10, Theorem 1.1 (ii)] and [5, Theorem 5.8] we have the following result.
Proposition 3. Let $D \geq 2$ and $H \in \mathscr{H}^{D}$. For any $s \in(1, \infty)$, there exists a domain $\Omega \in \mathscr{P}^{D, H}(s)$ for which the function $p \mapsto \lambda_{H}(p ; \Omega)$ is not monotone on $(1, \infty)$.
Proof. We start by observing that since $s>1$, (6) yields

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \lambda_{H}(p ; \Omega)=0, \quad \forall \Omega \in \mathscr{P}^{D, H}(s) \tag{11}
\end{equation*}
$$

For each $k>0$, define $\Omega_{s}(k):=\left(-s\left(H^{\circ}\left(e_{1}\right)\right)^{-1}, s\left(H^{\circ}\left(e_{1}\right)\right)^{-1}\right) \times(-k, k)^{D-1}$. It is clear that $\Omega_{s}(k) \in$ $\mathscr{P}^{D, H}(s)$ whenever $k \geq s$ is sufficiently large. By (8), we know that

$$
\begin{equation*}
\lambda_{\mathscr{E}^{1}}(p ;(-s, s))=\lim _{k \rightarrow \infty} \lambda_{H}\left(p ; \Omega_{s}(k)\right) \quad \forall p>1 . \tag{12}
\end{equation*}
$$

Moreover, [10, Theorem 1.1 (ii)] guarantees that the function $\lambda_{\mathscr{E}}(\cdot ;(-s, s))$ is not monotone.
We claim that there exists $k \geq s$ for which the function $\lambda_{H}\left(\cdot ; \Omega_{s}(k)\right)$ is not monotone and prove this by contradiction. Thus, let us assume that $\lambda_{H}\left(\cdot ; \Omega_{s}(k)\right)$ is monotone for every $k \geq s$ sufficiently large. In view of (11), $\lambda_{H}\left(\cdot ; \Omega_{s}(k)\right)$ must be non-increasing, so that

$$
\lambda_{H}\left(p ; \Omega_{s}(k)\right) \geq \lambda_{H}\left(q ; \Omega_{s}(k)\right) \quad \forall 1<p<q<\infty \quad \text { and } \quad k>s \text { sufficiently large. }
$$

Letting $k \rightarrow \infty$ and taking (12) into account we obtain

$$
\lambda_{\mathscr{E}^{1}}(p ;(-s, s)) \geq \lambda_{\mathscr{E}^{1}}(q ;(-s, s)) \quad \forall 1<p<q<\infty,
$$

which contradicts the fact that $\lambda_{\mathscr{E}^{1}}(\cdot ;(-s, s))$ is not monotone. This concludes the proof of Proposition 3.
Proposition 4. Let $\Omega \in \mathscr{P}^{D, H}(s)$ with $s \in\left(0, e^{-1}\right]$. Then $\lambda_{H}(p ; \Omega)$ is strictly increasing as a function of p on $(1, \infty)$.

The proof of Proposition 4 follows from the next two lemmas.
Lemma 5. Let $\Omega \in \mathscr{P}^{D, H}$ and suppose that $\lambda_{H}(q ; \Omega) \leq \lambda_{H}(p ; \Omega)$ for some $1<p<q<\infty$. Then

$$
\lambda_{H}(p ; \Omega)<e^{q} .
$$

Proof. Combining the hypothesis with (9), we have

$$
p \sqrt[p]{\lambda_{H}(p ; \Omega)} \leq q \sqrt[q]{\left.\lambda_{H}(q ; \Omega)\right)} \leq q \sqrt[q]{\left.\lambda_{H}(p ; \Omega)\right)} .
$$

Consequently,

$$
\lambda_{H}(p ; \Omega) \leq\left(\frac{q}{p}\right)^{\frac{p q}{q-p}}=x^{\frac{q}{x-1}}, \quad \text { with } \quad x:=\frac{q}{p}>1 .
$$

Since $x^{1 /(x-1)}<e$, the result follows (note that the function $t \mapsto t^{1 /(t-1)}$ is strictly decreasing on $(1, \infty)$ and $\left.\lim _{t \rightarrow 1^{+}} t^{1 /(t-1)}=e\right)$.

Lemma 6. Let $\Omega \in \mathscr{P}^{D, H}(s)$ with $s>0$. Then

$$
\frac{1}{s^{p}}<\lambda_{H}(p ; \Omega) \quad \forall p>1 .
$$

Proof. Observing that

$$
(p-1)\left(\frac{\pi / p}{\sin (\pi / p)}\right)^{p}=\lambda_{\mathscr{E}^{1}}(p ;(-1,1))
$$

(7) can be rewritten as

$$
\frac{\lambda_{\mathscr{E}^{1}}(p ;(-1,1))}{s^{p}} \leq \lambda_{H}(p ; \Omega) \quad \forall p>1
$$

Hence, using the fact that $\lambda_{\mathscr{E}^{1}}(\cdot ;(-1,1))$ is strictly increasing and $\lim _{p \rightarrow 1^{+}} \lambda_{\mathscr{E}^{1}}(p ;(-1,1))=1$ (see [10, Theorem 1.1 (i)] and [8, Theorem 3.3], respectively), we obtain

$$
\frac{1}{s^{p}}<\frac{\lambda_{\mathscr{E}^{1}}(p ;(-1,1))}{s^{p}} \leq \lambda_{H}(p ; \Omega) \quad \forall p>1
$$

Having proven Lemmas 5 and 6, the conclusion of Proposition 4 is now immediate. Indeed, assume by contradiction that there exists $1<p<q<\infty$ such that $\lambda_{H}(q ; \Omega) \leq \lambda_{H}(p ; \Omega)$. Then, combining the inequalities in Lemmas 5 and 6, we have

$$
\frac{1}{s^{q}}<\lambda_{H}(q ; \Omega) \leq \lambda_{H}(p ; \Omega)<e^{q}
$$

which leads to the contradiction $s>e^{-1}$. This concludes the proof.
Lemma 7. If for some $r \in(0,1]$ and any domain $\Omega \in \mathscr{P}^{D, H}(r)$ we have

$$
\lambda_{H}(p ; \Omega) \leq \lambda_{H}(q ; \Omega) \quad \forall 1<p<q<\infty
$$

then for any $s \in(0, r)$ and any $\Omega \in \mathscr{P}^{D, H}(s)$ we also have

$$
\lambda_{H}(p ; \Omega)<\lambda_{H}(q ; \Omega) \quad \forall 1<p<q<\infty
$$

Proof. Indeed, if $\Omega \in \mathscr{P}^{D, H}(r)$ then for each $R \in(0,1)$ we have $\left\|\delta_{H, \Omega_{R}}\right\|_{L^{\infty}\left(\Omega_{R}\right)}=R r<r$ and, in view of (10), we get that

$$
\lambda_{H}\left(p ; \Omega_{R}\right)=\frac{1}{R^{p}} \lambda_{H}(p ; \Omega) \quad \forall 1<p<\infty
$$

Now, fix $s \in(0, r)$ and take $R:=s / r \in(0,1)$. If $\Omega \in \mathscr{P}^{D, H}(s)$ then $\Omega_{R^{-1}} \in \mathscr{P}^{D, H}(r)$ and, consequently,

$$
\lambda_{H}(p ; \Omega)=\frac{1}{R^{p}} \lambda_{H}\left(p ; \Omega_{R^{-1}}\right) \quad \forall 1<p<\infty
$$

But

$$
\lambda_{H}\left(p ; \Omega_{R^{-1}}\right) \leq \lambda_{H}\left(q ; \Omega_{R^{-1}}\right) \quad \forall 1<p<q<\infty
$$

and since $R \in(0,1)$, we deduce that

$$
\frac{1}{R^{p}} \lambda_{H}\left(p ; \Omega_{R^{-1}}\right)<\frac{1}{R^{q}} \lambda_{H}\left(q ; \Omega_{R^{-1}}\right) \quad \forall 1<p<q<\infty
$$

Equivalently, $\lambda_{H}(p ; \Omega)<\lambda_{H}(q ; \Omega) \quad \forall 1<p<q<\infty$.
We are now ready to complete the proof of Theorem 1 . Let $D \geq 2$ be a fixed integer, $H \in \mathscr{H}^{D}$, and M_{H} be defined by (3). In view of Proposition 4, we have that $M_{H} \in\left[e^{-1}, 1\right]$. If $M_{H}=1$, then by Proposition 3 and the definition of M_{H} it follows that for any $s>M_{H}=1$ there exists a domain $\Omega \in \mathscr{P}^{D, H}(s)$ for which the function $\lambda_{H}(p ; \Omega)$ is not monotone in p on the interval $(1, \infty)$. This conclusion is still valid in the case where $M_{H} \in\left[e^{-1}, 1\right)$. Indeed, if $M_{H} \in\left[e^{-1}, 1\right)$ and $s \in\left(M_{H}, 1\right]$ then, if $\lambda_{H}(\cdot ; \Omega)$ were monotone for every $\Omega \in \mathscr{P}^{D, H}(s)$, one would have (noting that $\lambda_{H}(p ; \Omega) \rightarrow \infty$ as $p \rightarrow \infty$, since $\left.s \leq 1\right)$ that $\lambda_{H}(\cdot ; \Omega)$ must be nondecreasing (but not necessarily
increasing). Hence, by fixing $r \in\left(M_{H}, s\right)$ and applying Lemma 7, one can show that $\lambda_{H}(\cdot ; \Omega)$ is strictly increasing for every $\Omega \in \mathscr{P}^{D, H}(r)$. This contradicts the definition of M_{H}.

Up to this point we have shown that for any $r \in\left(0, M_{H}\right)$ and any domain $\Omega \in \mathscr{P}^{D, H}(r)$ we have $\lambda_{H}(p ; \Omega)<\lambda_{H}(q ; \Omega) \quad \forall 1<p<q<\infty$. To finish the proof of Theorem 1 it remains to prove that we still have $\lambda_{H}(p ; \Omega) \leq \lambda_{H}(q ; \Omega) \quad \forall 1<p<q<\infty$ when $\Omega \in \mathscr{P}^{D, H}\left(M_{H}\right)$. To justify this, note that for any $R \in(0,1),\left\|\delta_{H, \Omega_{R}}\right\|_{L^{\infty}\left(\Omega_{R}\right)}=R M_{H} \in\left(0, M_{H}\right)$ and hence $\lambda_{H}\left(p ; \Omega_{R}\right)<\lambda_{H}\left(q ; \Omega_{R}\right) \quad \forall 1<p<$ $q<\infty$, or, by virtue of (10),

$$
\frac{1}{R^{p}} \lambda_{H}(p ; \Omega)<\frac{1}{R^{q}} \lambda_{H}(q ; \Omega) \quad \forall 1<p<q<\infty
$$

Letting $R \nearrow 1$ we are led to $\lambda_{H}(p ; \Omega) \leq \lambda_{H}(q ; \Omega) \quad \forall 1<p<q<\infty$, as claimed.

3.2. Proof of Theorem 2

The proof follows from the following lemmas.
Lemma 8. If $\left\|\delta_{H, \Omega}\right\|_{L^{\infty}(\Omega)}>1$ then $\Lambda_{H}(p ; \Omega)=0$ for all $p \in(1, \infty)$.
Proof. Let $\epsilon_{0}>0$ and ω be an open subset of Ω having positive Lebesgue measure $|\omega|>0$, such that $\delta_{H, \Omega}(x) \geq 1+\epsilon_{0}$ for any $x \in \omega$. Since $\delta_{H, \Omega} \in X_{0} \backslash\{0\}$,

$$
\begin{equation*}
\Lambda_{H}(p ; \Omega) \leq \frac{\int_{\Omega}\left[\exp \left(H\left(\nabla\left(n \delta_{H, \Omega}\right)\right)^{p}\right)-1\right] d x}{\int_{\Omega}\left[\exp \left(\left(n \delta_{H, \Omega}\right)^{p}\right)-1\right] d x} \quad \forall n \geq 1 \tag{13}
\end{equation*}
$$

Taking into account the fact that $H\left(\nabla \delta_{H, \Omega}(x)\right)=1$ for a.e. $x \in \Omega$, we have

$$
\begin{aligned}
\frac{\int_{\Omega}\left[\exp \left(H\left(\nabla\left(n \delta_{H, \Omega}\right)\right)^{p}\right)-1\right] d x}{\int_{\Omega}\left[\exp \left(\left(n \delta_{H, \Omega}\right)^{p}\right)-1\right] d x} & =\frac{|\Omega|\left[\exp \left(n^{p}\right)-1\right]}{\int_{\Omega}\left[\exp \left(n^{p} \delta_{H, \Omega}(x)^{p}\right)-1\right] d x} \\
& \leq \frac{|\Omega|\left[\exp \left(n^{p}\right)-1\right]}{\int_{\omega}\left[\exp \left(n^{p} \delta_{H, \Omega}(x)^{p}\right)-1\right] d x} \\
& \leq \frac{|\Omega|\left[\exp \left(n^{p}\right)-1\right]}{\left.|\omega|\left[\exp \left(n^{p}\left(1+\epsilon_{0}\right)^{p}\right)\right)-1\right]}
\end{aligned}
$$

for every integer $n \geq 1$. Letting $n \rightarrow \infty$ in (13) gives $\Lambda_{H}(p ; \Omega)=0$.
Lemma 9. If $\left\|\delta_{H, \Omega}\right\|_{L^{\infty}(\Omega)} \in(0,1]$ then $\Lambda_{H}(p ; \Omega)>0$ for all $p \in(1, \infty)$.
Proof. First, we claim that

$$
\begin{equation*}
\Lambda_{H}(p ; \Omega) \geq \inf _{k \in \mathbb{N} \backslash\{0\}} \lambda_{H}(k p ; \Omega) \tag{14}
\end{equation*}
$$

Indeed, recall that the definition of $\lambda_{H}(k p ; \Omega)$ implies that if $u \in X_{0} \backslash\{0\}$ (which, in particular, means that $u \in W_{0}^{1, q}(\Omega) \backslash\{0\}$ for any $q>1$) then

$$
\begin{aligned}
\frac{\sum_{k=1}^{\infty} \frac{1}{k!} \int_{\Omega} H(\nabla u)^{k p} d x}{\sum_{k=1}^{\infty} \frac{1}{k!} \int_{\Omega}|u|^{k p} d x} & \geq \frac{\sum_{k=1}^{\infty} \frac{\lambda_{H}(k p ; \Omega)}{k!} \int_{\Omega}|u|^{k p} d x}{\sum_{k=1}^{\infty} \frac{1}{k!} \int_{\Omega}|u|^{k p} d x} \\
& \geq \inf _{k \in \mathbb{N}\{0\}} \lambda_{H}(k p ; \Omega) .
\end{aligned}
$$

Passing to the infimum over all $u \in X_{0} \backslash\{0\}$ gives (14).

Next, in view of (7), and since $R_{H}(\Omega)=\left\|\delta_{H, \Omega}\right\|_{L^{\infty}(\Omega)}$, we arrive at

$$
\begin{equation*}
\frac{q-1}{\left\|\delta_{H, \Omega}\right\|_{L^{\infty}(\Omega)}^{q}}\left(\frac{\pi / q}{\sin (\pi / q)}\right)^{q} \leq \lambda_{H}(q ; \Omega) \quad \forall q \in(1, \infty) . \tag{15}
\end{equation*}
$$

Further, recall the fact that the function

$$
(1, \infty) \ni p \mapsto(p-1)\left(\frac{\pi / p}{\sin (\pi / p)}\right)^{p},
$$

is increasing (see, e.g. [10, Theorem 1.1 (i)] for the proof). Taking into account (15) and the fact that $\left\|\delta_{H, \Omega}\right\|_{L^{\infty}(\Omega)} \in(0,1]$, we obtain

$$
0<(p-1)\left(\frac{\pi / p}{\sin (\pi / p)}\right)^{p} \leq \lambda_{H}(k p ; \Omega) \quad \forall k \in \mathbb{N} \backslash\{0\} \text { and } p \in(1, \infty)
$$

Thus, by (14), $\Lambda_{H}(p ; \Omega)>0$ for any $p \in(1, \infty)$. This concludes the proof of Lemma 9 .
Lemma 10. If M_{H} is defined by (3) and $\left\|\delta_{H, \Omega}\right\|_{L^{\infty}(\Omega)} \in\left(0, M_{H}\right]$, then $\Lambda_{H}(p ; \Omega)=\lambda_{H}(p ; \Omega)$ for all $p \in(1, \infty)$.
Proof. First, we show that $\Lambda_{H}(p ; \Omega) \leq \lambda_{H}(p ; \Omega)$ for all $p \in(1, \infty)$. To this aim, first note that

$$
\Lambda_{H}(p ; \Omega) \leq \frac{\int_{\Omega}\left[\exp \left(H(\nabla(t u))^{p}\right)-1\right] d x}{\int_{\Omega}\left[\exp \left(|t u|^{p}\right)-1\right] d x} \quad \forall u \in C_{0}^{\infty}(\Omega) \backslash\{0\} \subset X_{0} \backslash\{0\} \text { and } t \in(0,1) .
$$

Hence,

$$
\Lambda_{H}(p ; \Omega) \leq \frac{\sum_{k=1}^{\infty} \int_{\Omega} \frac{H(\nabla(t u))^{k p}}{k!} d x}{\sum_{k=1}^{\infty} \int_{\Omega} \frac{|t u|^{k p}}{k!} d x}=\frac{\int_{\Omega} H(\nabla u)^{p} d x+\sum_{k=2}^{\infty} t^{(k-1) p} \int_{\Omega} \frac{H(\nabla u)^{k p}}{k!} d x}{\int_{\Omega}|u|^{p} d x+\sum_{k=2}^{\infty} t^{(k-1) p} \int_{\Omega} \frac{|u|^{k p}}{k!} d x}
$$

for any $u \in C_{0}^{\infty}(\Omega) \backslash\{0\}$ and $t \in(0,1)$. Letting $t \rightarrow 0^{+}$in the above inequality we get

$$
\Lambda_{H}(p ; \Omega) \leq \frac{\int_{\Omega} H(\nabla u)^{p} d x}{\int_{\Omega}|u|^{p} d x} \quad \forall u \in C_{0}^{\infty}(\Omega) \backslash\{0\} .
$$

We obtain

$$
\begin{equation*}
\Lambda_{H}(p ; \Omega) \leq \lambda_{H}(p ; \Omega) \quad \forall p \in(1, \infty), \tag{16}
\end{equation*}
$$

as claimed.
Next, taking into account that $\left\|\delta_{H, \Omega}\right\|_{L^{\infty}(\Omega)} \in\left(0, M_{H}\right]$ by Theorem 1 we deduce that $\lambda_{H}(p ; \Omega) \leq$ $\lambda_{H}(q ; \Omega)$ whenever $1<p<q<\infty$. Combining this with (14) we are led to

$$
\begin{equation*}
\lambda_{H}(p ; \Omega) \leq \Lambda_{H}(p ; \Omega) \quad \forall p \in(1, \infty) . \tag{17}
\end{equation*}
$$

The conclusion of Lemma 10 now follows from (16) and (17).

References

[1] M. Belloni, V. Ferone, B. Kawohl, "Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators", Z. Angew. Math. Phys. 54 (2003), no. 5, p. 771-783.
[2] M. Belloni, B. Kawohl, P. Juutinen, "The p-Laplace eigenvalue problem as $p \rightarrow \infty$ in a Finsler metric", J. Eur. Math. Soc. 8 (2006), no. 1, p. 123-138.
[3] M. Bocea, M. Mihăilescu, "Minimization problems for inhomogeneous Rayleigh quotients", Commun. Contemp. Math. 20 (2018), no. 7, article no. 1750074 (13 pages).
[4] , "On the monotonicity of the principal frequency of the p-Laplacian", Adv. Calc. Var. 14 (2021), no. 1, p. 147152.
[5] F. Della Pietra, G. di Blasio, N. Gavitone, "Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle", Adv. Nonlinear Anal. 9 (2020), p. 278-291.
[6] F. Della Pietra, N. Gavitone, G. Piscitelli, "On the second Dirichlet eigenvalue of some nonlinear anisotropic elliptic operator", Bull. Sci. Math. 155 (2019), p. 10-32.
[7] N. Fukagai, M. Ito, K. Narukawa, "Limit as $p \rightarrow \infty$ of p-Laplace eigenvalue problems and L^{∞}-inequality of Poincaré type", Differ. Integral Equ. 12 (1999), no. 2, p. 183-206.
[8] Y. X. Huang, "On the eigenvalues of the p-Laplacian with varying p ", Proc. Am. Math. Soc. 125 (1997), no. 11, p. 33473354.
[9] P. Juutinen, P. Lindqvist, J. J. Manfredi, "The ∞-eigenvalue problem", Arch. Ration. Mech. Anal. 148 (1999), no. 2, p. 89-105.
[10] R. Kajikiya, M. Tanaka, S. Tanaka, "Bifurcation of positive solutions for the one-dimensional (p; q) -Laplace equation", Electron. J. Differ. Equ. 2017 (2017), article no. 107 (37 pages).
[11] P. Lindqvist, "Note on a nonlinear eigenvalue problem", Rocky Mt. J. Math. 23 (1993), no. 1, p. 281-288.
[12] ——, "On non-linear Rayleigh quotients", Potential Anal. 2 (1993), no. 3, p. 199-218.

[^0]: * Corresponding author.

