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Abstract. Based on a q-congruence of the author and Petrov, we set up a q-analogue of Sun–Tauraso’s
congruence for sums of Catalan numbers, which extends a q-congruence due to Tauraso.

Résumé. À partir d’une q-congruence de l’auteur et Petrov, nous établissons un q-analogue de la congruence
de Sun–Tauraso pour des sommes de nombres de Catalan, qui étend la q-congruence due à Tauraso.
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1. Introduction

In combinatorics, the Catalan numbers are a sequence of natural numbers, which play an
important role in various counting problems. The nth Catalan number is given by the following
binomial coefficient:

Cn =
(

2n

n

)
1

n +1
=

(
2n

n

)
−

(
2n

2n +1

)
.

Closely related numbers are the central binomial coefficients
(2n

n

)
for n ≥ 0.

Both Catalan numbers and central binomial coefficients satisfy many interesting congruences
(see, for instance, [7, 9–11]). In 2011, Sun and Tauraso [11] proved that for primes p ≥ 5,

p−1∑
k=0

(
2k

k

)
≡

( p

3

)
(mod p2), (1)

p−1∑
k=0

Ck ≡ 3

2

( p

3

)
− 1

2
(mod p2), (2)
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where
(
·
p

)
denotes the Legendre symbol.

In the past few years, q-analogues of congruences (q-congruences) for indefinite sums of
binomial coefficients as well as hypergeometric series attracted many experts’ attention (see, for
example, [2–6,8,12,13]). It is worth mentioning that Guo and Zudilin [6] developed an interesting
microscoping method to prove many q-congruences.

In order to discuss q-congruences, we first recall some q-series notation. The q-binomial
coefficients are defined as [

n

k

]
=

[
n

k

]
q

=
{ (q ;q)n

(q ;q)k (q ;q)n−k
if 0 É k É n,

0 otherwise,

where the q-shifted factorial is given by (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for n ≥ 1 and
(a; q)0 = 1. Moreover, the q-integers are defined by [n]q = (1−qn)/(1−q), and the nth cyclotomic
polynomial is given by

Φn(q) = ∏
1≤k≤n
(n,k)=1

(q −e2kπi /n).

Recently, the author and Petrov [8] established a q-analogue for (1) as follows:

n−1∑
k=0

qk

[
2k

k

]
≡

(n

3

)
q

n2−1
3 (mod Φn(q)2), (3)

which was originally conjectured by Guo [2] and generalises a q-congruence of Tauraso [12].
There are several natural q-analogues of Catalan numbers (see [1]). Here and throughout the
paper, we consider the following q-analogue of Catalan numbers:

Cn(q) = 1

[n +1]q

[
2n

n

]
=

[
2n

n

]
−q

[
2n

n +1

]
. (4)

In 2012, Tauraso [12] obtained a weak q-version of (2) as follows:

n−1∑
k=0

qkCk (q) ≡
{

qbn/3c if n ≡ 0,1 (mod 3)

−1−q (2n−1)/3 if n ≡ 2 (mod 3)
(mod Φn(q)),

where bxc denotes the integral part of real x. In this note, we aim to set up a q-analogue of (2) as
well as another related q-congruence for sums of binomial coefficients.

Theorem 1. For any positive integer n, the following holds moduloΦn(q)2:

n−1∑
k=0

qkCk (q) ≡
−q

n2−1
3 −q

n(2n−1)
3 if n ≡ 2 (mod 3)

q
n2−1

3 − n−1
3 (qn −1) if n ≡ 1 (mod 3).

(5)

In order to prove (5), we shall establish the following q-congruence.

Theorem 2. For any positive integer n, the following holds moduloΦn(q)2:

n−1∑
k=0

qk+1

[
2k

k +1

]
≡

{
q

n(2n−1)
3 if n ≡ 2 (mod 3),

n−1
3 (qn −1) if n ≡ 1 (mod 3).

(6)

It is clear that (5) can be directly deduced from (3), (4) and (6). The remainder of the paper is
organized as follows. We first set up a preliminary result in the next section, and prove Theorem 2
in Section 3.
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2. An auxiliary result

Lemma 3. For any positive integer n, the following holds moduloΦn(q):

n−1∑
k=1

(
k −1

3

)
(−1)k q

1
3

(
2k2−k

(
k−1

3

))
− k(k−1)

2

1−qk
≡

{
0 if n ≡ 2 (mod 3),
n−1

6 if n ≡ 1 (mod 3).
(7)

Proof. Note that

n−1∑
k=1

(−1)k
(

k −1

3

)
q

1
3

(
2k2−k

(
k−1

3

))
− k(k−1)

2

1−qk
=

⌊ n−3
3

⌋∑
k=0

(−1)k q
(k+1)(3k+2)

2

1−q3k+2
−

⌊ n−1
3

⌋∑
k=1

(−1)k q
k(3k+5)

2

1−q3k
.

We shall distinguish two cases to prove (7).

Case 1. n ≡ 2 (mod 3). This case is equivalent to

n−1∑
k=0

(−1)k q
(k+1)(3k+2)

2

1−q3k+2
−

n∑
k=1

(−1)k q
k(3k+5)

2

1−q3k
≡ 0 (mod Φ3n+2(q)). (8)

Let ω be a primitive (3n +2)th root of unity. Letting k → n −k in the following sum gives

n−1∑
k=0

(−1)kω
(k+1)(3k+2)

2

1−ω3k+2
=

n∑
k=1

(−1)n−kω
(n−k+1)(3n−3k+2)

2

1−ω3n−3k+2

=
n∑

k=1

(−1)n−kω
k(3k−1)

2 + (3n+2)(n+1)
2 −(3n+2)k

1−ω3n−3k+2

=
n∑

k=1

(−1)kω
k(3k+5)

2

1−ω3k
,

where we have used the fact that ω
(3n+2)(n+1)

2 = (−1)n+1. Thus,

n−1∑
k=0

(−1)kω
(k+1)(3k+2)

2

1−ω3k+2
−

n∑
k=1

(−1)kω
k(3k+5)

2

1−ω3k
= 0,

which is equivalent to (8).

Case 2. n ≡ 1 (mod 3). Let ζ be a primitive (3n +1)th root of unity. It suffices to show that

n−1∑
k=0

(−1)kζ
(k+1)(3k+2)

2

1−ζ3k+2
−

n∑
k=1

(−1)kζ
k(3k+5)

2

1−ζ3k
= n

2
. (9)

Note that

n−1∑
k=0

(−1)kζ
(k+1)(3k+2)

2

1−ζ3k+2
=

2n∑
k=n+1

(−1)2n−kζ
(2n−k+1)(6n−3k+2)

2

1−ζ6n−3k+2

=
2n∑

k=n+1

(−1)kζ
k(3k−1)

2 +(3n+1)(2n−2k+1)

1−ζ−3k

=−
2n∑

k=n+1

(−1)kζ
k(3k+5)

2

1−ζ3k
,

where we replace k by 2n −k in the first step. Thus,

n−1∑
k=0

(−1)kζ
(k+1)(3k+2)

2

1−ζ3k+2
−

n∑
k=1

(−1)kζ
k(3k+5)

2

1−ζ3k
=−

2n∑
k=1

(−1)kζ
k(3k+5)

2

1−ζ3k
. (10)
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Furthermore, letting k → 2n +1−k on the right-hand side of (10) gives

n−1∑
k=0

(−1)kζ
(k+1)(3k+2)

2

1−ζ3k+2
−

n∑
k=1

(−1)kζ
k(3k+5)

2

1−ζ3k
=−

2n∑
k=1

(−1)2n+1−kζ
(2n+1−k)(6n−3k+8)

2

1−ζ3(2n+1−k)

=−
2n∑

k=1

(−1)1−kζ
(3k−1)(k−2)

2 +(3n+1)(2n+3−2k)

1−ζ1−3k

=−
2n∑

k=1

(−1)kζ
k(3k−1)

2

1−ζ3k−1
. (11)

An identity due to the author and Petrov [8, (2.4)] says

2n∑
k=1

(−1)kζ
k(3k−1)

2

1−ζ3k−1
=−n

2
. (12)

Then the proof of (9) follows from (11) and (12). �

3. Proof of Theorem 2

Now we are in a position to prove Theorem 2. We recall the following identity:

n−1∑
k=0

qk

[
2k

k +1

]
=

n−1∑
k=0

(
n −k −1

3

)
q

1
3

(
2(n−k)2−(n−k)

(
n−k−1

3

)
−3

)[
2n

k

]
, (13)

which was proved by Tauraso in a more general form (see [12, Theorem 4.2]). Since 1− qn ≡ 0
(mod Φn(q)), we have

1−q2n = (1+qn)(1−qn) ≡ 2(1−qn) (mod Φn(q)2).

It follows that for 1 ≤ k ≤ n −1,[
2n

k

]
= (1−q2n)(1−q2n−1) · · · (1−q2n−k+1)

(1−q)(1−q2) · · · (1−qk )

≡ 2(1−qn)
(1−q−1) · · · (1−q−k+1)

(1−q)(1−q2) · · · (1−qk )
(mod Φn(q)2)

= 2(qn −1)
(−1)k q− k(k−1)

2

1−qk
. (14)

Multiplying both sides of (13) by q and substituting (14) into the right-hand side of (13), we arrive
at

n−1∑
k=0

qk+1

[
2k

k +1

]

=
(

n −1

3

)
q

1
3

(
2n2−n

( n−1
3

))
+

n−1∑
k=1

(
n −k −1

3

)
q

1
3

(
2(n−k)2−(n−k)

(
n−k−1

3

))[
2n

k

]

≡
(

n −1

3

)
q

1
3

(
2n2−n

( n−1
3

))

+2(qn −1)
n−1∑
k=1

(
n −k −1

3

)
(−1)k q

1
3

(
2(n−k)2−(n−k)

(
n−k−1

3

))
− k(k−1)

2

1−qk
(mod Φn(q)2). (15)
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Furthermore,

n−1∑
k=1

(
n −k −1

3

)
(−1)k q

1
3

(
2(n−k)2−(n−k)

(
n−k−1

3

))
− k(k−1)

2

1−qk

=
n−1∑
k=1

(
k −1

3

)
(−1)n−k q

1
3

(
2k2−k

(
k−1

3

))
− (n−k)(n−k−1)

2

1−qn−k

=
n−1∑
k=1

(
k −1

3

)
(−1)n−k q

1
3

(
2k2−k

(
k−1

3

))
− n(n−1)

2 − k(k+1)
2 +nk

1−qn−k

≡
n−1∑
k=1

(
k −1

3

)
(−1)k q

1
3

(
2k2−k

(
k−1

3

))
− k(k−1)

2

1−qk
(mod Φn(q)),

where we set k → n −k in the first step. Thus,

n−1∑
k=0

qk+1

[
2k

k +1

]
≡

(
n −1

3

)
q

1
3

(
2n2−n

( n−1
3

))

+2(qn −1)
n−1∑
k=1

(
k −1

3

)
(−1)k q

1
3

(
2k2−k

(
k−1

3

))
− k(k−1)

2

1−qk
(mod Φn(q)2). (16)

We complete the proof of (6) by combining (7) and (16).
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