

INSTITUT DE FRANCE Académie des sciences

Comptes Rendus

Mathématique

Ji-Cai Liu

On a congruence involving q-Catalan numbers

Volume 358, issue 2 (2020), p. 211-215

Published online: 15 June 2020

https://doi.org/10.5802/crmath.35

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN : 1778-3569

"Elementary" Number Theory / Théorie "élémentaire" des nombres

On a congruence involving *q*-Catalan numbers

Sur une congruence impliquant des q-nombres de Catalan

Ji-Cai Liu^a

^{*a*} Department of Mathematics, Wenzhou University, Wenzhou 325035, PR China. *E-mail:* jcliu2016@gmail.com.

Abstract. Based on a *q*-congruence of the author and Petrov, we set up a *q*-analogue of Sun–Tauraso's congruence for sums of Catalan numbers, which extends a *q*-congruence due to Tauraso.

Résumé. À partir d'une *q*-congruence de l'auteur et Petrov, nous établissons un *q*-analogue de la congruence de Sun–Tauraso pour des sommes de nombres de Catalan, qui étend la *q*-congruence due à Tauraso. **2020 Mathematics Subject Classification.** 11B65, 11A07, 05A10.

Funding. This work was supported by the National Natural Science Foundation of China (grant 11801417).

Manuscript received 7th January 2020, revised and accepted 10th March 2020.

1. Introduction

In combinatorics, the Catalan numbers are a sequence of natural numbers, which play an important role in various counting problems. The *n*th Catalan number is given by the following binomial coefficient:

$$C_n = \binom{2n}{n} \frac{1}{n+1} = \binom{2n}{n} - \binom{2n}{2n+1}.$$

Closely related numbers are the central binomial coefficients $\binom{2n}{n}$ for $n \ge 0$.

Both Catalan numbers and central binomial coefficients satisfy many interesting congruences (see, for instance, [7, 9-11]). In 2011, Sun and Tauraso [11] proved that for primes $p \ge 5$,

$$\sum_{k=0}^{p-1} \binom{2k}{k} \equiv \left(\frac{p}{3}\right) \pmod{p^2},\tag{1}$$

$$\sum_{k=0}^{p-1} C_k \equiv \frac{3}{2} \left(\frac{p}{3} \right) - \frac{1}{2} \pmod{p^2},$$
(2)

where $\left(\frac{\cdot}{n}\right)$ denotes the Legendre symbol.

In the past few years, q-analogues of congruences (q-congruences) for indefinite sums of binomial coefficients as well as hypergeometric series attracted many experts' attention (see, for example, [2–6,8,12,13]). It is worth mentioning that Guo and Zudilin [6] developed an interesting microscoping method to prove many q-congruences.

In order to discuss q-congruences, we first recall some q-series notation. The q-binomial coefficients are defined as

$$\begin{bmatrix} n \\ k \end{bmatrix} = \begin{bmatrix} n \\ k \end{bmatrix}_q = \begin{cases} \frac{(q;q)_n}{(q;q)_k(q;q)_{n-k}} & \text{if } 0 \le k \le n, \\ 0 & \text{otherwise,} \end{cases}$$

where the *q*-shifted factorial is given by $(a; q)_n = (1 - a)(1 - aq) \cdots (1 - aq^{n-1})$ for $n \ge 1$ and $(a; q)_0 = 1$. Moreover, the *q*-integers are defined by $[n]_q = (1 - q^n)/(1 - q)$, and the *n*th cyclotomic polynomial is given by

$$\Phi_n(q) = \prod_{\substack{1 \le k \le n \\ (n,k)=1}} (q - e^{2k\pi i/n})$$

Recently, the author and Petrov [8] established a q-analogue for (1) as follows:

$$\sum_{k=0}^{n-1} q^k \begin{bmatrix} 2k\\k \end{bmatrix} \equiv \left(\frac{n}{3}\right) q^{\frac{n^2-1}{3}} \pmod{\Phi_n(q)^2},\tag{3}$$

which was originally conjectured by Guo [2] and generalises a q-congruence of Tauraso [12]. There are several natural q-analogues of Catalan numbers (see [1]). Here and throughout the paper, we consider the following q-analogue of Catalan numbers:

$$C_n(q) = \frac{1}{[n+1]_q} \begin{bmatrix} 2n\\n \end{bmatrix} = \begin{bmatrix} 2n\\n \end{bmatrix} - q \begin{bmatrix} 2n\\n+1 \end{bmatrix}.$$
(4)

In 2012, Tauraso [12] obtained a weak *q*-version of (2) as follows:

$$\sum_{k=0}^{n-1} q^k C_k(q) \equiv \begin{cases} q^{\lfloor n/3 \rfloor} & \text{if } n \equiv 0, 1 \pmod{3} \\ -1 - q^{(2n-1)/3} & \text{if } n \equiv 2 \pmod{3} \end{cases} \pmod{\Phi_n(q)},$$

where $\lfloor x \rfloor$ denotes the integral part of real *x*. In this note, we aim to set up a *q*-analogue of (2) as well as another related *q*-congruence for sums of binomial coefficients.

Theorem 1. For any positive integer n, the following holds modulo $\Phi_n(q)^2$:

$$\sum_{k=0}^{n-1} q^k C_k(q) \equiv \begin{cases} -q^{\frac{n^2-1}{3}} - q^{\frac{n(2n-1)}{3}} & if n \equiv 2 \pmod{3} \\ q^{\frac{n^2-1}{3}} - \frac{n-1}{3}(q^n-1) & if n \equiv 1 \pmod{3}. \end{cases}$$
(5)

In order to prove (5), we shall establish the following q-congruence.

Theorem 2. For any positive integer n, the following holds modulo $\Phi_n(q)^2$:

$$\sum_{k=0}^{n-1} q^{k+1} \begin{bmatrix} 2k\\k+1 \end{bmatrix} \equiv \begin{cases} q^{\frac{n(2n-1)}{3}} & \text{if } n \equiv 2 \pmod{3}, \\ \frac{n-1}{3}(q^n-1) & \text{if } n \equiv 1 \pmod{3}. \end{cases}$$
(6)

It is clear that (5) can be directly deduced from (3), (4) and (6). The remainder of the paper is organized as follows. We first set up a preliminary result in the next section, and prove Theorem 2 in Section 3.

Ji-Cai Liu

2. An auxiliary result

Lemma 3. For any positive integer n, the following holds modulo $\Phi_n(q)$:

$$\sum_{k=1}^{n-1} \left(\frac{k-1}{3}\right) \frac{(-1)^k q^{\frac{1}{3}\left(2k^2 - k\left(\frac{k-1}{3}\right)\right) - \frac{k(k-1)}{2}}}{1-q^k} \equiv \begin{cases} 0 & \text{if } n \equiv 2 \pmod{3}, \\ \frac{n-1}{6} & \text{if } n \equiv 1 \pmod{3}. \end{cases}$$
(7)

Proof. Note that

$$\sum_{k=1}^{n-1} (-1)^k \left(\frac{k-1}{3}\right) \frac{q^{\frac{1}{3}\left(2k^2 - k\left(\frac{k-1}{3}\right)\right) - \frac{k(k-1)}{2}}}{1-q^k} = \sum_{k=0}^{\lfloor \frac{n-3}{3} \rfloor} \frac{(-1)^k q^{\frac{(k+1)(3k+2)}{2}}}{1-q^{3k+2}} - \sum_{k=1}^{\lfloor \frac{n-1}{3} \rfloor} \frac{(-1)^k q^{\frac{k(3k+5)}{2}}}{1-q^{3k}}.$$

We shall distinguish two cases to prove (7).

Case 1. $n \equiv 2 \pmod{3}$. This case is equivalent to

$$\sum_{k=0}^{n-1} \frac{(-1)^k q^{\frac{(k+1)(3k+2)}{2}}}{1-q^{3k+2}} - \sum_{k=1}^n \frac{(-1)^k q^{\frac{k(3k+5)}{2}}}{1-q^{3k}} \equiv 0 \pmod{\Phi_{3n+2}(q)}.$$
(8)

Let ω be a primitive (3n + 2)th root of unity. Letting $k \rightarrow n - k$ in the following sum gives

$$\begin{split} \sum_{k=0}^{n-1} \frac{(-1)^k \omega^{\frac{(k+1)(3k+2)}{2}}}{1-\omega^{3k+2}} &= \sum_{k=1}^n \frac{(-1)^{n-k} \omega^{\frac{(n-k+1)(3n-3k+2)}{2}}}{1-\omega^{3n-3k+2}} \\ &= \sum_{k=1}^n \frac{(-1)^{n-k} \omega^{\frac{k(3k-1)}{2} + \frac{(3n+2)(n+1)}{2} - (3n+2)k}}{1-\omega^{3n-3k+2}} \\ &= \sum_{k=1}^n \frac{(-1)^k \omega^{\frac{k(3k+5)}{2}}}{1-\omega^{3k}}, \end{split}$$

where we have used the fact that $\omega^{\frac{(3n+2)(n+1)}{2}} = (-1)^{n+1}$. Thus,

$$\sum_{k=0}^{n-1} \frac{(-1)^k \omega^{\frac{(k+1)(3k+2)}{2}}}{1-\omega^{3k+2}} - \sum_{k=1}^n \frac{(-1)^k \omega^{\frac{k(3k+5)}{2}}}{1-\omega^{3k}} = 0,$$

which is equivalent to (8).

Case 2. $n \equiv 1 \pmod{3}$. Let ζ be a primitive (3n + 1)th root of unity. It suffices to show that

$$\sum_{k=0}^{n-1} \frac{(-1)^k \zeta^{\frac{(k+1)(3k+2)}{2}}}{1-\zeta^{3k+2}} - \sum_{k=1}^n \frac{(-1)^k \zeta^{\frac{k(3k+5)}{2}}}{1-\zeta^{3k}} = \frac{n}{2}.$$
(9)

Note that

$$\begin{split} \sum_{k=0}^{n-1} \frac{(-1)^k \zeta^{\frac{(k+1)(3k+2)}{2}}}{1-\zeta^{3k+2}} &= \sum_{k=n+1}^{2n} \frac{(-1)^{2n-k} \zeta^{\frac{(2n-k+1)(6n-3k+2)}{2}}}{1-\zeta^{6n-3k+2}} \\ &= \sum_{k=n+1}^{2n} \frac{(-1)^k \zeta^{\frac{k(3k-1)}{2}+(3n+1)(2n-2k+1)}}{1-\zeta^{-3k}} \\ &= -\sum_{k=n+1}^{2n} \frac{(-1)^k \zeta^{\frac{k(3k+5)}{2}}}{1-\zeta^{3k}}, \end{split}$$

where we replace k by 2n - k in the first step. Thus,

$$\sum_{k=0}^{n-1} \frac{(-1)^k \zeta^{\frac{(k+1)(3k+2)}{2}}}{1-\zeta^{3k+2}} - \sum_{k=1}^n \frac{(-1)^k \zeta^{\frac{k(3k+5)}{2}}}{1-\zeta^{3k}} = -\sum_{k=1}^{2n} \frac{(-1)^k \zeta^{\frac{k(3k+5)}{2}}}{1-\zeta^{3k}}.$$
 (10)

Furthermore, letting $k \rightarrow 2n + 1 - k$ on the right-hand side of (10) gives

$$\sum_{k=0}^{n-1} \frac{(-1)^k \zeta^{\frac{(k+1)(3k+2)}{2}}}{1-\zeta^{3k+2}} - \sum_{k=1}^n \frac{(-1)^k \zeta^{\frac{k(3k+5)}{2}}}{1-\zeta^{3k}} = -\sum_{k=1}^{2n} \frac{(-1)^{2n+1-k} \zeta^{\frac{(2n+1-k)(6n-3k+8)}{2}}}{1-\zeta^{3(2n+1-k)}}$$
$$= -\sum_{k=1}^{2n} \frac{(-1)^{1-k} \zeta^{\frac{(3k-1)(k-2)}{2}+(3n+1)(2n+3-2k)}}{1-\zeta^{1-3k}}$$
$$= -\sum_{k=1}^{2n} \frac{(-1)^k \zeta^{\frac{k(3k-1)}{2}}}{1-\zeta^{3k-1}}.$$
(11)

An identity due to the author and Petrov [8, (2.4)] says

$$\sum_{k=1}^{2n} \frac{(-1)^k \zeta^{\frac{k(3k-1)}{2}}}{1-\zeta^{3k-1}} = -\frac{n}{2}.$$
(12)

Then the proof of (9) follows from (11) and (12).

3. Proof of Theorem 2

Now we are in a position to prove Theorem 2. We recall the following identity:

$$\sum_{k=0}^{n-1} q^k \begin{bmatrix} 2k\\k+1 \end{bmatrix} = \sum_{k=0}^{n-1} \left(\frac{n-k-1}{3}\right) q^{\frac{1}{3}\left(2(n-k)^2 - (n-k)\left(\frac{n-k-1}{3}\right) - 3\right)} \begin{bmatrix} 2n\\k \end{bmatrix},$$
(13)

which was proved by Tauraso in a more general form (see [12, Theorem 4.2]). Since $1 - q^n \equiv 0 \pmod{\Phi_n(q)}$, we have

$$1 - q^{2n} = (1 + q^n)(1 - q^n) \equiv 2(1 - q^n) \pmod{\Phi_n(q)^2}.$$

It follows that for $1 \le k \le n-1$,

$$\begin{bmatrix} 2n \\ k \end{bmatrix} = \frac{(1-q^{2n})(1-q^{2n-1})\cdots(1-q^{2n-k+1})}{(1-q)(1-q^2)\cdots(1-q^k)} \\ \equiv 2(1-q^n)\frac{(1-q^{-1})\cdots(1-q^{-k+1})}{(1-q)(1-q^2)\cdots(1-q^k)} \pmod{\Phi_n(q)^2} \\ = 2(q^n-1)\frac{(-1)^k q^{-\frac{k(k-1)}{2}}}{1-q^k}.$$
 (14)

Multiplying both sides of (13) by q and substituting (14) into the right-hand side of (13), we arrive at

$$\begin{split} \sum_{k=0}^{n-1} q^{k+1} \begin{bmatrix} 2k \\ k+1 \end{bmatrix} \\ &= \left(\frac{n-1}{3}\right) q^{\frac{1}{3}(2n^2 - n(\frac{n-1}{3}))} + \sum_{k=1}^{n-1} \left(\frac{n-k-1}{3}\right) q^{\frac{1}{3}\left(2(n-k)^2 - (n-k)\left(\frac{n-k-1}{3}\right)\right)} \begin{bmatrix} 2n \\ k \end{bmatrix} \\ &= \left(\frac{n-1}{3}\right) q^{\frac{1}{3}(2n^2 - n(\frac{n-1}{3}))} \\ &+ 2(q^n - 1) \sum_{k=1}^{n-1} \left(\frac{n-k-1}{3}\right) \frac{(-1)^k q^{\frac{1}{3}\left(2(n-k)^2 - (n-k)\left(\frac{n-k-1}{3}\right)\right) - \frac{k(k-1)}{2}}{1 - q^k}}{1 - q^k} \pmod{\Phi_n(q)^2}. \end{split}$$
(15)

Furthermore,

$$\begin{split} \sum_{k=1}^{n-1} \left(\frac{n-k-1}{3}\right) \frac{(-1)^k q^{\frac{1}{3}\left(2(n-k)^2 - (n-k)\left(\frac{n-k-1}{3}\right)\right) - \frac{k(k-1)}{2}}}{1-q^k} \\ &= \sum_{k=1}^{n-1} \left(\frac{k-1}{3}\right) \frac{(-1)^{n-k} q^{\frac{1}{3}\left(2k^2 - k\left(\frac{k-1}{3}\right)\right) - \frac{(n-k)(n-k-1)}{2}}{1-q^{n-k}}}{1-q^{n-k}} \\ &= \sum_{k=1}^{n-1} \left(\frac{k-1}{3}\right) \frac{(-1)^{n-k} q^{\frac{1}{3}\left(2k^2 - k\left(\frac{k-1}{3}\right)\right) - \frac{k(k+1)}{2} + nk}}{1-q^{n-k}} \\ &= \sum_{k=1}^{n-1} \left(\frac{k-1}{3}\right) \frac{(-1)^k q^{\frac{1}{3}\left(2k^2 - k\left(\frac{k-1}{3}\right)\right) - \frac{k(k-1)}{2}}{1-q^k}}{(\text{mod } \Phi_n(q)), \end{split}$$

where we set $k \rightarrow n - k$ in the first step. Thus,

$$\sum_{k=0}^{n-1} q^{k+1} \begin{bmatrix} 2k\\ k+1 \end{bmatrix} \equiv \left(\frac{n-1}{3}\right) q^{\frac{1}{3}\left(2n^2 - n\left(\frac{n-1}{3}\right)\right)} + 2(q^n - 1) \sum_{k=1}^{n-1} \left(\frac{k-1}{3}\right) \frac{(-1)^k q^{\frac{1}{3}\left(2k^2 - k\left(\frac{k-1}{3}\right)\right) - \frac{k(k-1)}{2}}{1 - q^k} \pmod{\Phi_n(q)^2}.$$
 (16)

We complete the proof of (6) by combining (7) and (16).

References

- [1] J. Fürlinger, J. Hofbauer, "q-Catalan numbers", J. Comb. Theory, Ser. A 40 (1985), p. 248-264.
- [2] V. J. W. Guo, "Proof of a q-congruence conjectured by Tauraso", Int. J. Number Theory 15 (2019), no. 1, p. 37-41.
- [3] V. J. W. Guo, J.-C. Liu, "q-Analogues of two Ramanujan-type formulas for 1/π", J. Difference Equ. Appl. 24 (2018), no. 8, p. 1368-1373.
- [4] V. J. W. Guo, M. J. Schlosser, "Some new q-congruences for truncated basic hypergeometric series", Symmetry 11 (2019), no. 2, article ID 268 (12 pages).
- [5] V. J. W. Guo, J. Zeng, "Some congruences involving central *q*-binomial coefficients", *Adv. Appl. Math.* **45** (2010), no. 3, p. 303-316.
- [6] V. J. W. Guo, W. Zudilin, "A q-microscope for supercongruences", Adv. Math. 346 (2019), p. 329-358.
- [7] J.-C. Liu, "On two conjectural supercongruences of Apagodu and Zeilberger", J. Difference Equ. Appl. 22 (2016), no. 12, p. 1791-1799.
- [8] J.-C. Liu, F. Petrov, "Congruences on sums of *q*-binomial coefficients", *Adv. Appl. Math.* **116** (2020), article ID 102003 (11 pages).
- [9] S. Mattarei, R. Tauraso, "From generating series to polynomial congruences,", J. Number Theory 182 (2018), p. 179-205.
- [10] Z.-W. Sun, R. Tauraso, "New congruences for central binomial coefficients", Adv. Appl. Math. 45 (2010), no. 1, p. 125-148.
- [11] _____, "On some new congruences for binomial coefficients", Int. J. Number Theory 7 (2011), no. 3, p. 645-662.
- [12] R. Tauraso, "q-Analogs of some congruences involving Catalan numbers", Adv. Appl. Math. 48 (2012), no. 5, p. 603-614.
- [13] _____, "Some q-analogs of congruences for central binomial sums", Colloq. Math. 133 (2013), no. 1, p. 133-143.