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Abstract. We consider the space of meromorphic functions in the unit disk D and show that there exists a
dense Gδ-subset of functions having universal radial limits. Our results complement known statements about
holomorphic functions and further imply the existence of meromorphic functions having maximal cluster
sets along certain subsets of D.
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1. Introduction

Let D denote the unit disk {z : |z| < 1} and T the unit circle {z : |z| = 1}. We further denote by C (T)
the set of continuous functions from T to C∞, where C∞ :=C∪ {∞} is equipped with the chordal
metric χ. On C (T) we consider the metric dT defined by dT( f , g ) := maxTχ( f (z), g (z)) for f , g ∈
C (T). Finally, let M(D) be the set of meromorphic functions in D, including the function f∞|D,
where f∞ ≡ ∞. Endowed with the topology of spherically uniform convergence (i.e. uniform
convergence with respect to the metric χ) on compact subsets of D, the space M(D) becomes
a completely metrizable space. By d we denote a metric on M(D) that induces its topology, such
a metric can be defined via a compact exhaustion of D (see [7, Chap. VII]).

A result of Bayart [1] from 2005 implies the existence of functions f holomorphic in D having
universal radial limits in the following sense: For every measurable function ϕ on T, there exists
an increasing sequence (ρl ) in [0,1) with ρl → 1 for l →∞, such that for every z ∈ D and almost
every ζ ∈Twe have

lim
l→∞

∣∣ f (ρl (ζ− z)+ z)−ϕ(ζ)
∣∣= 0.

In a similar vein, the following result was recently proved by Charpentier [4], here, f (k) denotes
the kth antiderivative of f for k ∈Zwith k < 0, and f (0) = f (see [5, 8] for related results).
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Theorem ([4]). Let U denote the set of functions f holomorphic in D having the following
property: For every compact set K ⊂ T with K 6= T, every continuous function ϕ : K → C, every
compact set L ⊂D and every k ∈Z, there exists an increasing sequence (ρl ) in [0,1) with ρl → 1 for
l →∞, such that

max
ζ∈K

max
z∈L

∣∣∣ f (k)(ρl (ζ− z)+ z)−ϕ(ζ)
∣∣∣→ 0 for l →∞.

Then U is a dense Gδ-subset of the space of holomorphic functions inD, endowed with the topology
of uniform convergence on compact subsets of D.

The aim of this note is to show that similar universal radial limits are possible for functions in
M(D), where, in this case, the approximation property holds on the entire boundary of D, i.e. for
K =T.

2. Main result

Using similar ideas as in [1, 4], we prove the following result:

Theorem 1. Let U denote the set of functions f ∈ M(D) having the following property: For every
function ϕ ∈ C (T) and every compact set L ⊂ D, there exists an increasing sequence (ρl ) in [0,1)
with ρl → 1 for l →∞, such that

max
ζ∈T

max
z∈L

χ( f (ρl (ζ− z)+ z),ϕ(ζ)) → 0 for l →∞.

Then U is a dense Gδ-subset of M(D).

Proof. We first note that the space C (T) is separable (this follows e.g. from [15, Thm. 13.3]
and [9, Thm. 3]) and denote by (ϕ j ) a sequence that is dense in C (T). Furthermore, we set
Ls := {z : |z| ≤ s

s+1 } for s ∈ N, and consider an increasing sequence (ρl ) in [0,1) with ρl → 1 for
l →∞. For j , s, l ∈N, we define the set

U ( j , s, l ) :=
{

f ∈ M(D) : max
ζ∈T

max
z∈Ls

χ( f (ρl (ζ− z)+ z),ϕ j (ζ)) < 1

s

}
.

We then have that

U =⋂
j ,s

⋃
l

U ( j , s, l ).

Indeed, suppose that f belongs to the set on the right hand side and let be given a function
ϕ ∈ C (T), a compact set L ⊂ D and some ε > 0. There exists s0 ∈ N such that L ⊂ Ls0 and 1

s0
< ε

2 .
Furthermore, since (ϕ j ) is dense in C (T), there exists j0 ∈N such that maxTχ(ϕ j0 (ζ),ϕ(ζ)) < ε

2 . By
assumption, there exists l0 ∈N such that f ∈U ( j0, s0, l0), and hence

max
ζ∈T

max
z∈Ls0

χ( f (ρl0 (ζ− z)+ z),ϕ j0 (ζ)) < 1

s0
.

It follows

max
ζ∈T

max
z∈L

χ( f (ρl0 (ζ− z)+ z),ϕ(ζ))

≤ max
ζ∈T

max
z∈Ls0

χ( f (ρl0 (ζ− z)+ z),ϕ j0 (ζ))+max
ζ∈T

χ(ϕ j0 (ζ),ϕ(ζ)) < ε,

so that f ∈U , and hence U ⊃⋂
j ,s

⋃
l U ( j , s, l ). The other inclusion is obvious.

Let now j1 ∈ N and s1 ∈ N be given. We show that the set
⋃

l U ( j1, s1, l ) is open and dense in
M(D). Consider therefore l ∈N and suppose that f ∈U ( j1, s1, l ). Since the set

Kl ,s1 := {ρl (ζ− z)+ z : ζ ∈T, z ∈ Ls1 }
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is a compact subset of D, there then exists ε> 0 such that

max
ζ∈T

max
z∈Ls1

χ( f (ρl (ζ− z)+ z),ϕ j1 (ζ)) < 1

s1
−ε.

Furthermore, according to Lemma 1.7 in [7, Chap. VII], there exists δ > 0, such that for every
g ∈ M(D) with d(g , f ) < δ we have that

max
z∈Kl ,s1

χ(g (z), f (z)) < ε.

Hence, for g ∈ M(D) with d(g , f ) < δ, we obtain

max
ζ∈T

max
z∈Ls1

χ(g (ρl (ζ− z)+ z),ϕ j1 (ζ))

≤ max
ζ∈T

max
z∈Ls1

χ(g (ρl (ζ− z)+ z), f (ρl (ζ− z)+ z))+max
ζ∈T

max
z∈Ls1

χ( f (ρl (ζ− z)+ z),ϕ j1 (ζ))

= max
z∈Kl ,s1

χ(g (z), f (z))+max
ζ∈T

max
z∈Ls1

χ( f (ρl (ζ− z)+ z),ϕ j1 (ζ)) < 1

s1
,

so that g ∈U ( j1, s1, l ). This implies that for l ∈N, the set U ( j1, s1, l ) is open in M(D), and the same
then obviously holds for the set

⋃
l U ( j1, s1, l ).

In order to show that the set
⋃

l U ( j1, s1, l ) is dense in M(D), we consider f ∈ M(D) and ε> 0. By
Lemma 1.7 in [7, Chap. VII], there exists s2 ∈Nwith s2 ≥ s1 and δ> 0, such that for every g ∈ M(D)
with maxLs2

χ(g (z), f (z)) < δ, we have that d(g , f ) < ε. Consider now the set K := Ls2 ∪T and the
function

h(z) :=
{

f (z), for z ∈ Ls2 ,

ϕ j1 (z), for z ∈T.

Then K is a compact subset of C and C \ K has two components, so that a combination of
Mergelyan’s Theorem on rational approximation (e.g. [15, Thm. 13.3]) and [9, Thm. 3] yields the
existence of a rational function r (z), such that

max
z∈K

χ(r (z),h(z)) < min

{
δ,

1

2s1

}
,

so that we obtain

max
z∈Ls2

χ(r (z), f (z)) < δ and max
ζ∈T

χ(r (ζ),ϕ j1 (ζ)) < 1

2s1
.

Note that by the first inequality, we have that d(r, f ) < ε. It remains to show that r ∈⋃
l U ( j1, s1, l ).

Clearly, r is uniformly continuous on compact subsets of C, hence there exists δs1 > 0 such that
for z1, z2 ∈D, we have that

|z1 − z2| < δs1 implies χ(r (z1),r (z2)) < 1

2s1
.

Since ρl → 1 for l →∞, there further exists l1 ∈N such that

max
ζ∈T

max
z∈Ls1

∣∣ρl1 (ζ− z)+ z −ζ∣∣= max
ζ∈T

max
z∈Ls1

∣∣ζ(ρl1 −1)− z(ρl1 −1)
∣∣< δs1 .

Finally, we obtain

max
ζ∈T

max
z∈Ls1

χ(r (ρl1 (ζ− z)+ z),ϕ j1 (ζ))

≤ max
ζ∈T

max
z∈Ls1

χ(r (ρl1 (ζ− z)+ z),r (ζ))+max
ζ∈T

χ(r (ζ),ϕ j1 (ζ)) < 1

s1
,

so that r ∈U ( j1, s1, l1) and the set
⋃

l U ( j1, s1, l ) is dense in M(D).
Hence, for any j , s ∈N, the set

⋃
l U ( j , s, l ) is open and dense in M(D). By Baire’s Theorem, the

set
⋂

j ,s
⋃

l U ( j , s, l ) =U is thus a dense Gδ-subset of M(D), which proves the theorem. �

We explicitly state the case L = {0} in Theorem 1:
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Corollary 2. There exists a dense Gδ-subset U of M(D), such that every f ∈ U has the following
property: For every function ϕ ∈C (T), there exists an increasing sequence (ρl ) in [0,1) with ρl → 1
for l →∞, such that

max
ζ∈T

χ( f (ρlζ),ϕ(ζ)) → 0 for l →∞.

3. Properties of functions f ∈U

In the following, we will study some properties of functions f ∈ U , where U is the set defined
in Theorem 1. We start by showing that in contrast to the holomorphic case, the universal
approximation property in Theorem 1 does not hold for the derivatives of f .

Proposition 3. Consider a function f ∈ M(D). Then we have f ′ ∉U .

Proof. Suppose that there exists f ∈ M(D) such that f ′ ∈ U . Then, there exists an increasing
sequence (ρl ) in [0,1) with ρl → 1 for l →∞, such that

max
ζ∈T

χ

(
f ′(ρl ζ),

1

ζ

)
→ 0 for l →∞.

Note that this implies that for l sufficiently large, the function f ′(ρl ζ) has no poles on T. Now,
since 1

ζ is bounded onT, we obtain that the sequence ( f ′(ρl ζ)) converges uniformly to 1
ζ onT for

l →∞, which in turn implies

1

2πi

∫
T

f ′(ρl ζ)dζ→ 1

2πi

∫
T

1

ζ
dζ= 1 for l →∞.

According to the Residue Theorem, the integral on the left hand side equals 0 for every l ∈ N,
hence we get a contradiction. �

We further mention that Theorem 1 implies the existence of functions in M(D) having maximal
cluster sets along certain subsets ofD, as well as functions having no asymptotic values. We recall
the corresponding definitions. A value a ∈ C∞ is said to be an asymptotic value of f ∈ M(D), if
there exists a continuous curve γ : [0,1) →Dwith limr→1−

∣∣γ(r )
∣∣= 1, such that limr→1− f (γ(r )) = a.

The curve γ is then called an asymptotic curve for f . Furthermore, for a function f ∈ M(D) and a
set A ⊂Dwith A∩T 6= ;, the cluster set C ( f , A) of f along A is defined by

C ( f , A) := {
a ∈C∞ :∃ (zn) in A and ζ ∈T : zn → ζ and χ( f (zn), a) → 0 for n →∞}

,

and the cluster set is said to be maximal, if C ( f , A) = C∞. Given f ∈ U and setting Az,ζ :=
{ρ(ζ− z)+ z : ρ ∈ [0,1)} for z ∈D and ζ ∈T, it is easily seen that for every z ∈D and every ζ ∈T, the
radial cluster set C ( f , Az,ζ) is maximal and the curve γz,ζ : [0,1) → D with γz,ζ(r ) := r (ζ− z)+ z is
not an asymptotic curve for f . Hence, as a consequence of Theorem 1, we obtain that the set of
functions in M(D) having this property contains a dense Gδ-subset of M(D). In fact, we have the
following stronger statement (see [2, 3, 11–13] for related results):

Corollary 4. Let be given a function f ∈U . Then the following hold:

(i) the cluster set C ( f ,γ([0,1))) is maximal for every continuous curve γ : [0,1) → D with
limsupr→1−

∣∣γ(r )
∣∣= 1.

(ii) the function f does not have an asymptotic value. Furthermore, f takes every value a ∈C∞
infinitely many times in D and for every ζ ∈ T and every ε > 0, we have that the set
C∞ \ f (Uε(ζ)∩D) contains at most two points, where Uε(ζ) := {z : |z −ζ| < ε}.

In particular, the set of functions in M(D) having the above properties contains a dense Gδ-subset
of M(D).
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Proof. (i). Let f ∈ U and a ∈ C∞ be given and consider a continuous curve γ : [0,1) → D with
limsupr→1−

∣∣γ(r )
∣∣= 1. By assumption, there exists an increasing sequence (ρl ) in [0,1) withρl → 1

for l →∞, such that
max
ζ∈T

χ
(

f (ρl ζ), a
)→ 0 for l →∞.

Since limsupr→1−
∣∣γ(r )

∣∣= 1, there exists l0 ∈N such that for every l > l0, we have that γ([0,1))∩{z :
|z| = ρl } 6= ;. Thus, there exists a sequence (zs ) on γ([0,1)) with |zs | = ρl0+s for s ∈ N, and hence
|zs |→ 1 for s →∞. We finally obtain

χ( f (zs ), a) ≤ max
{z:|z|=ρl0+s }

χ( f (z), a) = max
ζ∈T

χ( f (ρl0+sζ), a) → 0 for s →∞,

which implies a ∈C ( f ,γ([0,1))), hence C ( f ,γ([0,1))) is maximal.

(ii). Since by the first statement, the cluster set C ( f ,γ([0,1))) is maximal for every continuous
curve γ : [0,1) →Dwith limr→1−

∣∣γ(r )
∣∣= 1, it is clear that f can not have an asymptotic value. The

other statements then immediately follow from classical results in [6, 14]. �

The above corollary shows that f ∈ U does not have a Picard value. We finish with a slightly
stronger statement, namely that f ∈ U can not have a deficient value in the sense of Nevan-
linna. We therefore introduce some standard terminology from Nevanlinna theory, see [10] for
the corresponding definitions. For a function f ∈ M(D), a value a ∈ C∞ and r ∈ [0,1), we de-
note by m(r, a, f ) and N (r, a, f ) the proximity function and the (integrated) counting function,
respectively. We write T (r, f ) for the characteristic function of f and we recall that in case that
T (r, f ) →∞ for r → 1−, the deficiency δ(a, f ) of a is defined by

δ(a, f ) = 1− limsup
r→1−

N (r, a, f )

T (r, f )
= liminf

r→1−
m(r, a, f )

T (r, f )
,

and a is called a deficient value of f , if δ(a, f ) > 0.

Proposition 5. Consider a function f ∈U . Then f has no deficient value.

Proof. Let be given a function f ∈ U . Then, the radial limit limρ→1− f (ρζ) does not exist for any
ζ ∈T, and it is an immediate consequence of Nevanlinna’s extension of Fatou’s Theorem (e.g. [10,
Thm. 6.12]) that T (r, f ) →∞ for r → 1−. By assumption, there exists an increasing sequence (ρl )
in [0,1) with ρl → 1 for l →∞, such that

max
ζ∈T

χ
(

f (ρl ζ),0
)→ 0 for l →∞.

This implies the uniform convergence of ( f (ρl ζ)) to 0 on T for l → ∞, from which we obtain
m(ρl , a, f ) =O (1) for l →∞ and every a ∈C∞ \ {0}, and hence

δ(a, f ) = liminf
r→1−

m(r, a, f )

T (r, f )
≤ lim

l→∞
m(ρl , a, f )

T (ρl , f )
= 0.

By a very similar argumentation, we obtain an increasing sequence (ρl ) in [0,1) with ρl → 1 for
l → ∞, and m(ρl ,0, f ) = O (1) for l → ∞, which implies δ(0, f ) = 0. Hence, no value a ∈ C∞ is
deficient for f . �
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