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1. Introduction and main result

1.1. Context

This short note is concerned with the expansion of the homogenized coefficients under Bernoulli
perturbations of Poisson point processes, and can be considered as an appendix to [4]. Consider
a locally finite stationary ergodic random point set P = {xn}n in Rd (d ≥ 1), to which we associate
the random (diffusion) coefficient field A(P ) on Rd

A(P )(x) := A1(x)+ (A2(x)− A1(x))1∪n B(xn )(x), (1)
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where B(xn) denotes the unit ball centered at point xn , and A1 and A2 are ergodic stationary
random uniformly elliptic symmetric coefficient fields (that is, the standard assumptions of
stochastic homogenization). Symmetry is not essential in what follows, see e.g. the discussion at
the end of [4, Section 1]. Since A1, A2, and P are stationary and ergodic, the random coefficient
field A(P ) is also stationary and ergodic itself, and we can define the associated homogenized
coefficient A(P ), a deterministic matrix given in direction e ∈Rd by

A(P )e = E[
A(∇ϕ+e)

]
, (2)

whereϕ is the so-called corrector, see (3) below for details, and where E [·] denotes the expectation
in the underlying probability space.

For all 0 ≤ p ≤ 1, denote by P (p) the random Bernoulli deletion of P , that is, P (p) = {xn : b(p)
n =

1} with {b(p)
n }n a sequence of independent Bernoulli variables of law (1−p)δ0 +pδ1. This means

that P (p) is a decimated point process (with P (0) = ∅ and P (1) = P ). With P (p), we associate
A(p) := A(P (p)) and A(p) := A(P (p)) as in (1) and (2). In these terms, we are interested in the
regularity of the map p 7→ A(p). Inspired by [1, 2], we established in [4] its analyticity under the
crucial assumption that P be uniformly locally finite, that is, if supx∈Rd ]{xn ∈ B(x)} < ∞. This
result, which does not rely on any mixing assumption of P itself (besides qualitative ergodicity),
does not apply to the Poisson point process since the latter is not uniformly locally finite.

The present note is concerned with the case of the Poisson point process. Denote by Pλ a
Poisson point process with intensity λ ≥ 0 (that is, E

[
]{Pλ ∩ [0,1)d }

] = λ). Then, the decimated

process P
(p)
λ

has the same law as Ppλ, so that the regularity of λ 7→ Aλ is equivalent to the

regularity of p 7→ A(p)
λ

for fixed λ. As announced in [4], exploiting that Pλ has finite range of
dependence, and assuming that A1 and A2 are constant, the first author proved the smoothness
of λ 7→ Aλ in his PhD thesis [3, Theorem 5.A.1], based on the quantitative homogenization
estimates of [8] (in the spirit of [10] for the first-order expansion in the discrete setting). The
question of quantitative smoothness (such as Gevrey regularity or analyticity) of λ 7→ Aλ was left
open.

Motivated by applications to homogenization of particle systems [5], Giunti, Gu, Mourrat, and
Nitzschner recently addressed a related problem in a different setting, and proved the Gevrey
regularity of λ 7→ aλ in [6] (a variant of λ 7→ Aλ). Their approach is based on Poisson calculus
(cf. [9]), which they use both to derive formulas and to prove estimates. In the introduction of [6],
the authors point out that the strategy they use could be applied to prove the regularity of λ 7→ Aλ

in our setting.

1.2. Main results

The aim of this note is twofold. First, we show that [6], besides having the same layout as [4], is a
direct implementation (in the setting of homogenization of particle systems and Poisson calcu-
lus) of the strategy based on the triad “local approximation / cluster expansions / improved `1−`2

estimates” that we introduced for general point processes in [4]. Second, we single out the new
ingredient of [6] for Poisson processes wrt to [4] (see Lemma 4 below), and combine it with our
general formulation of [4] in order to prove the Gevrey regularity of the map λ 7→ Aλ with little
effort.

We start with the comparison of [6] with our previous work [4]. Although the precise functional
setting is different, the identities, the estimates, and the arguments leading to them have the same
form. The arguments in [6] are as follows:

• The authors first introduce in [6, Section 3] a sequence of local approximations of aλ on
bounded domains. This is in line with the massive approximations used in [4] (making
cluster expansions finite).
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• They view correctors as functions of sets of indices and introduce a difference calculus
(see [6, (2.9)–(2.11) and Proposition 5.1]) that provides a natural way to write cluster
expansions. This coincides with the point of view and the definitions of [4, Section 2.2].

• They dedicate [6, Section 4] to the proof of C 1,1-regularity to illustrate the general strategy,
as we did in [4, Section 3] for the map p 7→ A(p).

• They turn in [6, Section 5] to the proof of their main result [6, Theorem 2.3], which they
split into several parts:

– They first derive explicit formulas [6, (5.9)–(5.13)] for the terms of the cluster expan-
sion and for the remainder. These are to be compared to [4, Lemma 5.1] (once refor-
mulated using Poisson calculus).

– Then they introduce and prove “key estimates” in [6, Proposition 5.4]. Both the
statement and the proof are to be compared to what is called “improved `1 − `2

estimates” in the original [4, Proposition 4.6], the very core of [4] (reformulated using
Poisson calculus again). The only new ingredient with respect to the strategy of [4]
turns out to be an interesting property of the Poisson point process, which we single
out here in Lemma 4 below.

– Finally, they combine the explicit formulas for the cluster expansion and remainder
together with the `1−`2 estimates in order to pass to the limit in the approximation
parameter, cf. [6, Section 5.5]. This string of arguments is similar to [4, Section 5].
They remark that a careful tracking of the constants in their proofs (which they omit)
would reveal that λ 7→ aλ has Gevrey regularity of order 2.

Next, relying on our original results in [4] (without using Poisson calculus), together with a few
adaptations, we shall establish the following version of [4, Theorem 2.1] for the Poisson point
process.

Theorem 1. The map λ 7→ Aλ is Gevrey regular of order 2 on [0,∞), and derivatives are given by
cluster formulas as in [4].

Compared to our previous result [4, Theorem 2.1], Theorem 1 treats the Poisson point process
(relaxing the assumption that the point process be uniformly locally finite). This comes at a price:
whereas real-analyticity was established in [4, Theorem 2.1], we only obtain Gevrey-regularity in
Theorem 1. Also, it is not clear to us to what extent this result is expected to hold for the thinning
by Bernoulli deletion of other non-uniformly locally finite point processes than Poisson.

2. Proof of the Gevrey regularity

2.1. Strategy of the proof

Recall that P
(p)
λ

and Ppλ have the same law for all p ∈ [0,1], hence A
(p)
λ = Apλ, which entails that

regularity of λ 7→ Aλ on [0,∞) is equivalent to regularity of p 7→ A(p)
λ

for any λ > 0. In addition,

replacing the underlying random field A1 by the law of A(p0)
λ

turns A(p)
λ

into the law of A(p+p0)
λ

,

hence we may restrict to proving the regularity of p 7→ A(p)
λ

at p = 0 for any λ> 0. In what follows,
we let λ > 0 be arbitrary, yet fixed, and we skip the subscript λ for simplicity. We start with
two approximations. First, as in [4], we replace the corrector gradient ∇ϕ, that is the centered
stationary gradient solution of the whole-space PDE

−∇· A(∇ϕ+e) = 0, (3)

by the gradient ∇ϕT of its massive approximation, that is the corresponding solution of the
whole-space PDE

1

T
ϕT −∇· A(∇ϕT +e) = 0. (4)
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As opposed to (3), the latter equation (4) is well-posed on a deterministic level (that is, well-posed
for any uniformly elliptic coefficient field A), and the dependence of ∇ϕT (x) upon the values of
A restricted on Q(y) = [y, y +1)d is uniformly exponentially small in |x−y |p

T
. Next, we replace the

Poisson point process P by a sequence of uniformly locally finite point processes {Ph}h defined
as follows. For h > 0, we decompose Rd into the union of cubes Qh(z) = z + [0,h)d with z ∈ (hZ)d .
On each cube Qh(z) we pick randomly a point xz (independently of the others), we attach an
independent Bernoulli variable bz of parameter λhd , and finally set

Ph := {
xz : z ∈ (hZ)d ,bz = 1

}
.

So defined, Ph is indeed uniformly locally finite and it has h-discrete stationarity and finite range
of dependence. In addition, Ph converges in law to P as h ↓ 0. Using these two approximations,
we introduce the following proxy for the homogenized coefficients,

A(p)
T,he := Eh

[
A

(
P

(p)
h

)(∇ϕ(p)
T,h +e

)]
,

with the short-hand notation Eh [ · ] := E[fflQh (0) ·
]

and ϕ
(p)
T,h = ϕT (P (p)

h ). By qualitative stochastic
homogenization arguments (see e.g. [7, Theorem 1] for the convergence in T and [4, Step 1 in
Section 5.2] for the convergence in h), we have for all p ∈ [0,1],

lim
T ↑∞,h↓0

A(p)
T,h = A(p). (5)

By [4, Theorem 2.1], p 7→ A(p)
T,h is real-analytic close to zero (and actually on the whole inter-

val [0,1]), and there exists a sequence
{

A j
T,h

}
j , given by explicit cluster formulas, cf. Lemma 2

below, such that for all p small enough we have

A(p)
T,h =

∞∑
j=0

p j

j !
A j

T,h . (6)

As we shall see, Theorem 1 follows in the limit T ↑ ∞,h ↓ 0 provided we prove that there exists
C <∞ such that this sequence further satisfies for all j ,

sup
T≥1,h≤1

∣∣A j
T,h

∣∣≤ j !2C j . (7)

The main ingredient to (7) is Proposition 3 below. Before we state this result, let us recall some
notation and results borrowed from [4].

2.2. Difference operators and inclusion-exclusion formula

We start by considering correctors as functions of indices, and then recall the associated differ-
ence calculus and the inclusion-exclusion formula. In what follows, we write P = {xn}n and set
Jn := B(xn). Note that inclusions {Jn}n could have different shapes and even be random as well
provided they are uniformly bounded.

Correctors as functions of indices

For all (possibly infinite) subsets E ⊂N, we define AE := A1+C E , where C E := (A2−A1)1J E and
J E :=⋃

n∈E Jn , and we introduce the following variant of (4):

1

T
ϕE

T −∇· AE (∇ϕE
T +e) = 0. (8)

Setting E (p) := {
n ∈N : b(p)

n = 1
}
, we use the short-hand notation C (p) := C E (p)

, A(p) := AE (p)
, and

ϕE (p)

T =ϕ(p)
T .
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Difference operators

We introduce for all n ∈N a difference operatorδ{n} acting generically on measurable functions
of the point process, and in particular on approximate correctors as follows: for all H ⊂N,

δ{n}ϕH
T :=ϕH∪{n}

T −ϕH
T .

This operator yields a natural measure of the sensitivity of the corrector ϕH
T with respect to

the perturbation of the medium at inclusion Jn . For all finite F ⊂ N, we further introduce the
higher-order difference operator δF = ∏

n∈F δ
{n}. More explicitly, this difference operator δF acts

as follows on approximate correctors ϕH
T : for all H ⊂N,

δFϕH
T :=

|F |∑
l=0

(−1)|F |−l
∑

G⊂F
|G|=l

ϕG∪H
T = ∑

G⊂F
(−1)|F \G|ϕG∪H

T , (9)

with the convention δ∅ϕH
T = (ϕH

T )∅ := ϕH
T . As in the physics literature, see [11], such operators

are used to formulate cluster expansions, which are viewed as formal proxies for Taylor expan-
sions with respect to the Bernoulli perturbation: up to order k in the parameter p, the cluster
expansion for the perturbed corrector reads, for small p ≥ 0,

ϕ
(p)
T  ϕT + ∑

n∈E (p)

δ{n}ϕT + 1

2!

∑
n1,n2∈E (p)

distinct

δ{n1,n2}ϕT +·· ·+ 1

k !

∑
n1,...,nk∈E (p)

distinct

δ{n1,...,nk }ϕT ,

which we rewrite in the more compact form

ϕ
(p)
T  

k∑
j=0

∑
F⊂E (p)

|F |= j

δFϕT , (10)

where
∑

|F |= j denotes the sum over j -uplets of integers (when j = 0, this sum reduces to the single

term F =∅). Intuitively, this means that ϕ(p)
T is expected to be close to a series where the term of

order ` involves a correction due to the `-particle interactions.
For convenience, we set δF

e ϕ
H
T := δFϕH

T for F 6=∅, and δ∅e ϕ
H
T :=ϕH

T +e · x. Using the binomial
formula in form of

∑
S⊂E (−1)|E\S| = 0 for E 6=∅, we easily deduce

∇δG
e ϕ

F∪H
T = ∑

S⊂F
∇δS∪G

e ϕH
T . (11)

Inclusion-exclusion formula

When the inclusions {Jn}n are disjoint, we have

C (p) = ∑
n∈E (p)

C {n}. (12)

However, since inclusions may overlap, intersections are accounted for several times in the right-
hand side and this formula no longer holds. We now recall a suitable system of notation to deal
with those intersections.

For any (possibly infinite) subset E ⊂ N, we set AE := A1 +CE , where CE := (A2 − A1)1JE and
JE := ⋂

n∈E Jn . Note that J{n} = J {n} = Jn and C {n} = C{n}. For non-necessarily disjoint inclusions,
C (p) is then given by the following general inclusion-exclusion formula:

C (p) = ∑
n∈E (p)

C{n} −
∑

n1<n2∈E (p)

C{n1,n2} +
∑

n1<n2<n3∈E (p)

C{n1,n2,n3} −·· ·

=
∞∑

k=1
(−1)k+1

∑
F⊂E (p)

|F |=k

CF . (13)
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Since the inclusions Jn ’s have a bounded diameter and the point set is almost surely locally finite,
the sum (13) is locally finite almost surely.

We shall need further notation in the proofs. For all E ,F ⊂N, E 6=∅, we set JE‖F := (
⋂

n∈E Jn) \
(
⋃

n∈F Jn) and J E
‖F := (

⋃
n∈E Jn) \ (

⋃
n∈F Jn), and then

CE‖F := (A2 − A1)1JE‖F and C E
‖F := (A2 − A1)1J E

‖F
.

In particular, we have CE‖∅ = CE , C E
‖∅ = C E , and C∅

‖F = 0. For simplicity of notation, we also set
C∅‖F = 0 =C∅. The inclusion-exclusion formula then yields for all G , H ⊂Nwith G 6=∅,

C H = ∑
S⊂H

(−1)|S|+1CS , (14)

C H
‖G = ∑

S⊂H
(−1)|S|+1CS‖G , (15)

CG‖H = ∑
S⊂H

(−1)|S|CS∪G . (16)

In [4, Corollary 2.2], we established the following formulas for the coefficients {A j
T,h} j in (6),

which can be viewed as natural cluster formulas.

Lemma 2. For all T,h > 0, we have for all j ≥ 0,

e · A j
T,he = j !

∑
|F |= j

∑
G⊂F

(−1)|F \G|+1Eh

[
∇δG

e ϕT,h ·CF \G‖G (∇ϕF
T,h +e)

]
. (17)

2.3. Optimal `1 −`2 estimates

In [4], we used the naming “`1 −`2 estimates” for the following family of estimates, which state
that sums can be pulled out of the square without changing the bounds. In the present Poisson
setting, this statement is to be compared to [6, Proposition 5.3].

Proposition 3. There exists a constant C <∞ such that for all T,h > 0 and j ,k ≥ 0,

Sk
j := Eh

[ ∑
|G|=k

∣∣∣∣ ∑
|F |= j

F∩G=∅

∇δF∪GϕT,h

∣∣∣∣2
]
≤ j !C k+ j . (18)

As in [6], the proof combines the original arguments for [4, Proposition 4.6] together with the
following interesting property of the Poisson point process.

Lemma 4. Let R be a bounded random function of indices with R(∅) = 0, and assume that it is
approximately local in the sense that there exists κ> 0 such that for all F ,

|R(F )|. ∑
n∈F

e−κ|xn |. (19)

Then there exists C <∞ (depending only on d and on our fixed intensity λ) such that for all h > 0
and a,b,c ≥ 1 we have

Eh

[ ∑
|H |=a,|G|=b

H∩G=∅

1JH

∣∣∣∣ ∑
|F |=c

F∩(H∪G)=∅

R(F ∪G)

∣∣∣∣2
]
≤ C a

a!
Eh

[ ∑
|G|=b

∣∣∣∣ ∑
|F |=c

F∩G=∅

R(F ∪G)

∣∣∣∣2
]

. (20)

Proof. Because of approximate locality (19), the left-hand side of (20) is finite for all finite a,b,c,
and we have

lim
ρ↑∞

Eh

[ ∑
|H |=a,|G|=b

H∩G=∅

1JH

∣∣∣∣ ∑
|F |=c

F∩(H∪G)=∅

Rρ(F ∪G)

∣∣∣∣2
]
= Eh

[ ∑
|H |=a,|G|=b

H∩G=∅

1JH

∣∣∣∣ ∑
|F |=c

F∩(H∪G)=∅

R(F ∪G)

∣∣∣∣2
]

,
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where {Rρ}ρ stands for the finite-volume restrictions Rρ(F ) := R(F ∩ {n : xn ∈ Qρ}). Hence it
suffices to prove the claim for Rρ instead of R. As Rρ(F ) only depends on indices for points in
Qρ , we may condition the expectation with respect to the number of points in Qρ , to the effect of

Eh

[ ∑
|H |=a,|G|=b

H∩G=∅

1JH

∣∣∣∣ ∑
|F |=c

F∩(H∪G)=∅

Rρ(F ∪G)

∣∣∣∣2
]

=
∞∑

n=a+b+c
P

[
]Ph ∩Qρ = n

]
Eh,ρ,n

[ ∑
|H |=a,|G|=b

H∩G=∅

1JH

∣∣∣∣ ∑
|F |=c

F∩(H∪G)=∅

Rρ(F ∪G)

∣∣∣∣2
]

,

where Eh,ρ,n[ · ] := Eh[ · |](Ph ∩Qρ) = n]. The complete independence of Ph now ensures that
Eh,ρ,n coincides with normalized integration on Qρ with respect to all n points. This yields in
particular

Eh,ρ,n

[ ∑
|H |=a,|G|=b

H∩G=∅

1JH

∣∣∣∣ ∑
|F |=c

F∩(H∪G)=∅

Rρ(F ∪G)

∣∣∣∣2
]

=
(

n

a

)( 
Qa
ρ

1x1,...,xa∈B dx1 . . .dxa

)
Eh,ρ,n−a

[ ∑
|G|=b

∣∣∣∣ ∑
|F |=c

F∩G=∅

Rρ(F )

∣∣∣∣2
]

≤C a

(
n

a

)
ρ−d aEh,ρ,n−a

[ ∑
|G|=b

∣∣∣∣ ∑
|F |=c

F∩G=∅

Rρ(F )

∣∣∣∣2
]

.

Noting that

P
[
](Ph ∩Qρ) = n

](
n

a

)
ρ−d a .

1

a!
P

[
](Ph ∩Qρ) = n −a

]
,

the claim now follows by summation in form of

Eh

[ ∑
|H |=a,|G|=b

H∩G=∅

1JH

∣∣∣∣ ∑
|F |=c

F∩(H∪G)=∅

Rρ(F ∪G)

∣∣∣∣2
]

=
∞∑

n=a+b+c
P

[
](Ph ∩Qρ) = n

]
Eh,ρ,n

[ ∑
|H |=a,|G|=b

H∩G=∅

1JH

∣∣∣∣ ∑
|F |=c

F∩(H∪G)=∅

Rρ(F ∪G)

∣∣∣∣2
]

≤C a
∞∑

n=a+b+c
P

[
](Ph ∩Qρ) = n

](
n

a

)
ρ−d aEh,ρ,n−a

[ ∑
|G|=b

∣∣∣∣ ∑
|F |=c

F∩G=∅

Rρ(F ∪G)

∣∣∣∣2
]

.
C a

a!
Eh

[ ∑
|G|=b

∣∣∣∣ ∑
|F |=c

F∩G=∅

Rρ(F ∪G)

∣∣∣∣2
]

. �

With the above lemma at hand, we are in position to prove Proposition 3.

Proof of Proposition 3. The proof closely follows that of [4, Proposition 4.6]. In particular, it is
based on a double induction argument in j and k. The only difference with the original proof
of [4, Proposition 4.6] is that we appeal to Lemma 4 each time we need to control a term of the
form

∑
U⊂G 1JU (which is uniformly bounded if the point process is uniformly locally finite).



916 Mitia Duerinckx and Antoine Gloria

Step 1. General recurrence relation. Let G ⊂ N be a finite subset. Summing the equation satis-
fied by δF∪G

e ϕT,h over F , cf. [4, Lemma 4.1], we find

1

T

∑
|F |= j+1
F∩G=∅

δF∪G
e ϕT,h −∇· A∇ ∑

|F |= j+1
F∩G=∅

δF∪G
e ϕT,h

=∇· ∑
|F |= j+1
F∩G=∅

∑
S⊂F

∑
U⊂G

(−1)|S|+|U |+1CS∪U‖G\U∇δ(F \S)∪(G\U )
e ϕS

T,h

=∇· ∑
U⊂G

∑
S≤ j+1

S∩G=∅

(−1)|S|+|U |+1CS∪U‖G\U
∑

|F |= j+1−|S|
F∩(G∪S)=∅

∇δF∪(G\U )
e ϕS

T,h .

The energy estimate then yields after summing over G (see e.g. [4, proof of Lemma 4.2]),

Sk+1
j+1 := Eh

[ ∑
|G|=k+1

∣∣∣∣∇ ∑
|F |= j+1
F∩G=∅

δF∪G
e ϕT,h

∣∣∣∣2
]

. Eh

[ ∑
|G|=k+1

∣∣∣∣ ∑
U⊂G

∑
|S|≤ j+1
S∩G=∅

(−1)|S|+|U |+1CS∪U‖G\U
∑

|F |= j+1−|S|
F∩(G∪S)=∅

∇δF∪(G\U )
e ϕS

T,h

∣∣∣∣2
]

.

Since we have |CS∪U‖G\U |. 1JS1JU‖G\U , and since the family {JU‖G\U }U⊂G is disjoint for fixed G ,
we deduce

Sk+1
j+1 . Eh

[ ∑
|G|=k+1

∑
U⊂G

1JU

( ∑
|S|≤ j+1
S∩G=∅

1JS

∣∣∣∣ ∑
|F |= j+1−|S|
F∩(G∪S)=∅

∇δF∪(G\U )
e ϕS

T,h

∣∣∣∣)2
]

. (21)

Using the decomposition ∇δF∪(G\U )
e ϕS

T,h =∑
R⊂S ∇δF∪(G\U )∪R

e ϕT,h , cf. (11), this leads to

Sk+1
j+1 . Eh

[ ∑
|G|=k+1

∑
U⊂G

1JU

( ∑
|S|≤ j+1
S∩G=∅

∑
R⊂S

1JS

∣∣∣∣ ∑
|F |= j+1−|S|
F∩(G∪S)=∅

∇δF∪(G\U )∪R
e ϕT,h

∣∣∣∣)2
]

,

or alternatively, disjointifying the sets,

Sk+1
j+1 .

k+1∑
α=1

Eh

[ ∑
|G|=k+1−α,|U |=α

G∩U=∅

1JU

( j+1∑
β=1

β∑
γ=0

∑
|S|=β−γ,|R|=γ

(S∪R)∩(G∪U )=S∩R=∅

1JR∪S

×
∣∣∣∣ ∑

|F |= j+1−β
F∩(G∪U∪S∪R)=∅

∇δF∪G∪R
e ϕT,h

∣∣∣∣)2
]

. (22)

Using (20) in (22) (which we can since the massive approximation makes the corrector gradient
approximately local with κ' 1/

p
T ), we get

Sk+1
j+1 .

k+1∑
α=1

Cα

α!
Eh

[ ∑
|G|=k+1−α

( j+1∑
β=1

β∑
γ=0

∑
|S|=β−γ,|R|=γ

(S∪R)∩G=S∩R=∅

1JR∪S

∣∣∣∣ ∑
|F |= j+1−β

F∩(G∪S∪R)=∅

∇δF∪G∪R
e ϕT,h

∣∣∣∣)2
]

. (23)
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Now expanding the square,

Eh

[ ∑
|G|=k+1−α

( ∑
β=1

j+1
∑
γ=0

β
∑

|S|=β−γ,|R|=γ
(S∪R)∩G=S∩R=∅

1JS∪R

∣∣∣∣ ∑
|F |= j+1−β

F∩(G∪S∪R)=∅

∇δF∪G∪R
e ϕT,h

∣∣∣∣)2
]

=
j+1∑
β=1

β∑
γ=0

j+1∑
β′=1

β′∑
γ′=0

E

[ ∑
|G|=k+1−α

∑
|S|=β−γ,|R|=γ

(S∪R)∩G=S∩R=∅

∑
|S′|=β′−γ′,|R ′|=γ′

(S′∪R ′)∩G=S′∩R ′=∅

1JS∪R1JS′∪R′

×
∣∣∣∣ ∑

|F |= j+1−β
F∩(G∪S∪R)=∅

∇δF∪G∪R
e ϕT,h

∣∣∣∣∣∣∣∣ ∑
|F ′|= j+1−β′

F∩(G∪S′∪R ′)=∅

∇δF∪G∪R ′
e ϕT,h

∣∣∣∣
]

,

and making F (resp. F ′) disjoint from S′,R ′ (resp. S,R) in form of∣∣∣∣∣ ∑
|F |= j+1−β

F∩(G∪S∪R)=∅

∇δF∪G∪R
e ϕT,h

∣∣∣∣∣≤ ∑
S′

0⊂S′,R ′
0⊂R ′

∣∣∣∣∣ ∑
|F |= j+1−β−|S′

0|−|R ′
0|

F∩(G∪S∪R∪S′∪R ′)=∅

∇δF∪G∪R∪S′
0∪R ′

0
e ϕT,h

∣∣∣∣∣ ,

we deduce, using the bounds ab ≤ a2 +b2 and
∑

H ′⊂H 1 ≤ 2|H |,

Eh

[ ∑
|G|=k+1−α

( j+1∑
β=1

β∑
γ=0

∑
|S|=β−γ,|R|=γ

(S∪R)∩G=S∩R=∅

1JS∪R

∣∣∣∣ ∑
|F |= j+1−β

F∩(G∪S∪R)=∅

∇δF∪G∪R
e ϕT,h

∣∣∣∣)2
]

.
j+1∑
β=1

β∑
γ=0

j+1∑
β′=1

β′∑
γ′=0

2β
′
E

[ ∑
|G|=k+1−α

∑
|S|=β−γ,|R|=γ

(S∪R)∩G=S∩R=∅

∑
|S′|=β′−γ′,|R ′|=γ′

(S′∪R ′)∩G=S′∩R ′=∅

1JS∪R1JS′∪R′

× ∑
S′

0⊂S′,R ′
0⊂R ′

∣∣∣∣ ∑
|F |= j+1−β−|S′

0|−|R ′
0|

F∩(G∪S∪R∪S′∪R ′)=∅

∇δF∪G∪R∪S′
0∪R ′

0
e ϕT,h

∣∣∣∣2
 .

As all sums are on disjoint index sets, we are now in position to appeal again to (20), and we easily
deduce after straightforward simplifications,

Eh

[ ∑
|G|=k+1−α

( j+1∑
β=1

β∑
γ=0

∑
|S|=β−γ,|R|=γ

(S∪R)∩G=S∩R=∅

1JS∪R

∣∣∣∣ ∑
|F |= j+1−β

F∩(G∪S∪R)=∅

∇δF∪G∪R
e ϕT,h

∣∣∣∣)2
]

.
j+1∑
β=1

β∑
γ=0

j+1∑
β′=1

β′∑
γ′=0

β′∑
δ=0

Cβ+β′−γ−δ

(β+β′−γ−δ)!
Eh

[ ∑
|G|=k+1−α+γ+δ

∣∣∣∣ ∑
|F |= j+1−β−δ

F∩G=∅

∇δF∪G
e ϕT,h

∣∣∣∣2
]

.

Inserting this into (23), and noting that 1
m!n!C

mC n ≤ 1
(m+n)! (2C )m+n , we are then led to

Sk+1
j+1 .

k+1∑
α=1

j+1∑
β=1

β∑
γ=0

j+1∑
β′=1

β′∑
γ′=0

β′∑
δ=0

Cα+β+β′−γ−δ

(α+β+β′−γ−δ)!
Eh

[ ∑
|G|=k+1−α+γ+δ

∣∣∣∣ ∑
|F |= j+1−β−δ

F∩G=∅

∇δF∪G
e ϕT,h

∣∣∣∣2
]

,

or equivalently, after reorganizing the sums,

Sk+1
j+1 .

j+1∑
δ=0

j+1∑
β=1

k+β∑
α=0

C k+β−α+1

(k +β−α+1)!
Sα+δj+1−β−δ. (24)
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Step 2. Conclusion. We initialize the induction by noting that

S0
0 ≤C ,

which is nothing but the standard energy estimate for the corrector ϕT (an a priori estimate that
only requires the uniform ellipticity of A). Then, by a similar (double) induction argument as
in [4], now based on (24), the claim follows (for some possibly different constant C <∞). �

2.4. Proof of Gevrey regularity

The rest of the proof follows our general argument in [4]. First, adapting the proof of [4, Proposi-
tion 5.2] by using Lemma 4 (as we did above for [4, Proposition 4.6]), and replacing [4, Proposi-
tion 4.6] by Proposition 3, we directly obtain the uniform bounds (7). In order to use this bound
to prove regularity based on the qualitative convergence (5) and the regularity of p 7→ A(p)

T,h , it
remains to appeal to a Taylor formula in form of [4, (5.25)]: for all k and p ∈ [0,1],∣∣∣∣∣A(p)

T,h −
k∑

j=0

p j

j !
A j

T,h

∣∣∣∣∣≤ pk+1

(k +1)!
sup

u∈[0,p]

∣∣∣Ak+1
T,h (P (u))

∣∣∣ ,

where Ak+1
T,h (P (u)) denotes the (k + 1)th term of the expansion associated with the (partially)

decimated point process P (u), which is itself in the present case a Poisson point process with
intensity λu, hence for which the bound (7) holds uniformly on u ∈ [0, p]. Since the constants are
uniform wrt T,h, as in [4], this entails the existence of the limits A j = limT ↑∞,h↓0 A j

T,h , and there
holds for all j ,k ≥ 0 and p ∈ [0,1],∣∣∣∣∣A(p) −

k∑
j=0

p j

j !
A j

∣∣∣∣∣≤ (k +1)! (C p)k+1 and |A j | ≤ j !2C j .

The conclusion of Theorem 1 then follows from the arguments at the beginning of Section 2.1.
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