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Abstract. An abstract group G is called totally 2-closed if H = H (2),Ω for any setΩwith G ∼= H ≤ Sym(Ω), where
H (2),Ω is the largest subgroup of Sym(Ω) whose orbits on Ω×Ω are the same orbits of H . In this paper, we
classify the finite soluble totally 2-closed groups. We also prove that the Fitting subgroup of a totally 2-closed
group is a totally 2-closed group. Finally, we prove that a finite insoluble totally 2-closed group G of minimal
order with non-trivial Fitting subgroup has shape Z · X , with Z = Z (G) cyclic, and X is a finite group with a
unique minimal normal subgroup, which is nonabelian.
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1. Introduction and results

Let Ω be a set and G be a group with G ≤ Sym(Ω). Then G acts naturally on Ω×Ω by (α1,α2)g =
(αg

1 ,αg
2 ), where g ∈G and α1,α2 ∈Ω. The 2-closure of G on Ω, denoted by G (2),Ω, is defined to be

the subgroup of Sym(Ω) leaving each orbit of G onΩ×Ω fixed. By [22, Theorem 5.6]

G (2),Ω =
{
θ ∈ Sym(Ω)

∣∣∣∀α,β ∈Ω,∃ g ∈G ,αθ =αg ,βθ =βg
}

.

Furthermore, G (2),Ω contains G and is the largest subgroup of Sym(Ω) whose orbits on Ω×Ω are
the same orbits of G [22, Definition 5.3 and Theorem 5.4]. Indeed G (2),Ω is the automorphism
group of the set of all 2-ary relations invariant with respect to the group G ≤ Sym(Ω). Also G is
2-closed on Ω, i.e G = G (2),Ω if and only if there exists a complete colored digraph Γ with vertex
set Ω such that Aut(Γ) = G . The partition of the set of arcs of this graph induced by the coloring
forms a set of relations which generates the Krasner algebra [10, p. 15].

∗Corresponding author.

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.355
mailto:a.abdollahi@math.ui.ac.ir
mailto:arezoomand@lar.ac.ir
mailto:g.tracey@bham.ac.uk
https://comptes-rendus.academie-sciences.fr/mathematique/


1002 Alireza Abdollahi, Majid Arezoomand and Gareth Tracey

In 1969, Wielandt initiated the study of 2-closures of permutation groups to present a unified
treatment of finite and infinite permutation groups, based on invariant relations and invariant
functions [22]. After Wielandt’s pioneering work, there was some progress on the subject achieved
mostly in the case of primitive groups [12, 13, 16, 19, 20, 25] and the 2-closure was used as
a tool in studying the graph isomorphism problem [9, 17, 18]; the isomorphism problem for
Schurian coherent configurations [10,21]; and in the study of automorphisms of vertex transitive
graphs [7, 23, 24]. The latter of these led to the formulation of the Polycirculant conjecture [5],
which remains open, and has garnered much recent attention [2].

Due to its widespread motivation, the 2-closure has been studied extensively. In particular,
an interesting open question asks how far G (2),Ω can be from G. This question was answered
in [13] in the case where G is a primitive almost simple permutation group, but remains open in
general. In this paper, we study those finite groups which have the property that G (2),Ω =G for all
faithful permutation representations G ≤ Sym(Ω). Motivated by the study of some combinatorial
invariants in lattice theory, Monks proves in [15] that a finite cyclic group satisfies this property.
Derek Holt in his answer to a question [14] proposed by the second author in Mathoverflow
introduced a class of abstract groups called totally 2-closed groups consisting of all groups
which are 2-closed in all of their faithful permutation representations. Significant progress on
the question of classifying the finite totally 2-closed groups was achieved in [3]. There, the finite
totally 2-closed groups with trivial Fitting subgroup were classified:

Theorem 1 ([3, Theorem 1.2 and Corollary 1.3]). Let G be a non-trivial finite group with trivial
Fitting subgroup. Then G is totally 2-closed if and only if each of the following holds:

(1) G = T1 × . . .×Tr , where the Ti are nonabelian finite simple groups and r ≤ 5;
(2) Ti 6∼= T j for each i 6= j ; and
(3) One of the following holds:

(a) Ti ∈ {J1, J3, J4,Th,Ly} for each i ≤ r ; or
(b) Ti ∈ {J1, J3, J4,Ly,M} for each i ≤ r .

In particular, there are precisely 47 totally 2-closed finite groups with trivial Fitting subgroup.
In this paper, we classify the finite soluble totally 2-closed groups. Our main result reads as
follows:

Theorem A. Let G be a finite soluble group. Then G is totally 2-closed if and only if it is cyclic or a
direct product of a cyclic group of odd order with a generalized quaternion group.

This extends the main theorem in [1], which classifies the finite nilpotent totally 2-closed
groups. As the reader can see, all the groups in Theorem A are nilpotent, so we deduce that there
are no non-nilpotent soluble totally 2-closed groups.

As a by-product of our methods, we show that the Fitting subgroup of such a totally 2-closed
group is also totally 2-closed:

Theorem B. Let G be a totally 2-closed finite group. Then F (G) is totally 2-closed. In particular,
F (G) is cyclic or a direct product of a generalized quaternion group with a cyclic group of odd order.

Finally, with these results, and the results in [3] in mind, we were interested in obtaining struc-
tural information on a finite insoluble totally 2-closed group with non-trivial Fitting subgroup, of
minimal order (such a group may not exist, of course). Our final theorem reads as follows:

Theorem C. A finite insoluble totally 2-closed group G of minimal order with non-trivial Fitting
subgroup has shape Z .X , where Z = Z (G) is cyclic, and X has a unique minimal normal subgroup,
which is nonabelian.

The following question naturally arises about the existence of insoluble totally 2-closed groups
with non-trivial Fitting subgroup.
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Question 2. Classify all finite groups with the structure given in Theorem C.

1.1. Preliminary results and notations

In this section we collect some basic and elementary results and notations we need later. Our
notations are standard and are mainly taken from [6], but for the reader’s convenience we recall
some of them as follows:

Sym(Ω) : The symmetric group on the setΩ.
αg : The action of g on α.
Gα : The point stabilizer of α in G .
αG : The orbit of α under G .

Z (G) : The center of G .
F (G) : The fitting subgroup of G .

CG (H) : The centralizer of the subgroup H of a group G .
Op (G) : The intersection of all Sylow p-subgroups of G .

Soc(G) : The socle of a group G .
HG : The core of the subgroup H of G , that is the intersection of all G-conjugates of H .

Lemma 3 ([1, Lemma 2.1]). Let G ≤ Sym(Ω), A,B ≤ G and [A,B ] = 1. Then [A(2),Ω,B (2),Ω] = 1.
In particular, if G is abelian then G (2),Ω is also abelian. Furthermore, if H ≤ G then (CG (H))(2),Ω

≤CG(2),Ω (H (2),Ω).

Lemma 4 ([1, Lemma 2.2])). Let G ≤ Sym(Ω) and H ≤ Sym(Γ) be permutation isomorphic. Then
G (2),Ω and H (2),Γ are permutation isomorphic.

Lemma 5 ([1, Lemma 2.3])). Let G ≤ Sym(Ω) and x ∈ Sym(Ω). Then (x−1Gx)(2),Ω = x−1G (2),Ωx.
In particular, NSym(Ω)(G) ≤ NSym(Ω)(G (2),Ω).

Lemma 6 ([1, Lemma 2.9])). Let Gi ≤ Sym(Ωi ), Ω be disjoint union of Ωi ’s, i = 1, . . . , n and
G = G1 × ·· · ×Gn . Then the natural action of G on Ω is faithful. Furthermore, if G (2),Ω = G then
for each i = 1, . . . , n, G (2),Ωi

i = Gi . In particular, if G is a totally 2-closed group then Gi is a totally
2-closed group, i = 1, . . . , n.

Lemma 7 ([1, Lemma 4.5])). Let G = H ×K ≤ Sym(Ω) be transitive and Ω = αG . If (|H |, |K |) = 1,
then the action of G onΩ is equivalent to the action of G onΩ1 ×Ω2, whereΩ1 =αH ,Ω2 =αK and
G acts onΩ1 ×Ω2 by the rule (αh ,αk )g = (αhh1 ,αkk1 ), where g = h1k1.

Theorem 8 ([1, Theorem 1])). The center of every finite totally 2-closed group is cyclic.

Theorem 9 ([1, Theorem 2])). A finite nilpotent group is totally 2-closed if and only if it is cyclic
or a direct product of a generalized quaternion group with a cyclic group of odd order.

Theorem 10 ([5, Theorem 5.1])). Let G1 and G2 be transitive permutation groups on setsΩ1 and
Ω2, respectively. Then in their action onΩ :=Ω1 ×Ω2, we have

(G1 ×G2)(2),Ω =G (2),Ω1
1 ×G (2),Ω2

2 , (G1 oG2)(2),Ω =G (2),Ω1
1 oG (2),Ω2

2 .

Hence the following are equivalent:

(a) G1 and G2 are 2-closed onΩ1 andΩ2, respectively.
(b) G1 ×G2 is 2-closed onΩ.
(c) G1 oG2 is 2-closed onΩ.

Theorem 11 ([22, Dissection Theorem 6.5]). Let G act on a set Ω, and suppose that Ω = ∆∪Γ
(disjoint union), where Γ is G-invariant. Then the following are equivalent:
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(1) GΓ×G∆ ≤G (2),Ω.
(2) G =GγGδ for all γ ∈ Γ and δ ∈∆.
(3) Gδ is transitive on γG for all γ ∈ Γ and δ ∈∆.

Theorem 12 (Universal embedding theorem [6, Theorem 2.6 A]). Let G be an arbitrary group
with a normal subgroup N and put K :=G/N . Letψ : G → K be a homomorphism of G onto K with
kernel N . Let T := {tu | u ∈ K } be a set of right coset representatives of N in G such that ψ(tu) = u
for each u ∈ K . Let x ∈ G and fx : K → N be the map with fx (u) = tu xt−1

uψ(x) for all u ∈ K . Then
ϕ(x) := ( fx ,ψ(x)) defines an embedding ϕ of G into N oK . Furthermore, if N acts faithfully on a set
∆ then G acts faithfully on ∆×K by the rule (δ,k)x = (δ fx (k),kψ(x)).

2. The proof of Theorem A

In this section, we will prove that every finite soluble totally 2-closed group is nilpotent and so it
is a cyclic group of a direct product of a cyclic group of odd order with a generalized quaternion
group. Using the following lemma, one can eliminate lots of candidates of totally 2-closed groups:

Lemma 13. Let G = HK be a totally 2-closed group, where H ,K are proper subgroups of G. If
HG ∩KG = 1, then G = HG ×KG and both HG and KG are totally 2-closed. In particular, if H ∩K = 1,
then G = H ×K and both H and K are totally 2-closed

Proof. Let Γ and ∆ be the set of right cosets of H and K , respectively and Ω = Γ∪∆. Then
for all x, y ∈ G , we have G = H x K y [11, Problem 1A.4]. Consider the actions of G on Γ, ∆ and
Ω by right multiplication. Since HG ∩ KG = 1, G acts on Ω faithfully. Also, since GH x = H x

and GK y = K y for all x, y ∈ G , the Wielandt’s Dissection Theorem [22, Dissection Theorem 5.6]
implies that G/HG ×G/KG = GΓ ×G∆ ≤ G (2),Ω. Now since G is totally 2-closed, G (2),Ω = G and
so G = HG KG , which implies that G = HG ×KG . Now 6 implies that HG and KG are both totally
2-closed groups. �

In the following corollary, we determine the structure of normal Sylow subgroups of totally
2-closed groups.

Corollary 14. Let G be a finite totally 2-closed group. Then every normal Sylow subgroup of G is
cyclic or a generalized quaternion group.

Proof. Let P be a normal Sylow subgroup of G . Then G = P o H [11, Theorem 3.8], for some
subgroup H of G . Hence, by Lemma 13 and Theorem 9, P is cyclic or a generalized quaternion
group. �

Proof of Theorem A. One direction is clear by Theorem 9. Conversely, suppose that G be a finite
soluble totally 2-closed group. Let p be a prime divisor of |G| and P ∈ Sylp (G). Since G is soluble, it
has a Hall p ′-subgroup H . Hence G = HP , where H ∩P = 1. Since G is totally 2-closed, Lemma 13
implies that PEG . This means that G is a nilpotent group. Now Theorem 9 implies that G is cyclic
or a direct product of a cyclic group of odd order with a generalized quaternion group. �

Corollary 15. Let G be a finite group of even order which has a cyclic Sylow 2-subgroup. Then G
is totally 2-closed if and only if G is cyclic. In particular, if G is a group of order 2n, where n is odd,
then G is totally 2-closed if and only if G is cyclic.

Proof. Since the Sylow 2-subgroup of G is cyclic, it has a normal 2-complement [11, Corol-
lary 5.14]. Hence G = H o P , where P ∈ Sylp (G). If G is totally 2-closed, then Lemma 13, im-
plies that either H = 1 or G = H ×P , where H and P are both totally 2-closed. In the first case
there is nothing to prove and in the latter case, G is cyclic by Theorem A and the Feit–Thompson
odd-order Theorem. �
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3. The proof of Theorem B

By the [22, Exercise 5.28] of Wielandt’s book, a finite group G ≤ Sym(Ω) is a p-group if and only
if G (2),Ω is a p-group. First, for the completeness, we prove this exercise and generalize it to
nilpotent groups.

Lemma 16. Let G ≤ Sym(Ω) be a transitive p-group, |Ω| <∞. Then G (2),Ω is a p-group.

Proof. Since G is a transitive p-group, |Ω| = pk , for some integer k ≥ 1. Also there exists P ∈
Sylp (Sym(Ω)) such that G ≤ P . Let∆= {α1, . . . , αp } be a subset ofΩ of size p and C = 〈(α1, . . . , αp )〉.
Define recursively: P1 =C acting on ∆; and Pm = Pm−1 o∆C acting on ∆m for m ≥ 2. Then Pm acts
faithfully on ∆m . Now P ≤ Sym(Ω) is permutation isomorphic to x−1Pk x ≤ Sym(∆k ) for some
x ∈ Sym(∆k ), for more details see [6, Example 2.6.1], and so it is permutation isomorphic to
Pk ≤ Sym(∆k ). Now Theorem 10 implies that P (2)

k is 2-closed on ∆k . Hence P is 2-closed on Ω,
by Lemma 4. Thus G (2),Ω ≤ P is a p-group. �

Corollary 17. Let G ≤ Sym(Ω), |Ω| <∞ and p be a prime. Then G is a p-group if and only if G (2),Ω

is a p-group.

Proof. Let G have m orbits Ω1, . . . ,Ωm on Ω. Since the orbits of G (2) on Ω are the same orbits of
G , we have G (2),Ω ≤G (2),Ω1 ×·· ·×G (2),Ωm . On the other hand, by [22, Exercise 5.25], for each i we
have G (2),Ωi ≤ (GΩi )(2),Ωi , i = 1, . . . , m. Since GΩi is a transitive permutation p-group, Lemma 16
implies that for each i , (GΩi )(2),Ωi is a p-group. Hence G (2),Ω is a p-group. The converse direction
is clear, and the proof is complete. �

Corollary 18. Let P be a Sylow p-subgroup of a finite group G ≤ Sym(Ω). If G (2),Ω = G then
P (2),Ω = P and (Op (G))(2),Ω =Op (G).

Corollary 19. Let G ≤ Sym(Ω) and |Ω| <∞. Then G is nilpotent if and only if G (2),Ω is nilpotent.

Proof. Let |G| = pn1
1 . . . pnr

r , where p1 < p2 < ·· · < pr be primes and n1, . . . ,nr ≥ 1 be integers. Let
Pi be the Sylow pi -subgroup of G . Then G = P1 × ·· · ×Pr . First suppose that G is transitive on
Ω and αG = Ω. Then Lemma 7 implies that the action of G on Ω is equivalent to the pointwise
action of G onΩ1×·· ·×Ωr , whereΩi =αPi . Let ∆=Ω1×·· ·×Ωr . Since Pi acts transitively onΩi ,
Theorem 10 implies that, in the pointwise action on ∆, G (2) = P (2)

1 ×·· ·×P (2)
r . On the other hand,

by Corollary 17, P (2)
i is a pi -group and so P (2)

i is a Sylow pi -subgroup of G (2), which means that
G (2) is a nilpotent group.

Now let G have m orbits Ω1, . . . ,Ωm on Ω. Then by a similar argument in the proof of
Corollary 17, G (2),Ω ≤ (GΩ1 )(2),Ω1 ×·· ·× (GΩm )(2),Ωm . Since for each i , GΩi is a transitive nilpotent
permutation group, the above argument follows that G (2),Ω is nilpotent. �

Next, we discuss the Universal Embedding Theorem. Let G be a finite group, and N a normal
subgroup of G . Suppose that N acts faithfully on a set ∆. Let Γ := G/N , and let T be a right
transversal for N in G . Also, for g = N y ∈ Γ, let tg be the unique element of T such that N y = N tg .
Then G acts faithfully on the finite setΩ :=∆×Γ via the rule

(δ, g )x :=
(
δ

tg xt−1
gψ(x) , gψ(x)

)
,

where ψ : G → Γ is a homomorphism of G onto K with kernel N . Let χ be the permutation
character of N acting on ∆. Then the permutation character of G acting on Ω is the induced
character χ ↑G

N . Whence, Mackey’s Theorem [8, Proposition 6.20] implies that the permutation
character of N onΩ is χ ↑G

N↓N=∑m
i=1χN xi ∩N ↑N , where {x1, . . . , xm} is a set of representatives for

the (N , N ) double cosets in G . Since N is normal in G , it follows that N xi ∩ N = N , and in fact
that {x1, . . . , xm} is a set of representatives for the right cosets of N in G . Thus, we conclude that
χ ↑G

N↓N= mχ. That is, the permutation action of N on∆ is permutation isomorphic to the natural



1006 Alireza Abdollahi, Majid Arezoomand and Gareth Tracey

action of N on a disjoint union of [G : N ] copies of ∆. In fact, this permutation isomorphism can
be viewed as follows: the orbits of N in its action on Ω are the sets ∆g := {(δ, g ) : δ ∈∆}, for g ∈ Γ.
The permutation isomorphism θg : (N ,∆g ) → (N ,∆) is given by n → tg nt−1

g , (δ, g ) → δ.
Next, let P be a group theoretic property which is closed under normal extension. That is,

if H and K are normal P -subgroups of a finite group G , then HK is a (necessarily) normal P -
subgroup of G . Thus, we can define the largest normal P -subgroup of any finite group G : we
denote this subgroup by OP (G). Examples of group theoretic properties which are closed under
normal extension include nilpotency and solubility.

Lemma 20. Let P be a group theoretic property which is closed under normal extension with the
property that whenever Ω is a finite set with X ≤ Sym(Ω) a P -subgroup, we have that X (2),Ω has
property P . Suppose that G ≤ Sym(Ω) is 2-closed. Then OP (G) is 2-closed.

Proof. By Lemma 5, the group OP (G)(2),Ω is normal in G = G (2),Ω. The hypothesis on P then
guarantees that OP (G)(2),Ω is P , and hence that OP (G)(2),Ω ≤ OP (G (2),Ω) = OP (G). The result
follows. �

Proposition 21. Let G be a finite totally 2-closed group. Then the Fitting subgroup F (G) of G is
totally 2-closed.

Proof. Let F := F (G) and let ∆ be a set on which F acts faithfully. Let Γ := G/F and Ω := ∆×Γ.
Then G acts faithfully onΩ by the Universal Embedding Theorem. With this embedding, we have
that F (G)(2),Ω = F (G), by Lemma 20 and Corollary 19.

Now, for each g ∈ Γ, let Fg := F (2),∆g ≤ Sym(∆g ), and let µg : F1 → Fg be a permutation
isomorphism (see the paragraph above for an explanation of this notation). Then F1 acts faithfully
onΩ by the rule (δ, g )z = (δµg (z), g ), for δ ∈∆, g ∈ Γ, and z ∈ F1. Furthermore, the natural copy F̃ of
F in F1 acts faithfully onΩ via restriction, and by the paragraph above this action is permutation
isomorphic to the action of F on Ω coming from the Universal Embedding Theorem. Denote by
F̃ ′ and F ′

1 the images of F̃ and F1 in Sym(Ω) under this embedding. Since (F̃ ′,Ω) is permutation
isomorphic to (F,Ω), we have that F̃ ′(2),Ω = F̃ ′.

Now, fix z ∈ F ′
1. Then by definition of F ′

1 we have that for all (δ1,δ2) ∈ ∆×∆ there exists f ∈ F̃ ′
such that (δ1,δ2)z = (δ1,δ2) f . Hence, for all ((δ1, g1), (δ2, g2)) ∈Ω×Ω, we have((

δ1, g1
)

,
(
δ1, g2

))z =
((
δ
µg1 (z)
1 , g1

)
,
(
δ
µg2 (z)
2 , g2

))
=

((
δ
µg1 ( f )
1 , g1

)
,
(
δ
µg2 ( f )
2 , g2

))
= ((

δ1, g1
)

,
(
δ2, g2

)) f .

Hence, z ∈ F̃ ′(2),Ω = F̃ ′. Whence, F ′
1 ≤ F̃ ′. Since |F1| = |F ′

1| ≤ |F | ≤ |F1|, so we have |F | = |F1| and
hence F = F∆, as needed. �

The proof of Proposition 21 can be adapted to prove that the centraliser in G of any normal
subgroup of a totally 2-closed group is totally 2-closed.

Proposition 22. Let G be a finite totally 2-closed group, and let N be a normal subgroup of G.
Then CG (N ) is totally 2-closed.

Proof. Let C := CG (N ) and let ∆ be a set on which C acts faithfully. Let Γ := G/C and Ω := ∆×Γ.
Then G acts faithfully on Ω by the Universal Embedding Theorem. Also, C (2),Ω = C by Lemma 3.
The result now follows as in the second paragraph of the proof of Proposition 21 above. �

Proof of Theorem B. Let G be a totally 2-closed. Then F (G) is a totally 2-closed group by Propo-
sition 21. Since, by [11, Corollary 1.28], F (G) is nilpotent, Theorem 9 implies that F (G) is cylic or a
direct product of a generalized quaternion group with a cyclic group of odd order, as desired. �
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4. The proof of Theorem C

The purpose of this section is to prove Theorem C.

Proof of Theorem C. Suppose that G is a finite group of minimal order with the property that G
is an insoluble, totally 2-closed group, and F := F (G) = 1. Write F∗ := F∗(G) = F ◦E(G) for the
generalized Fitting subgroup of G , where E(G) denotes the layer of G .

Let F 6= Z (G). Then, by Proposition 22, CG (F ) is a totally 2-closed group of order strictly smaller
than |G|. Further, CG (F ) contains Z (F ), which is non-trivial since F is non-trivial. Thus, CG (F ) is
a finite totally 2-closed group with non-trivial Fitting subgroup, and |CG (F )| < |G|. Hence, CG (F )
is soluble by hypothesis. It follows from Theorem A that CG (F ) is nilpotent, so CG (F ) ≤ F . Hence
F = F∗ by [11, Corollary 9.9]. It follows from Theorem B that F∗ is either cyclic or a direct product
of a cyclic group of odd order with a generalized quaternion group. Thus, G/Z (F∗) ≤ Aut(F∗) is
soluble. This contradicts our choice of G .

So we must have that F = Z (G). It follows that F∗(G) has shape Z (G)◦T1 ◦ . . .◦Ts , where TiEG
is a central product of (say) ti copies of a quasisimple group, and these ti copies are permuted
transitively by G (see [4, Chapter 11]). If i > 1, then CG (Ti ) is a finite insoluble totally 2-closed
group with non-trivial Fitting subgroup by Proposition 22. However, since |CG (Ti )| < |G|, this
contradicts our choice of G . Thus, we must have i = 1, whence F∗(G) has shape Z (G)◦T , where
T EG is a central product of (say) t copies of a finite quasimple group S permuted transitively by
G , and Z (T ) ≤ Z (G). In particular, by Theorem 8, Z (T ) is cyclic.

We claim that T /Z (T ) ∼= T Z (G)/Z (G) ∼= (S/Z (S))t is the unique minimal normal subgroup
of G/Z (G). Indeed, if M/Z (G) is a minimal normal subgroup of G/Z (G) with M 6= T Z (G),
then M/Z (G) must be nonabelian (otherwise, M/Z (G), and hence M , is nilpotent, so M ≤
F (G) = Z (G)). Write M/Z (G) = S1/Z (G) × S2/Z (G) × . . . × Se /Z (G), where the groups Si /Z (G)
are nonabelian simple. Then choose Ri ≤ Si minimal with the property that Ri Z (G) = Si . Then
Z (G)∩Ri ≤Φ(Ri ), whereΦ(Ri ) is the Frattini subgroup of Ri , and Ri /(Ri ∩Z (G)) is simple. Thus,
Z (Ri ) = Ri ∩Z (G), so Ri /Z (Ri ) is a nonabelian simple group, and it follows that Ri is quasisimple.
Since Ri is subnormal in G , it follows that the group R = 〈R1, . . . , Re〉 is contained in the layer
E(G) of G . Since E(G) = T , we then have R ≤ T , so M/Z (G) = R Z (G)/Z (G) = T Z (G)/Z (G). Thus,
M = T Z (G), so T Z (G)/Z (G) is the unique minimal normal subgroup of G/Z (G), as claimed. This
completes the proof. �
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