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Abstract. In this paper, we address the problem of estimating a covariance matrix of a multivariate Gaussian
distribution, from a decision theoretic point of view, relative to a Stein type loss function. We investigate the
case where the covariance matrix is invertible and the case when it is non–invertible in a unified approach.

Résumé. Dans cet article, nous abordons le problème de l’estimation d’une matrice de covariance d’une
distribution gaussienne multivariée, du point de vue de la théorie de la décision, par rapport à une fonction de
coût de type Stein. Nous étudions dans une approche unifiée le cas où la matrice de covariance est inversible
et le cas où elle n’est pas inversible.
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1. Introduction

Let X be an observed p ×n matrix of the form

X = B Z , (1)

where B is a p × r matrix of unknown parameters, with r ≤ p, and Z is a r × n random
matrix. Assume that r is known and that the columns of Z are identically and independently
distributed as the r -dimensional multivariate normal distribution Nr (0r , I r ). Then the columns
of X are identically and independently distributed from the p-dimensional multivariate normal
Np (0p ,Σ), where Σ= B B T is the unknown p ×p covariance matrix with

rank(Σ) = r ≤ p .

It follows that the p × p sample covariance matrix S = X X T has a singular Wishart distribution
(see Srivastava [9]) such that

rank(S) = min(n,r ) = q ≤ p ,
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with probability one. Note that, as the matrices S and Σ are non–invertible, we denote in the
following by S+ and Σ+ the Moore-Penrose inverses of S and Σ respectively.

We consider the problem of estimating the covariance matrix Σ under the Stein type loss
function

L
(
Σ̂,Σ

)= tr
(
Σ+Σ̂

)− ln
∣∣Λ(
Σ+Σ̂

)∣∣−q , (2)

where Σ̂ estimates Σ and Λ(Σ+Σ̂) is the diagonal matrix of the q positives eigenvalues of Σ+Σ̂.
Note that this loss function is based on the Kullback–Leibler divergence between two multivariate
normal distributions with the same means and with covariances Σ̂ and Σ. It is an extension of the
usual Stein loss function (see Stein [10]). Thus, the corresponding risk function is given by

R
(
Σ̂,Σ

)= E
[
L

(
Σ̂,Σ

)]
,

where E(·) denotes the expectation with respect to the model (1). Note that the loss function (2)
is an adaptation of the original Stein loss function (see Stein [11]) to the context of the model (1)
(see Tsukuma [13] for more details).

As related by Ledoit and Wolf [8], the difficulty of covariance estimation is commonly charac-
terized by the ratio p/n. In fact, the usual estimators of the form

Σ̂a = a S with a > 0, (3)

perform poorly when n, p → ∞ with p/n → c > 0. Indeed, the larger (smaller) eigenvalues of
Σ are overestimated (underestimated) by those estimators. Hence, in this asymptotic context,
alternative estimators dominating (with lower risk functions) these usual estimators are needed.
A possible approach is to regularize the eigenvalues of Σ̂a , which gives rise to the class of
orthogonally invariant estimators (see Takemura [12]) as those in (5) below.

Note that, as we consider the model (1), we deal in a unified approach, with the following
cases.

(i) n < r = p: Σ is invertible of rank p and S is non–invertible of rank n;
(ii) r = p ≤ n: Σ and S are invertible;

(iii) r < p ≤ n: Σ and S are non–invertible of rank r ;
(iv) r ≤ n < p: Σ and S are non–invertible of rank r ;
(v) n < r < p: Σ and S are non–invertible of ranks r and n respectively.

The class of orthogonally invariant estimators was considered by various authors. For instance,
see Stein [11], Dey and Srivastava [2] and Haff [5] for the case (i), Konno [6] and Haddouche et
al. [4] for the cases (i) and (ii). See also Chételat and Wells [1] for the cases (iii) and (iv). Recently,
Tsukuma and Kubokawa [13] extended the Stein [11] estimator to the five possible cases, cited
above, in a unified approach. Similarly, we extend here the class of Haff [5] estimators to the
context of the model (1).

The rest of this paper is organized as follows. In Section 2, we derive the domination result of
the Haff estimators over the usual estimators. We study numerically the behavior of the proposed
estimators in Section 3.

2. Main result

Improving the class of the natural estimators in (3) relies on improving the optimal estimator
among this class, that is, the one which minimizes the loss function (2).

Proposition 1 (Tsukuma [13]). Under the Stein type loss function (2), the optimal estimator
among the class (3) is given by

Σ̂ao = ao S, where ao = 1

m
and m = max(n,r ). (4)
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As mentioned in Section 1, we consider the class of orthogonally invariant estimators as
alternative estimators. Let S = H L H> be the eigenvalue decomposition of S where H is a p × q
semi–orthogonal matrix of eigenvectors and L = diag(l1, . . . , lq ), with l1 >, . . . ,> lq , is the diagonal
matrix of the q positive corresponding eigenvalues (see Kubokawa and Srivastava [7] for more
details). The class of orthogonally invariant estimators is of the form

Σ̂Ψ = ao
(
S +H LΨ(L) H>)

(5)

with Ψ(L) = diag(ψ1(L), . . . ,ψq (L)), where ψi (L) (i = 1, . . . , q) is a differentiable function of L.
More precisely, we consider an extension of the empirical Bayes Haff type estimators in [5], to the
context of the model (1), defined as

Σ̂α = ao
(
S +HLΨ(L)H>)

where Ψ(L) = b
L−α

tr(L−α)
, with α≥ 1 and b > 0, (6)

where ao is given in (4). Note that, for α = 1, this is the estimator considered by Konno [6],
who deals with the cases (i) and (ii) under a quadratic loss. An extension to elliptical setting
was considered recently by Haddouche et al. [4]. Note also that Tsukuma [13] considered also
empirical Bayes estimators but not the one in (6). We give in the following theorem our main
result.

Theorem 2. Let Ψ(L) = diag(ψ1(L), . . . ,ψq (L)) where, for any i = 1, . . . , q, ψi (L) = blαi /tr(L−α)
with α ≥ 1 and b > 0, be a differentiable function of L. The Haff type estimators in (6) dominates
the optimal estimator in (4), under the loss function (2), as soon as

0 < b ≤ bo = 2
(
q −1

)
m −q +1

.

Proof. The proof consists to showing that the risk difference between the Haff type estimators
in (6) and the optimal estimator in (4), namely,

∆(α,ao ) = R
(
Σ̂α,Σ

)−R
(
Σ̂ao ,Σ

)
, (7)

is non–positive. Note that Σ̂α can be written as

Σ̂α = ao HLΦ(L)H> with Φ(L) = I q +Ψ(L).

The risk of these estimators under the Stein type loss function (2) is given by

R
(
Σ̂α,Σ

)= E
(
tr

(
Σ+Σ̂α

))−E
(
ln

∣∣Λ(
Σ+Σ̂α

)∣∣)−q . (8)

First, dealing with E(tr(Σ̂αΣ+)), we apply in Tsukuma [13, Lemma A.2] in order to get rid of the
unknown parameter Σ+. It follows that,

E
(
tr

(
Σ+Σ̂α

))= aoE

(
q∑

i=1

{(
m −q +1

)
ϕi +2li

∂ϕi

∂li
+2

q∑
j > i

liϕi − l jϕ j

li − l j

})
(9)

where, for any i = 1, . . . , q ,

φi = 1+b
l−αi

tr(L−α)
,

∂ϕi

∂li
= bα

1− tr(L−α) lαi
tr2 (L−α) l 1+2α

i

and

q∑
j > i

liϕi − l jϕ j

li − l j
=

q∑
j > i

(
1+ b

tr(L−α)

{
l 1−α

i − l 1−α
j

li − l j

})
.

Using the fact, for any j > i , l j > li , it can be shown that
q∑

j > i

liϕi − l jϕ j

li − li
≤ (

q − i
)

. (10)
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Therefore, using (10), we obtain

E
(
tr

(
Σ+Σ̂α

))≤ ao E

(
q∑

i=1

{(
m −q +1

)(
1+b

li
−α

tr(L−α)

)
+2bα

1− tr(L−α) lαi
tr2 (L−α) l 2α

i

+2
(
q − i

)})

= ao m q +ao b E

(
q∑

i=1

{(
m −q +1

) li
−α

tr(L−α)
+2α

1− tr(L−α) lαi
tr2 (L−α) l 2α

i

})

= ao
(
m q +b

(
m −q +1

))+2αE

(
tr

(
L−2α

)
tr2 (L−α)

−1

)
.

Now, from the submultiplicativity of the trace for semi–definite positive matrices, we have
tr(L−2α) ≤ tr2(L−α). Then, an upper bound for (9) is given by

E
(
tr

(
Σ+Σ̂α

))≤ ao
(
m q +b

(
m −q +1

))
. (11)

Secondly, dealing with E(ln |Λ(Σ̂αΣ+)|) in (8), it can be shown that

Λ
(
Σ+Σ̂α

)= aoΛ
(
Σ+HLΦ(L)H>)

= aoΛ
(
L1/2H>Σ+HL1/2Φ(L)

)
.

Note that L1/2H>Σ+HL1/2 andΦ(L) are full rank q ×q matrices. It follows that∣∣Λ(
Σ̂αΣ

+)∣∣= aq
o

∣∣L1/2H>Σ+HL1/2Φ(L)
∣∣ .

Therefore

E
(
ln

∣∣Λ(
Σ̂αΣ

+)∣∣)= q ln(ao)+E
(
ln

∣∣L1/2H TΣ+HL1/2∣∣)+E (ln |Φ(L)|) . (12)

Using the fact that ln(1+x) ≥ 2 x/(2+x), for any positive constant x, we have

ln |Φ(L)| = ln

∣∣∣∣I q + b L−α

tr(L−α)

∣∣∣∣
=

q∑
i=1

ln

(
1+ b l−αi

tr(L−α)

)
≥

q∑
i=1

2b l−αi /tr(L−α)

2+b l−αi /tr(L−α)
.

Then

ln |Φ(L)| ≥ 2b

2+b
, (13)

since, for any i = 1, . . . , q , l−αi ≤ tr(L−α). Consequently, thanks to (13), a lower bound for (12) is
given by

E
(
ln

∣∣Λ(
Σ̂αΣ

+)∣∣)≥ q ln(ao)+E
(
ln

∣∣L1/2H TΣ+HL1/2∣∣)+ 2b

2+b
. (14)

Now, relying on the proof of [13, Proposition 2.1] in Tsukuma, it can be shown that

R
(
Σ̂ao ,Σ

)=−q ln(ao)−E
(
ln

∣∣L1/2H TΣ+HL1/2∣∣) . (15)

Finally, combining (11), (14) and (15), an upper bound for the risk difference (7) is given by

∆(α,ao ) ≤ ao
(
m −q +1

)
b − 2b

2+b

= b

b +2

( (
m −q −1

)
(b +2)

m
−2

)
,

since ao = 1/m, which is non-positive as soon as

0 < b ≤ bo = 2
(
q −1

)
m −q +1

. �
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3. Numerical study

We study here numerically the performance of the Haff type estimators in (6). As shown numeri-
cally by Fourdrinier et al. [3] that the best constant b is bo . So that, we consider in this section the
following Haff type estimators

Σ̂α = ao
(
S +HLΨ(L)H>)

where Ψ(L) = bo
L−α

tr(L−α)
,

with α≥ 1 and bo = 2
(
q −1

)
m −q +1

. (16)

As for the population covariance matrixΣ, we consider the following structures: (i) the identity
matrix I p and (ii) an autoregressive structure with coefficient 0.9. We set their p − r smallest
eigenvalues to zero in order to construct matrices of rank r ≤ p.

To assess the performance of the proposed estimators, we compute the Percentage Reduction
In Average Loss (PRIAL), for some values of p, n, r and α, defined as

PRIAL
(
Σ̂α

)= R
(
Σ̂ao ,Σ

)−R
(
Σ̂α,Σ

)
R

(
Σ̂ao ,Σ

) ×100,

where Σ̂ao and Σ̂α are respectively defined in (4) and (3).

Table 1. Effect of α on PRIAL’s for the structures(i) and (ii) of Σ.

Σ (p,n) r Σ̂1 Σ̂2 Σ̂3 Σ̂4 Σ̂5

(i)

(30,50)
10 6.85 12.45 15.53 16.95 17.53
20 9.20 13.91 14.88 14.68 12.47
30 11.81 14.33 13.41 12.43 11.71

(50,30)
20 18.31 19.65 17.75 16.44 15.63
40 17.12 16.33 14.07 12.78 12.02
50 11.80 14.23 13.29 12.30 11.59

(150,30)

20 18.17 19.69 17.87 16.56 15.71
40 17.08 16.31 14.07 12.76 11.99
60 8.88 12.27 12.33 11.75 11.19
150 2.83 5.09 6.50 7.25 7.61

(ii)

(30,50)
10 6.06 8.70 9.62 9.89 9.92
20 8.81 11.66 12.12 11.93 11.61
30 11.46 13.15 12.35 11.48 10.82

(50,30)
20 17.18 17.45 15.85 14.76 14.07
40 16.34 15.18 13.19 12.00 11.28
50 11.33 12.82 12.02 11.19 10.57

(150,30)

20 17.30 18.00 16.38 15.19 14.42
40 16.27 15.04 13.04 11.84 11.13
60 8.48 10.43 10.29 9.81 9.35
150 2.73 4.03 4.61 4.86 4.95

Table 1 shows that the proposed estimators improve over Σ̂ao for any possible ordering of
p,n and r . Compared to other cases, the Haff type estimators Σ̂α (for α = 1, . . . ,5) have better
performances in the case where p > n > r , with PRIAL’s higher than 14.07% for both structures (i)
and (ii) ofΣ. We report that the optimal value ofα, which maximizes the PRIAL’s, depends on p,n
and r .
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We then compare the Prial’s of the Haff type estimators in and the well known James–Stein
type estimator Σ̂JS considered by Tsukuma [13], given by

Σ̂JS = HLD JS
q H>,

where D JS
q = diag(d JS

1 , . . . , d JS
q ) with, for i = 1, . . . , q , d JS

i = (n + r −2i +1)−1.

Table 2. PRIAL’s of the Haff type estimators and the Stein type estimator for the struc-
tures (ii) of Σ.

(p,n) r Σ̂1 Σ̂2 Σ̂3 Σ̂4 Σ̂JS

(30,40)
7 9.06 12.34 13.36 13.68 9.87
14 9.60 13.09 13.78 13.74 20.45

(40,30)
7 11.87 15.57 16.41 16.55 16.04
14 13.91 16.41 16.13 15.55 26.35

(20,100)
5 4.04 5.61 6.14 6.29 4.68
15 3.67 5.45 6.38 7.12 11.80

Table 2 shows that in some cases the PRIALs of the Haff-type estimators are higher than
those of the Stein-type estimator, while in other cases the Stein-type estimator has a better
performance. Consequently, their risk functions intersect and thus, in our opinion, a theoretical
dominance results between these two estimators cannot be derived.
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