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Abstract. In this paper, we analyse the long-time behavior of solutions to a coupled system describing the
motion of a rigid disk in a 2D viscous incompressible fluid. Following previous approaches in [4, 15, 17] we
look at the problem in the system of coordinates associated with the center of mass of the disk. Doing so,
we introduce a further nonlinearity to the classical Navier Stokes equations. In comparison with the classical
nonlinearities, this new term lacks time and space integrability, thus complicating strongly the analysis of the
long-time behavior of solutions.

We provide herein two refined tools: a refined analysis of the Gagliardo—Nirenberg inequalities and a
thorough description of fractional powers of the so-called fluid-structure operator [2]. On the basis of these
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Lamb-Oseen vortex in the spirit of [7, 8].
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1. Introduction

In this paper, we pursue the studies on the long-time behavior of solutions to the following model
for the motion of a rigid disk inside a viscous incompressible fluid:

ou

E+(u-V)u—vAu+Vp:O forx € & (1), (@)
divu=0 for x e & (1), )]
u(t,x):h’(t)+w(t)(x—h(t))L for x € 0B(1), 3
mh'" (1) = —f 2 (u, p)ndo(x) (4)

0B(1t)
Lo’ (1) = —f (x—h()t-Z(u, p)ndo(x). (5)

0B(1)

Here u € R? and p € R stand for the velocity-field/pressure unknowns describing the behav-
ior of a homogeneous incompressible viscous fluid. The rigid solid disk occupies the domain
B(¢) := B(h(1),1) and its motion is described by a translation velocity #(¢) = I'(f) and a rotation
velocity w(f). Doing so, we prescribe the evolution of the fluid+disk system by integrating the in-
compressible Navier—Stokes equations (1)-(2) in the fluid domain & (¢) := R2\ B(¢) and the New-
ton equation of solid dynamics (4)-(5). We emphasize that the motion of the fluid and the solid
are both unknowns. The system is complemented with no-slip interface conditions (3) and trans-
mission of normal stress. The stress tensor X(u, p) appearing then in the Newton laws is the fluid
stress tensor

2(u,p) = —pld+2vD(w),

with

l(au,- auj) ..
—+ , l1=<i,j=2.

D(u);i=-
()i, 2 ax]' 0x;

We remind that v > 0 stands for the fluid viscosity and that, due to the incompressibility condi-
tion, the viscous operator appearing in (1) reads:

vAu-—Vp =divZ(u, p)

where, by convention, the divergence operator of a matrix is computed row-wise. By scaling
arguments, we prescribed that the density of the fluid is constant equal to 1 and that the solid has
radius 1. Below, it appears also that the viscosity v has only an influence through a time-scaling
so we fix v = 1 for simplicity. The quantity m and _# appearing in the Newon laws represent
respectively the mass and inertia of the solid disk. In the 2D case under consideration here, the
inertia _¢ is time-independent. The symbol n appearing in the integrals of (4)-(5) stands for the
normal to 0B(t) inward B(f). We keep the convention that the normal is directed outward the
fluid domain throughout the paper. Like in [4], our motivation for studying this system is to
analyse the energy exchange between the solid body and the rigid disk, we do not include any
forcing term such as gravity in the system. We point out that, by a standard scaling argument,
understanding the long-time behavior of solutions is also related to the small-body limit [9]. Our
analysis might then be adapted to this second problem as in [11].

Systems like (1)—(5) coupling ODEs and PDEs and describing the motion of solid bodies inside
aviscous fluid have been the subject of numerous studies in the past years. Regarding the specific
case of one rigid disk in an unbounded viscous fluid, the Cauchy theory for finite-energy initial
data is studied in [15]. The authors remark therein that solutions to (1)-(5) satisfy the a priori
estimate:
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1
= m|£(t)|2+f|w(t)|2+f lu(t,)?
2 F (1)

t
+ f f |D(u)?
0 JZ(s)

"2

mle0)* + _gw(0)* + f 1u(0,-)1?
Z(0)

This opens the way to the construction of global-in-time finite-energy solution for arbitrary data.
To this purpose, the authors operate the change of unknowns:

v(t,x) = u(t,x—h(1), p=pt,x—h(D), () =n'), w(f) = w(1). (6)

and obtain the new system:

%+((v—£(t))-V)v—Au+Vf5:0 for x € &, (7)
divy =0 for x € %, (8)
v(t,x) = 0(t) + w(t) x*+ for x € 0By, 9)
me'(t) = —f (v, p)ndo(x) (10)
0By
Jo' (1) = —f xZ(v, p)ndo(x), (an
0B(1)

where By = B(0,1) and %, = R?\ By. With this change of unknowns, we have now a problem in a
fixed geometry that we can complete prescribing an initial condition. Setting an inital time f, = 0
that can be strictly positive, this condition reads:

V=g, =vo forxeFy, £L(o)=4¢y, () =uwo. (12)

Despite (7)-(11) is an autonomous problem, we introduce here a generalized Cauchy-problem
with arbitrary initial time. This will have an influence below because of our choice for initial data.
We recall here also that the pressure p can be seen as the Lagrange-multiplier of the divergence-
free condition involved in the system above. For this reason, there is no initial condition on p.
In our formalism, the pressure will also be a secondary unknown that is taken rid via a projector
argument and that can be recovered a posteriori. For all these reasons, we state our results in
terms of (v,4,w) only. For instance, in [15], the authors consider the case ) = 0. They consider
initial data (v, €9, o) € L?(F,) x R? x R such that :

divvg =0 in %, vo-n=(lo+wox)-n on 4By (13)

and construct global-in-time finite-energy solutions in the sense that:

e v e C([0,00); L*(Fy) — w) with Vv € L?((0,00); L? (%))
* (£,0) € C([0,00);R?)
e (v,4,w) solve (7)-(12) with the associated a priori estimate.

! m|£(t)|2+jw(t)2+f lv(t,)?
2 Fo

+f |D(v)|2=1[m|é(0)|2+fw(0)2+f |v(o,‘)|2]
370 2 90

The results are extended to L9-initial data in [4].
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Solutions to the Cauchy-problem are constructed via a perturbative approach. First the au-
thors consider the linearized system:

ov

a7 Av+Vp=0 for t € (0,00), x € F, (14)
dive=0 for t € (0,00), x € Fy, (15)
v(t,x) =£(t) +w(t) x* for ¢ € (0,00), x € 0By, (16)
me' (1) = —f 2(v,p)ndo(x) for ¢ € (0,00), 17)
0By
o' ()= —f xt-Z(v, p)ndo(x) for ¢ € (0,00), (18)
0B(1)

They show that this system can be rewritten into an infinite-dimensional differential system
0, V+AV =0, (19)

by constructing an unknown V encoding simultaneously (v,¢,w) and a specific unbounded
operator A (that we call fluid-strucure operator following [2]). We give more details on these
constructions in the next section. Finite-energy solutions to the linearized system are obtained
by remarking that A is an accretive positive self-adjoint operator which implies the existence of
a contraction semi-group (S(#));>o solving (19). The nonlinear system can be then interpreted in
the form of a nonlinear infinite-differential system:

0,V + AV = F(V),

and mild-solutions are constructed via a Kato-type argument. Since these mild-solutions are
finite-energy solutions and finite-energy solutions are unique, this yields “the” finite-energy
solution. Actually, this argument is performed on regularized H' initial data in [15] (and finite-
energy solutions are obtained then by a compactness argument). But, as we shall see below (see
Theorem 20), the reasoning extends to L? initial data. An alternative approach relying on Leray-
type arguments is also provided in [1] in case of Navier-type slip boundary conditions on the
fluid/solid interface. Since our results rely strongly on decay estimates of the semi-group A we
shall stick to this mild-solution approach herein.

The long-time behavior of solutions to (7)-(12) is tackled in [4] by the second author in
collaboration with S. Ervedoza and C. Lacave. Firstly the properties of the fluid-structure semi-
group (S(1));=¢ are studied in a non-Hilbert setting which yields explicit bounds for the large-
time decay of L7-initial data and an explicit first order term for sufficiently localized initial data.
Via perturbative arguments, these decay rates are extended to the finite-energy solutions to the
full nonlinear problem (7)-(12) for initial data such that vy € L9(%p) N [%(%,) for some qge(1,2)
with [[vgll 2 Fo) T |20l + lwol sufficiently small (depending only on g).

In this paper we pursue the computations of [4] in two directions. Firstly, we extend the decay-
rate computation of finite-energy solutions to (7)—(12) for arbitrary data in LY n L2. Namely, our
first result reads:

Theorem 1. Let g € (1,2) and assume that ty = 0 and that the initial data (v, ¢y, W) € L%(F) x
R? x R satisfy the compatibility condition (13) and the further condition vy € L9(%,). Then, the
unique finite-energy solution (v, ¢,w) of (7)-(12) satisfies:

1_1
supt? 9| v(t)llrg,) <co V pe(2,00) (20)
>0

sup tlﬁll(t)|<oo 21)
>0
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This result must be compared with [4, Theorem 1.3] where a further smallness is required. We
point out that, like in [4], our result states that the decay of solutions to the nonlinear problem (7)-
(12) is the same as the decay of solutions of the linearized system (14)-(18). However, we are still
not able to extract a leading term for the nonlinear system.

The proof of this first result is based on adapting the global stability argument in [7]. Namely,
we use that the fluid-structure operator A underlying the resolution of the linearized prob-
lem (14)-(18) is self-adjoint and positive. We can then construct the fractional powers A* for
pe (—1,1) and analyze their ranges and domains. To extract a decay of any solution to (7)-(12), we
first compute an energy estimate on U = A"V for a p adapted to the integrability of the initial
data vy. One key new difficulty is that the nonlinearities in (7)-(12) involve the term ¢-Vv. It turns
out that handling this term requires to prove a similar time-integrability of ¢ as the one of Vv and
in particular that £ € L?((0,00)). This property is obtained in a first independent step.

In a second direction, we also extend the analysis to infinite energy initial data. Indeed,
similarly to the introductory remark of [7] in the case of a still particle, one may observe that
the total amount of the fluid vorticity w := 82 v; — 81 v» in solutions to (7)-(11) has to vanish. This
property fails however in many contexts. We recall that, in the absence of a disk, a central object
is the normalized Lamb-Oseen vortex:

1 xt _ i 2
O, x)=——[1-e 1@ |, xeR“\{(0,0)}, =0, (22)
27 | x|?

since any solution to the Navier Stokes equations on R?> converges to a multiple of this profile
given by the initial mass of the vorticity [8]. This result is extended to the Navier Stokes equations
outside astill obstacle [7] showing that any bounded-energy perturbation of a small Lamb-Oseen
vortex behaves in large-time like the Lamb-Oseen vortex.

We consider herein the local stability of the Lamb-Oseen vortex © in the case of the full
fluid+disk problem (7)-(11). For this, we first see that ® can be written under the form 0(¢, x) =
g(t,1x|?) x*, where

P L
)=
& 27r

Hence, the Lamb-Oseen vortex on 0By is a pure rotation. We can then assume initial data are of
the form

a
v=aB(ty,)+wy Lo=05 o= o (1-exp(-1/4(1 + 1)) + 0, (23)
b2
where wy is localized in space and
woy = Z(L]U + w?‘,xl on 0B. (24)

Furthermore, we remark (or recall) that the Lamb—-Oseen vortex yields a solution to the Navier
Stokes equations with an explicit pressure:

VI = azﬁ 002 YV xeR2\{(0,0)).

Hence, plugging the ansatz:

v(t,x) =a®(t, x)+ w(t, x), p(t,x) :azl'[(t,x)+q(t,x), 25)
Oy(t,x) =01, %) wy(t,x) =ag(t,l)+wy(t,x).
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into (7)-(12), we obtain the perturbed system:

(;—lf+((w—€w(t))~V)w—Aw+Vq=—a[(@)'V)w+((w—lw(t))-V)® in (0,00) x %y, (26)
divw=0 in (0,00) x %y,  (27)
w(t,x)=€w(1f)+a)w(1.‘)xL on (0,00) x 0By, (28)
me', (1) = _faB 2(w,q)ndo(x) on (0,00), (29)
0
ja)’w(t) = —f xt 2Z(w,q)ndo(x) +al(t) on(0,00), (30)
W= = woaBm on %, (31)
0,(0) =05, 0,(0) =, (32)

with an explicit source term {. We detail this computation in Section 3. We can then rely on the
study of the fluid-structure semi-group to construct a mild-solution to (26)-(32):

t
W) =S{t—to)Wo+ | S(t—s)Fy(s)ds (33)
o

with a source term F, to be made precise later on.
In this direction, our first result shows that this Duhamel-formula yields a suitable solution to
our problem:

Theorem 2. Let (a, tp) € R x [0,00) and (wo,l?u,w?,,) €2 (Fo) x R2 x R such that (24) is satisfied.
Then, the Duhamel formula (33) yields a triplet (w, ¢, w ) such that:

(1) w € C([ty,00); L*(Fo)) N C((tg,00); H' (F)), with w € L3, (1o, 00); H*(Fy))

2) (Cw,ww) € C([ty,00);R?)

3) (w,¥l,,wy) is a solution to (26)—(32)

By reconstructing (v, ¢, w) via (25), we recover a global-in-time solution for unbounded-energy
initial data of the form (23). We can then look at the large-time behavior of these solutions. To
state this second result we shall start from a sufficiently developed Lamb-Oseen vortex, meaning
that the radius of the vortex is sufficiently large, or that we consider the problem (7)-(12) starting
from a time £, sufficiently large with an initial data obtained by perturbing a®(f,-) like in (23)
with a small perturbation in 2. We have then the following theorem:

Theorem 3. Let (, fy) € R x [0,00) and (wy, ¢%,,0%) € L?(Fy) x R? x R such that (24) is satisfied.
Assume further that ty is sufficiently large, a is sufficiently small, wy € L1(ZF,) for some q € (1,2)
and (wo,é?y,w?{,) is small enough in 1?2 (Fo) x R2 x R. The constructed solution (v, £,w) to (7)—(12)
with initial condition (23) satisfies:

1_1
tlilgo 12 v —aB(t,)lpgy =0 V pe(2,00) (34)
1
sup (£ — 1) 7 |£(8)] < 0o (35)
>t

Some comments are in order. First, the decay rate prescribed in (34) implies that a® is indeed
the leading term for large times. However, the explicit formula (22) entails that we have |0(¢, x)| <
1/t on 0By so that the remainder may be much larger on 0By and induce a leading translation
velocity. The complementary inequality (35) fixes then a minimal decay of the translation velocity
depending only on the integrability of the initial perturbation.

The proofs of the two latter theorems rely on the LP — L9 properties of the semi-group (S(1)) ;=0
obtained in [4]. One key-difficulty in both cases is again the term ¢,, - Vw. This term has limited
space integrability (we cannot expect better than Vw € L?(%)) and time-decay (|¢,,| decays a
little less than [Vw|| 2 Fo) but strictly less a priori). Hence, to handle this term we have to estimate



Guillaume Ferriere and Matthieu Hillairet 459

sharply the loss of time-decay between |£,,| and [Vw|| 12 Fo)+ This is obtained by applying a sharp
version of the Galgliardo-Nirenberg inequality and of the associated constant, following [3].

The outline of the paper is as follows. In the next section we provide preliminary lemmas. We
explain the construction of the capital-letter unknowns and fluid-structure operator A. We recall
the results of [4] on the decay properties of the semi-group and complement the analysis with
a descrpition of the fractional powers of A in the spirit of [7]. Finally, we recall the Gagliardo
Nirenberg analysis underlying the stability analysis of the Lamb-Oseen vortex. In Section 3 we
detail the proofs of Theorem 2 and Theorem 3. Section 4 is devoted to the proof of Theorem 1.
Some further technicalities are presented in an appendix.

2. Preliminary constructions and technical lemmas

In this section, we first recall the construction of function spaces that enable to handle the fluid
unknown v and solid unknowns (¢, w) at once. We also recall the construction of the unbounded
operator A underlying the resolution of (14)-(18). These constructions are reproduced from [4,
15,17].

The first key-issue we address is related to the problem of controlling the body linear velocity
by the fluid velocity-field. In the forthcoming analysis, one would hope to be able to control the
linear velocity |¢| by [[Vv|| 2 Fo) only. However, in full generality, this is possible in 3D but it turns
out to be false in 2D. This can be seen as reminiscent either of the fact that H*(R?) embeds in no
LP(R?) space or of the Stokes paradox [6, Introduction of Section V]. Here, we exchange such a
control for an almost optimal control in the form of a family of Gagliardo-Nirenberg inequalities
with an explicit estimate of the embedding constants. The second key-contribution of this section
is the analysis of the fractional powers of the operator A.

2.1. Function spaces and Gagliardo-Nirenberg inequality

As classical in fluid+disk systems, we treat (7)-(12) by encoding all the unknowns (v, ¢ w) into
one unified unknown with the following construction. From a triplet (v, ¢,w) € [€° (Fo)] xR? xR
verifying

divy=0 in %, v=f+wx" on 0By,
we define a divergence-free vector field denoted V on R? obtained by extending v by £ +w x* in
By. Adapted to such V, we introduce the function spaces £? (p € [1,00]) defined by

2r={ve[l’®)]", divV=0in R D(V)=0in Bo}.

We recall that, since By is connected, the condition D(V) = 0 on By implies that V| B is a rigid
velocity-field. Conversely, we adapt below the convention that for V € £” we denote v =14,V
and (¢,,w,) € R? x R the translation/angular velocities characterizing V in Bo.

We recall now some classical properties of these spaces. When p € [1,00), we endow £? with

the norm
m
i, = [ v+ 2 e,
Fo T JBy

(and the ,corresponding definition when p = 0o).When (p, p’) € [1,00] are conjugate, we equip
(&LP, L") with the duality pairing:

m
v, W) /=f vw+ ™[ vow.
e F T JBy

For any p € [1,00], it is straightforward that £? is a closed subspace of

LI®*):={vel’([R?) s.t divV =0}
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which is itself a closed subspace of [LP(R?)]%. In particular, there exists a projector Py :
[LP(R?)]> — £P. When p € (1,00), this projector is analyzed in previous references such as [17].
Since all the P, coincide on C°(R?) we can drop the p-dependency and denote this projector
with P. Our analysis below relies on the following fundamental lemma whose proof can be found
in [17, Remark 2.4]:

Lemma4. Given p € (1,00) the projectorP : [LP (R?)]?> — £P is bounded.

We also define
70" = £ [H' (RY)].
As a closed subspace of [H'(R?)]? this is a separable Hilbert space when equipped with the norm
IVliger = 1VIlgz +1IVV 2,

in which the set of C2°(R?)-soleonidal vector-field is dense. Implicitly in the gradient norm, we
use the shortcut L? for L? (R?). We keep this convention for norms of Lebesgue and Sobolev spaces
in what follows. The .!-norm is associated with a Korn inequality that reads as follows:

Lemma5. ForanyV € #" there holds:
f |VV|2:2f ID(V)I2. (36)
R Fo

We refer to [15, Lemma 4.1] for a proof.

We complement this part of the section with a Gagliardo-Nirenberg inequality that will enable
to control the linear velocity associated with a fluid velocity-field. We build on the following result
of [3]:

Lemma 6 ([3, Theorem 1.1]). Letd =2 and q =1 such that q < % ifd = 3. Define
9(RY) = {ue L9 (RY) n 129 (RY) | Vue 12 (R7)}

Then, for any function u € 2 9(RY), there holds

Il z2q < Aq,dIIVulliz IIuIIi;fl,
where
0
2 A 1 d
y@-1)"\%(2y—d\2 T'(y)
Aga =" 2 ay |’
v ) oAr(y-9)
with
__ dlg-Yy _q+1
qd+2—@d-2q) 7 Tq-1

And we obtain the following lemma:

Lemma7. Thereexists C >0 such that, for any p =2 and any u € H'(R?), there holds

2 1-2
lule = Cy/plull LIVl , "
Proof. Let ue H'(R?). Applying the previous lemma with d = 2 and g = 5, we get
lullr < Ag2IVul, lul},%, (37)

with



Guillaume Ferriere and Matthieu Hillairet 461

and

2,9 1 g
_ (y(q—l) ) (y—l)n ( I'(y) )2
y I'(y-1
Using the property of the Gamma function, we have I'(y) = (y—1)'(y — 1), so that

1_1 1 1_1
+2)(p-2)\""7( 4 \p( 4 \i
Aq,zz(—(p )(p )) (—)” (—) " <cph. (38)
167 p+2 p-2
Moreover, by interpolation, there holds
2
el gaer < Wl 75 Nuell £
Thus, putting this and (38) into (37) yields
L 1.1 1 1
lullzr =Cpt IIVulliz g ”u“£2 a7,
The conclusion follows. O

The above lemma entails the following control that we shall use without mention below:

Corollary 8. Letp =2 and V € £P n H' (R?). There exists a constant C independent of p and V

such that: , )
3 1-=
101 = CVPIVIG IV VI 2 oy

2.2. Construction of the unbounded operator A and related properties

With the construction of the previous part in this section, we can now define the fluid-structure
operator Awhich enables to rewrite the system (14)-(18) into the infinite-dimensional differential
system (19). Following [4, 15,17] we set:

2()={Wen' /) st w=W, e[HF]’}.

We point out that such vector-fields admit a discountinuity of normal derivative on 0By. This is
a key property that enables a non-trivial solid dynamics. For any W € 2(A) we set AW =P/ W
where (keeping the convention that w = W, )

—Awin %
AW = 2

— ( D(w)ndo
m \JoB,

+2. 97! (faB le(w)nda) y* in By.
0

We note that this induces indeed an unbounded operator 2(A) — %2(R) because for any W e
2(A) we have o/ W € [L2(R?)]? (so that in particular P corresponds actually to the L?-projection).

2.2.1. Previous analysis of A

In [15] the properties of A are studied in this hilbertian framework. We gather here the main
conclusions. First, we have that the unbounded operator (4,2(A)) is an accretive self-adjoint
positive operator on 2. Hence, the Cauchy problem

{ 8,V+AV =0

39
Vo1 (39)

=0
has a unique solution for any V, € £? defining thus a contraction semi-group (S(£));>0. The
relations between this semi-group and our linearized system is the content of the following
proposition:
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Proposition 9. For any Vy € £?, the unique solution
V= 8(t)Vp € C([0,00); £2) N C* ((0,00); £%) N C((0,00); Z(A))
to the Cauchy problem (39) yields a vector field v and velocities (¢ ,,w,) satisfying
* Ve C((0,00); L* () N C((0,00); H* (Fp)),
¢ (0y,wy) € C([0,00;R* x R),

and a pressure p € C((0,00); HY (%)) such that (14)-(18) holds true with initial condition:

loc

0,(0)=4y, wy(0)=wy, v(0,)=vy in .

Remarking that the spaces (£”) ye(1,00) share £? 1 CP(R?) as dense subspace the properties
of the semi-group (S(#))>¢ are extended to the non-hilbertian setting in [4]. This is the content
of the following lemma:

Lemma 10 ([4, Theorem 1.1]). For each q € (1,00), the fluid-structure operator A generates a
semi-group on L9 which satisfies:

e Forall p € [q,0], there exists Ky = K1 (p, q) > 0 such that for every Vy € £19:
IS(OVollgr < Kit? [ Vollga  forall t>0.

o Ifq <2, for p€lq,2], there exists K, = K2 (p, q) > 0 such that for every Vo € £19:

D0\ Vollga  forall t>0.

o For p € [max(2, q),00), there exists K3 = Kz(p, q) > 0 such that for every Vy € £9:

_l,1_1

K3t 277 4| Vollga forallO<t<]1,

IVS() VollLp (g < 1
Kst 7|Vl a forall t=1.

The above estimates for the gradient are only on %,. However, when V; € L2 V() =SV, is
in 7! (since it is in @(A)) for ¢ > 0 so that Lemma 5 applies. Thus, the estimates in Lemma 10 are
sufficient to get a full #' estimate.

Last, we also recall duality decay estimates as shown in [4].

Lemma 11 ([4, Corollaries 3.10 and 3.11]). Assume 1 < g < p < co and let F € L9(R?; M»(R))
satisfying F = 0 on By. The following decay estimates for V(t) = S(t)PdivF hold true:

o ifq =2, thereexists Ky = K4(p, q) > 0 such that for all t > 0:

o ifq <2, thereexists Ks = Ks(p, q) > 0 such that:

1,1 1
K5t 2 774 |[Fll e orall 0<t<1,
IV(Oller < el L9(R?) i
Kst P IIFlLa(ge) forall 1<t.

o There exists Ky = Ky(q) > 0 such that for all t > 0:
11
[€vin| < Ket 2771 Fll o (ge)-
2.2.2. Further material on A

In this part, we complement the analysis of A with more properties of its fractional powers.
The fluid-structure operator A being self-adjoint and positive definite, we may define A* for
€ (—1,1) through its spectral representation [14, Section I1.3.2]. Since A is injective, we have
that these fractional powers (either positive or negative) are positive self-adjoint operators with
dense domains.

Our first proposition concerns the square-root of A.



Guillaume Ferriere and Matthieu Hillairet 463

Lemma 12.
(1) We have 2(A?) = 7' (R?) and

|42v] .= V2IDWl 25 40)
(2) Let F € [CX(F)1?*? then,
PdivFe?(A72) with | ATSPdivE| , <IFl 2.

Proof. We refer to [15, p. 63] for a proof of the first item. As for the second itelm, we follow [7] and
propose a proof based on the approach of [14, Lemma III-2.6.1]. Since A™2 is self-adjoint, and
because of the identities (36) and (40), our proof reduces to obtaining the bound:

|(PdivE A2 w)| < I1Fl 25, VA2 w

Vwed[a?

p Vwe2(a7)

Letwe QZ(A’%) so that there exists v € @(A%) for which w = Az v (and thus v = A3 w). We have
then by definition of projectors I’ and integration by parts:

. _1 m . .
<[F"d1VF,A 2 w> =— divF-v+ divF - v
T By Fo

:—f F:Vu.
Fo

We conclude with a standard Cauchy-Schwarz inequality. d

In the proof above, if we do not make further assumption on the support of F and take
w € 9(A™2), the last identity yields:

. _1 m
<|PdwF,Azw>=(——1)f Fn-v—f F:Vv
7 4By Fo

an-vdazf Fnda-il,+f Fn-ntdoow.
6B0 aBO 630

To relax the assumption on the support of F we should be able to control this further term by
IVVI 12®2)- This implies to obtain the boundedness of the mapping v — ¢, on 2(A) endowed
with the H' (R?) topology. However again, the Stokes paradox implies that this property does not
hold true. With the above computations, we can extend A~!/?Pdiv by density into a mapping
(L?(F0))?*? — £2. For the further analysis, we need to analyze the relations that exists then
between AY2S(1)[A~2Pdiv] and S(7)Pdiv when 7 > 0. This is the content of the next corollary

where:

Corollary 13. Let F € (L?(%))**? such that divF € (L?(%y) + L*'3(%)))?> and F-n = 0 on 0%,. For
arbitrary T > 0, we have:
AY28(1) [AV?PdivF] = S(r)PdivF. 41

Proof. Since F-n = 0 on 0%, we can construct F, € C°(%) by a dilation/truncation and
mollifying argument (see also [16, Theorem 1.3] for instance) such that we have simultaneously

]2x2

Fy—F in [[2(F)])°, divF, — divF in [12(R%)+ L3 (R?)]%,

Since the identity (41) holds true at the level of F,, it extends to F by letting n go to infinity. g

We proceed with the analysis of the range of A* for u € (0,1/2) corresponding to [7,
Lemma 5.1]. This is the content of the next lemma:

Lemma 14. Let g€ (1,2) and p<1/q—1/2. For all v € £?*(R?) n[L9(R?))? there exists a unique
w € D(AH) such that v = A*w. Furthermore, there exists a constant C = C(q, ) > 0 depending only
on q and p for which |w|l g2 < C| vl g g2y + 1V 12@2))-
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We point out that, in this statement, the condition v € £2 N [L9(R?)]? reads also v € £? n £1.
What remains of this section is devoted to the proof of this result. We first remark that the
proof of [7, Lemma 5.1] yields from [10, Lemma 2.2]. So, our proof reduces mostly to check
that the fluid-structure operator A satisfies the key-properties necessary to reproduce the proofs
of these latter lemmas (that were concerned initially with the standard Stokes operator with
homogeneous boundary conditions). In comparison with these previous results, we have a loss
in terms of the correspondence g — y and also in the control which involves the L?-norm. In [10]
the authors obtain similar results with u = 1/g—1/2 and a control with the L7-norm only. It seems
we might not get such optimal bounds in our case. But this will not depreciate the final result.

n [10], the properties of the Stokes operator are analyzed on &%, when complemented
with vanishing boundary conditions. The main argument is performed on a Laplace system
and divergence-free constraints are then handled via abstract Heinz—Kato arguments (see [14,
Lemma I1.3.2.3, p. 100]). With our setting, this Laplace operator reads as follows. We set:

L31Bol:={V e [I2(®?)]" s.. V=0 on By}

and P : [L*(R?)]? — L3[Bo] the corresponding orthogonal projection. Then, we define the opera-
tor & by

9 (sto):={verdiBo st ve[HF)]|}.
with
AolVI=Py[-15,AV], ¥ VeD(sy).

To take advantage of the analysis of [10] in order to study the fractional powers of A, we
propose to use the same Heinz-Kato argument to handle the divergence-free constraint and
to focus on the remaining Laplace equation (completed with non-standard integral boundary
conditions) with the help of fy. The operator o will take hold of the PDE and we shall
complement the analysis with a fine study of our non standard boundary conditions. To this
end, we first rewrite the integral boundary conditions introduced by A. This is the content of
the following lemma:

Proposition 15. Let V € D(A) then there holds:

1
dV:—( 0,vdo
m \JoB,

+j_1 (f zL-(3,,1/d0+2a),,)yL on By.
0By
Proof. Itis sufficient to prove that, for any V € 2(A) and any (¢,w) € R2 x R there holds:
f 2DW)n- (¢ +wzt)do = 0 vdo- 0+ ([ zt -anvda+2w,,) w.
0By 0By 0By

So, let V € 2(A). Given (¢,w) € R* x R let:
W=V[x») (€ y" +olyP)]
where y € C°(R?) is fixed but arbitrary satisfying 15, < y < 1. We note that with such conventions,

there holds W € 2(A) with ¢y = ¢ and ww = w. We have then by integration by parts (using
several times that w, W and v, V are divergence free):
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f 2D(U)n-(€+wzl)d0=f 2DW)n-wdo
aBo aBO

:f div2D(v)) - w+2D(v) : D(w)
F

=f Av-w+f vv.vw
Fo R2

= 0,v-wdo +2w,w

4By
= 0nv- (£ +wzt)do +2w,0.
4By
The term w,w appearing on the fourth line is the contribution of the (skew-symmetric part of
the) gradients VV and VW on By. This ends the proof. d

Thanks to Proposition 15we can now rewrite the fluid-structure operator A = P</ where of is
defined (without the divergence-free constraint) by the formula:

s —Aw in %
AW = 1

—( Onwda)+j_l(f zl-ﬁnvda+2wy)yl in By,
m \JaB, 0By

for W € 2(sf) = L2[By] N [H' (R?)12 N [H?(F)]2. Here, we denote:
12 (Bl = {W € [I2 (R)]" s.t. W = £ +wwy* on Bo}.

We may reproduce here classical computations to obtain that o isa selfadjoint positive operator
on I?[By] since it is associated with the quadratic form:

<JW,V>=[RZVW:VV, v (W,V)e_@(,{fj.

We point out that the duality bracket is still the one associated with the disk density. In particular,
we have that (note that VIV is the skew-symmetric matrix associated with wy on By):

jtw

(7+A) W

P vwiE vwea(at 42
LZ[BO]_fRz| | € ( ) (42)

and, for A >0:
2

=f2|VW|2+/1(W,W) v We@(ﬁX). 43)
L2[By] R

We recall that similar identities hold with the operator A. Thanks to these two latter identities, we
can reproduce the procedure of [10, Lemma 2.2] and the proof of Lemma 14 reduces to obtaining
the following proposition:

Proposition 16. Ler g € (1,2) and p < 1/q —1/2. For all € > 0, there exists a mapping Ry :
L2[By] N [L9(R?)]? — LBy satisfying:
o for arbitrary W € L?|By] there holds:
(J+g)_”w - (.s%+£)_u (L W) + Ry e W

e there exists a constant C := C(u) > 0 depending on p but independent of € > 0 and
W € L2[By] N [LY(R*))? such that :

“ R/J,EW”LZ (R2) =ClWl1aq (R2)- (44)

We postpone the proof of this proposition to Appendix B. For completeness, we provide a proof
of Lemma 14 with this proposition at-hand.
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Proof of Lemma 14. The proof follows a standard regularization-compactness scheme. Let u €
(0,1/2) and g € (1,2) such that u < 1/g —1/2. Given W € £? n[L9(R?)]? and ¢ € (0,00) we can
construct (A + &) #W. Formula (43) with a Heinz-Kato argument imply then that

Jca+ey W] . <|(F+e) "W

12[Bg]
However, we have that:

(F+e) W= (sore) " (g W)+ RyeW

For the first term, according to [10, Eq. (2.2)] (that holds componentwise in our setting) and a
Hardy-Littlewood-Sobolev inequality, there holds:

o+2)

=Wl
where 1/q’' = u+1/2. We have then ¢’ € (g,2) so that, by interpolation, we derive:
— —H
H(.szfo-f—&‘) (]lgOW)

2= C(IWlLaczy) + 1Wl2(%,)
As for the other part, applying the previous proposition, we conclude that:
[RueW| 2 < C)IW L.

Letting £ — 0, we have thus that (A + &) "W converges to some V (in £?) that satisfies A*V = W
with the expected control ||Vl g2 < CUIW iz + | Wil 12(g))- O

3. Stability of the Oseen vortex

In this section, we construct global-in-time solutions to (26)-(32) for arbitrary Wy € %2 and
analyze the long-time behavior for small perturbations of fully-developed Oseen vortex.

To this end, we have first the following useful estimates in the same spirit as Lemma 2.1 of [7]
(so that we do not detail the proof):

Lemma 17.
(1) Forany p € (2,00, there exists a constant a, > 0 such that forall t =0
ap
1_1°
a1+nz »
(2) Forany p € (1,00, there exists b, > 0 such that for all t = 0

el = (45)

b
VOl < ——.
aQ+n " »

(3) Forallt,s=0, wehave

(46)

1
|0 -0 <

(4) There exists a constant k1 > 0 such that forall t,s = 0,

IVO(n) - Ve(s)I, <x;

1+t 1+s

1'.

We recall then that, contrary to [7], we don’'t need to use a cut-off function. Indeed, the
boundary conditions are here more suitable than the no-slip boundary condition of [7] for the
Oseen vortex, since O is a pure rotation on 9By : O(t,x) = g(t,1) x1 on 4By. From this remark
and the construction of the pressure II in the introduction, we obtain that, when plugging the
ansatz (25) into (7)-(11), we may have a remainder term in the Newton laws only. Furthermore,
we have the following proposition:
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Proposition 18. Forallt =0, there exists C > 0 such that forallt =0

+]o.g(t,D|=C

f x*t-2(0(0), () ndo (x)
0By

1
(1+0)?
There also holds for all t =0

f 2(O(1),I1(¢))ndo(x) = 0.
4By

In particular, we see that there is actually no remainder in the Newton law for the linear
momentum. But there is one in the Newton law on the angular momentum:

{():= —f xt-2(0(0),11(H)ndo(x) - £0,g(t,1).

By

The previous result yields the following estimate for this remainder.

Corollary 19. There exists C >0 such that forall t = 0,

() <

1+0?°

Eventually, going to capital-letter unknowns, we obtain with similar arguments as in [15] that
we have a solution (w, ¢,,,w) to (26)-(32) if the associated W satisfies (33) with

1
Fo(s) = a((s)xl% —aP[((©(9)- VIw(s) + (w(9)- VIO - (Cwig V) O(5)) Lz, |

—P[[[w(s) —ZW(S))‘V)w(s)]lgo].

We proceed with the proof of Theorem 2 and Theorem 3. We first study in the next subsection
the Duhamel formula (33). The analysis applies to the two cases. Either we start from a sufficiently
large ty for small £? data and we obtain Theorem 3, or we do not restrict the size of initial data
and obtain existence of a solution on a small time-interval. This result is then complemented in
the last subsection with an a priori estimate to yield Theorem 2.

3.1. Proofof Theorem 3

The main result of this part is the following theorem:

Theorem 20. Let ty =0 and Wy € £?. The two following items hold true:

(i) There exists T > 0 such that the solution W (t) of (33) exists on [ty, ty + T1. Furthermore,
any upper bound on |a| + | Wyl zo1 yields a lower bound on T.

(ii) There exists positive constants Ky, 6y, K¢ and Ty such that, if ty = Ty, if |a| < by, and if
IWoll 02 < Ks, then the solution W (t) of (33) is global in time and satisfies

1 _5
sup [|W(2)]l 2 + sup (£ — 1) (||Vw(t)||Lz(gO)+|€wm|)sKo(||Wo||$z+|a|(1+to) )
t

t=ty > 1y
In addition, if
1
M :=suptH | S(r) Wyl 2 +supTH*2 (||vsm Woll 2z + [€smm I] <oo, 47)
7=0 7>0

for a fixed p € (0, %), then

1
sup (£ — )" [W (D)l 2 + sup (£ — 1) "2 (IVw ()l ;25 + | Cw (o |) <2M + Cla
t=1 t>1

for some C > 0.
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Proof. The proof is very similar to the proof of Proposition 3.2 of [7], who followed the classical
fixed-point approach of Fujita and Kato [5]. Below, we denote with K a constant which depends
only on the properties of the semi-group S. This constant may vary between lines.

Given tp = 0 and T > 0, we introduce the Banach space

X :=€°([to, to+ T1, L*) n6° ((to, to + T), H' (R*) N L (By)),

equipped with the norm

1 1
IWix=sup [W@lg2+—= sup (t—10)2 (IVw(Dlzz +|[lwan]).
te(ty,to+T] te(ty,to+T)

with 6 € (0, 1] to be fixed later on. From Lemma 10, we know that Wy (1) := S(f — ) W) satisfies:
IWhH (D)l g2 < IWoll 2,
NI Kmin(l, \/T) IWoll 2
V=10 IVwy (Ol 2.5 < K IWoll g2
Then, if W, € #", we have
IVwh (0l 12z, < KIWoll g1 -

On the other hand, if Wy € & 2, by classical regularizing arguments, we can write Wy = WOS +(Wy—
W§) where W € 7' and (W — W) is arbitrary small in 2. From the properties of S, we have
then that, for arbitrary € > 0 there exists C, such that:

Vv =1 "va(t)”LZ(gO) < Cgﬁ+ Ke.
If we take Ke = 6%, we obtain that there exists a constant K5 depending on 6 for which:

W KvT
)||W0||_cgz+min(K” ‘;”fz,Kgﬁm,T‘/_nwonm. 48)

. min(1, v'T)

||WH(t)||XSK(1 5

Then, given any W € X, we denote for ¢ = fy:

t
Fo(f)Zf S(t—s)P ds,

to

1p
{(s)xt =2
F

t
(F1W)(t)=f S(t-9P[(Os)-VYw(s)]ds,
4}
t
EW) ()= | St-9P[(w(s)—lw) Vw(s)]ds,
)
t
(F3W)(r)=f S(t=9P[(w(s) - lws) VO(s)]ds,
4}
(FW)(8) = aFo(8) + a (FiW) (1) + (Fo W) (1) + a (Fs W) (1).

We show that F maps X into X and that:

5

(1+1)4
+Kmin(1,V5+T2 ) IWI3, (49)

1 1
IFW| x < K('%' min(T3’4,—) +lal (\/5+ gmin(l, T%)) ||W||X)

1
IEW, — FWsl x < K(Ial (\/5+ gmin(l,ﬁ)) +min(1,\/5+ T%) Wyl + ||W2||X))...
WL =Wl (50)
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For this, we compute now bounds successively for Fy, F, F>, and Fs. First, using Corollary 19 and
Lemma 10 (with g = 3), we getforall £ = 7

1 1
(t—19)2 4 1 (t—1tg)2 1
| Fo(£)1l o2 + IVEy (D)l + 1 Fo(D)llpeo) =C +
ol (I Fo @z + 1o (Dl1) to((t_s)i 5(t_s)3)(1+s)2
<L onin T_)
6 (1+10)1

Then, we control F, with the help of Lemma 25 (see Appendix A) which ensures that:

1
(t—19)2 . 1
IEW (D)l 2 + 50 (INEW (D)l 2 + IF W (D)l o) < Kmm(1,\/5+ T%) w3,

Similarly, there holds

[(w=twey-V)OW| s 3y = MWL) VO 25 + [fwo|IVOWI 4 .

e 1 5 1
SC( 1 T+ . = [ IWlx
(s—1)T (1+8)2 (s—1ty)2 (1+9)4

so that, applying the boundedness of P’ : LY3(R?) — 43 (see [17, Remark 2.4]):

1
(t—1)?
IEsW ()] g2 + ~—

(IVEsW (D)l 12(g) + I Fs W ()] 120)

1
SCft( 1 1+(t—t0)23) NG 1 5
h\(t—95)1 O(t—9)4

1
+ )dSHW”X
1 L
< c(\/5+ %mln(l, T4)) Wil

G—t0)T (1+9)7 (s—1)2 (A +8)7

We finally bound F); W. To this end, the procedure is similar to that of [7]. First, we observe that
©-1n =0 on 0B so that we can rewrite (see Corollary 13):

SMP[15,0-V)w] = A2SM A tPdiv(1z,08 w), V¥ 1>0.

Moreover, using Lemma 12 and the estimate (45), we compute

|42 div(100w)

C
<|O(s)w(s <—~ (Wly.
12(%) 19(s) w(s)ll 12 (g7, Y. W1l x

s)2

The above remark with Lemma 10 and (40) lead to:

¢ 1
IFL W) (D)l 2 < . (t—9)2
0

A2 Pdiv(15,00 w(s)|_,ds

t
sc| (t-920+972|Wixds

To

< Cmin(l, T%) W,
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and
1
(t—1o)2
—50 IV EW) (Dl 2(50) + [ €5 win )
t+1p 1 1
1=z (t—t)2 | _1_ .. 1 [h (t—19)2
=5 . s ”A 2Pdiv(1g,0 @ w) (S)Hg,zds+ 5f”;° . 1©Cs) - V) w(s)ll 2z, ds
t+1y 1 1
1 [z (t—1 110 (t—1 1
Sc[_f 2 Um0 G g ds Wy + ~ . ( 0)12 - —ds|Wiix
5y  t-s 0J5 (t-9)2 (1+9)7 (s—1)2

1 . 1
SCSmln(l,Tz)"W“X-

Since FW = aFy+ aFiW + F,W + aF3W, this concludes the proof of (49). The Lipschitz
bound (50) is established in the same way from the fact that F; and F; are linear in W.
We proceed with the proof of item (ii). For this, we fix § = 1 so that (49) and (50) entail:

Whll x < 2K [[Woll 2 ,

|| 2
—5 tlallWlix +IIWl% |,

1+ 1y)a
|FWi — FWallx = K (lal+ Wil x + W2l x) W1 — Wall x.

IFWlix = K(

Let T = oo and r > 0 such that 4Kr <1 and dSeﬁne B, = {W € X||W| x < r}. If we assume that
4la|K = 1, 4K[[Whll 2 = r and 4K]a|(1 + )" 4 < r, then the previous estimates imply that the
map W — S(t—tp) Wy + FW leaves the closed ball B, invariant and is a strict contraction in B,. By
construction, the unique fixed point of this map in B, is the desired solution of (33). This proves

the existence part of Theorem 20 with
Ko=K 6o = ! Ke =
0= ) 0_4K! 6_16K2;

In a second step, we assume that (47) holds for some p € (0, %). Given any T > ty, we denote

To = (4K)5 .

1
&r= sup (t—t)"IW@lgz+ sup (- 1)"2 (IVw(®)l 2z + [fwn]),
tost<T to<t<T
where W (also represented by the triplet (w, ¢w,ww)) is the solution of (33) previously con-
structed. Since W (£) = S(t — tp) Wo + (FW)(1), we have

1
Er=M+ sup (t— )" I(FW)(Dllg2+ sup (t— )" 2 (IVEW)Dl 25 + |[Crwin]).
th<t=sT to<t=sT

where M is defined in (47). Let p € (1,2) be such that % >u+ % and define g € (2,00) such that
1_1_1

7=7% —3-Inparticular, 1> % > 1. First, we have in a similar way as previously:

(t—to)* | Fo(£)ll g2 + (£ — )" (IVFo(0)ll z2(gyy + 1 Fo (D)l 1oo)

41
—c t((t—to)l”_'_(t—to)“IZ) 1 :
o\ (—s)a (@-gr )1+
C
<

= —1_.
(1+ tg)a H*1

The same computations as previously can be done for Fi W, F, W and F3W introducing the
further decay of W induced by &7 (see [7] for more details), so that we finally get

~ 1
sr=M+R(lal+ )" 7 +lalEr + IWIxr), (51)
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for some positive constant K independent of T and t,. Taking § and K¢ smaller and £, larger if
needed, we can ensure that 2K(|a| + |[W] x) <1, so that (51) leads to
- 1
Er <2M+2K|al(1+ )" 77",

forall T > ty.

We finally prove item i) similarly. For this we remark that, with the same computations as
above, we can take first r = 4K||W|l 42 and choose ¢ small enough and then T small enough
(depending on |a|, Wy and r) so that given W, W), W» € B, inequalities yield (48) (49) and (50)
entail:

Wr ()l x < 2K [[Woll o2

1
IFWlx < KIWoll 2 + ZHW”X»
1
IEW1 = FW:l x < 2 W1 = Wallx.

We conclude similarly as above this yields a unique fixed point. In case Wy € A", we essentially
add the further remark that, looking at (48) (49) and (50), we can choose r,d, T depending only
on |al, | Woll s to reach the same inequalities. O

To conclude this part, we point out that, for the linearized system we have the decay estimates

of Lemma 10. Hence we infer the content of Theorem 3 by remarking that, if W, € £% n 24

(meaning that wy € L9(%)) is small in %2 then the assumption (47) is satisfied with y = % - %

3.2. Alogarithmic energy estimate

In this section we complement the proof of Theorem 2. This is the content of the next lemma:

Lemma 21. There exists a constant K > 0 such that, for any a € R and any Wy € £?, the solution
of (33) with initial data Wy provided by Theorem 20 is global in time and satisfies, for all t = 0,

t
IWOIe+ [ IDGO 217 ds = K (IWoE + a2 log 1+ 1)+ Ko,

where K, = a®(1+log(1 +|al)).

Proof. Fix a € R, Wy € %2, and let W € 6°([0, T], £?) n€°((0, T], #") be the solution provided
by Theorem 20 with initial data W (0) = W,. We recall that we denote V = W + a®. Given any
7 =0, we define then,

w:(t,x)=v(t,x)—a®(t+1,x) = w(t,x) + a(@(t,x) -O(t+ ‘r,x)), for all x € %,
O, =CvD=Clwn,
Wy =wv—agt+1,1)=0wen+ a(g(t, 1)-glt+rT, 1)).
The given W, (represented by the triplet (W1, 0y (1) Ww, () satisfy the system of equa-
tions (26)-(32) (or equivalently (33)), where ©(¢) and ((#) are replaced by O(f + ) and {(¢ + 7).

Assume first that the solutions are smooth enough. Multiplying both sides of (26) by iv; and in-

tegrating by parts over %, (using the fact that w; and © are divergence-free), we find
1d o — 2 . - a T2
3 a1 Wrllz gy T2 D@ ()2 ) = faBo wr(t)-Z(wr(t))nda(x)—ELBO O(t+1)|w,|"-ndo(x)

1
—af wr(t)-((ﬁ/,(t)—éwrm)-V)G(t+‘r)dx+—f @7 () (@(8) ~ €y () - N0 (),
T 2

0By
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Since © and w-(f) - £y, () are orthogonal to n on 0By, the second and fourth terms also
vanish. (28)-(30) then yield

1d

orr — (112, )+ M| 3, )P+ 7 |0y, (0 F) + 21D @ (01225,

= —afg W (1) - (W ()=l ) -V) O+ 1) dx + al (t+ 1) O
0
The right-hand side can be estimated as usual with Lemma 17:

< ||wr(f)||Lz(90)m

C

]!
T+1)2

‘f w () (W (1)-V)O(t+1)dx

Ug We(0)- (O - V)OU+T)dx| < |0 (Dl 2(5) | £, ()]
0

o

. < . < ¢ - 2
K@+ D w0l < g ool < g (ewn! +1)

Integrating in time from 0 to ¢ for any ¢ > 0 leads to

e (r)||$2+2f 1D (D1 5 d5 < 5 [ W@z + Kol
()11 @2 (s e wi |
f T L2(F) n T L2(F) | IWT(S)i | WT(S)| - > dS, (52)
0 1+7+s (1+T+5)2 I+7+s8)*= (d+7T+59)

for some constant K > 0, independent of 7 in particular. Such an estimate then also holds for
weaker solutions.

From this estimate, for 7 = 0, the Gronwall lemma shows that || Wr(t) ||@2_(£2 is bounded locally in
time. Adapting for instance [15, pp. 69-70], we infer that || W7 ()]l z»1 does not blow in finite time
either. Therefore, item i) of Theorem 20 yields that our solution W is global in time.

Then, for general T = 0, we need to better estimate the second term, in particular IZWT(S)I
which should decrease faster than | v (s)|| 12(gy) O (W ()]l 2 equivalently). For this, we use
Corollary 8. Applying it for p =2 +1log(1 + 7 + 5), we get:

2
VWT(S) ” 2+log 1+7+5)

2
[€,9] = C2+log 1+ 7+ ) |[Wr ()| T ™ 6

12 (R2)

2 2
<C(2+log(1+7+5)? |Wa(s) 1525 | DWW (5) I L (;“‘;g“”*” :

where we have used Lemma 5 in the last estimate. Then, we obtain:

107 (12 () | €7, (s)] 2+log(1+7+5s)

<C

1
(1+T+S)% 1+7+s ) “ Wils )||$2 “D(WT(S))”Lz(g)

2+log(1+7+9) ¢

= 2 2
< D (W 9) [z + € | T W@,

where
1 1 2

¢(x) = 3 =1-
+ 5 Tos (17D 2+log(1+x) 1+

2+10g(1+x)

In particular, we can easily compute that

2+log(1+7+s) 609 <C2+log(1+r+s)
1+7+s - 1+7t+s
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Therefore, we obtain

1, — t
T+ fo 1D (@ ()12 5, ds

1, ~— 2 Kl|al Lo 2 2+log(1+T1+5)
SEHWT(O)HEZ-’-E-’-K'CZ'\[O ||WT(S)||L2(90)—dS

1+17+s

)

By applying the Gronwall lemma, we get

1, ~— t _
> W] +f0 1D (@7 ()17 5, ds

||

<K||W.(0 “;2 10| e [Klal (log(1 +7 + 5% —log(1 +1)* +log(1+ 7 + ) —log(1 +1))]

T
Now take 7 = (y£)? where y = 1+ |al, we get:

t
log(1+7+1)—log(l+71) =10g(1+—2) <C
1+(x1)
and

t 2 2
log(1+7+0%-log(1+1)%=1lo (1+—) log|1+t+(yt)"| +log|1+(yt
g g B\ (1og( (x1)*) +1og 1+ (x2)?))

e tlog(l + (Xt)z)

1+ (xt)*
Thanks to the estimate (46) and the explicit expression of g(t, r), there also holds

| W= ()] %2 < 21Woll 22 + 202 [©(0) ~O@)l 2 g2y +20%1g(0, 1) ~ g(z, 1]
< [Woll%,. + Ca? (1-+1og 1+ (x1)’))
< [Woll%,, + Ca® (1+log(1 +|al) +log(1 + 1),

C
=-—.
X

but also

IW(@D112,, <2||Wo (D)2 +2a2 10+ ) - 0D,
<L < <

— 2 a? t
SZ“WT(t)”gg +§10g(l+m)

—~ 2 a? t
=2IWe ol + 3o i

o~ 2 a2
SZIIWT(”IIgﬁ—zX”,

and

t t t
[ 1D, 5 ds =2 [ D@0 ) 5, ds20° [ ADO+9 - Oy 5, ds

t t
<2 [ ID@ (I 5 ds+ 20 [ IVO(+9)~OWIE, 5, s
0

1 1
o \1+7 1+4+7+s

¢ t t
— 2 2
szj(; ||D(w,(s))||L2(%)ds+21<1a (—1_'_()”)2 —log(1+—1+(xt)2))ds
2

t
~ 2 a
SZ](; ||D(w,(s))||L2(%) ds+21<17.

4
< 2[ D@7 (N7, ds+2x1a2f
0
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The last five estimates put together (along with y = 1) lead to the result. U

4. Global stability for finite-energy solutions

This last section is devoted to the proof of Theorem 1. For this, we first recall the partial result
in [4] on which relies our analysis:

Lemma 22 ([4, Theorem 1.3]). Let q € (1,2) and assume that Vy € L9 n P2 with | Woll g2
sufficiently small. Then the unique finite-energy weak solution V with initial data Vy satisfies:

1 1
supt? a||V (1)l gr <oco YV pe(2,00) (53)
>0
1
sup td |€,(t)| < co. (54)
>0

Theorem 1 is then a direct consequence of the two following propositions that we prove in the
next subsections:

Proposition 23. Let g € (1,2) and asume that Vy € L9 n £?. Then the unique finite-energy
solution V starting from Vj satisfies:

Ve C([0,00; L0 %?) (55)
VVeL;,,([0,00); L(Fo) N L* (F)) (56)
Oy € L*((0,00)). 57)

Proposition 24. Let q € (1,2) and asume that Vy € L9 n £?. Then the unique finite-energy
solution V starting from Vj satisfies:

liminf ||V (£)]| &2 = 0. (58)
t—o00

4.1. Proof of Proposition 23

Proof. Let g <2 and Vj € £7n 2%, We recall that, by the construction of [15], we have V €
C([0,00); %) and VV € L2((0,00); L%(R?)). Furthermore, with the proof of Theorem 20 we know
that the solution V is computed through the Duhamel formula:

V() =SV +f()t8(t—s)P[lg0(V—€V)-VV] ds. (59)
since it is the only fixed point of the mapping:
2:W— S(t)Vo+f0tS(t—s)lP[lgO(W—ZW)-VW] ds.
in the space C([0, T1; %% N C((0, T); H (%)) endowed with the X-norm:
IWix = [501’1%3] Wl 2 + [sol,lg \/EIIVWIILZ(%)

(for T sufficiently small). We show here that the same property holds adding the property V €
C([0, T;; £7) N C((0, T); Wh9(Fy)). Let fix By the subset in C([0, T]; £*n L) n C((0, T); H (Fo) N
W14 (%)) containing W satisfying

[Wix <2l Vollg2, [1Wlx, :=sup (IIW(t)Ing +VIIVW (1) IILq(RZ)) < (1+K2) (1ol za + Vol 2),
[0,7]

where Kj is the constant involved in Lemma 10. By adapting the computations in the proof of
Theorem 20, we obtain a time T sufficiently small such that for T < Tj the above mapping
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is a contraction on Br for the X-norm. Then, given W € Br, applying the duality estimates in
Lemma 11 with p = g we obtain that

t
12IW1(Dll£a < Vol za +f0 Ggt =)W —Llw)®Wlpag,)ds V tel0,T]

where
Ga(s) = K59
s)= 1
I s ifs>1
The last integral we denote I[W] is then bounded by applying the Gagliardo-Nirenberg inequal-

ity:

t 1 2(1-1
I[W]sfo |¢>q(r—s)|(||W||;2 ||VW||L£(3,Z)))+|[W|||W||2qu

t
< [ lqtt=9] ("0 DUWIE + IWcIW24) s,

At this point, we realize that, for T < 1 there is an absolute constant K5 for which:
t ~ 1.1 t ~
sup qbq(t—s)s_(l_”q)sKqu 2 sup | ¢q(t—3)<KsVT.
[0,71J0 [0,T1J0
Since g < 1/2 we can take Ty smaller (but decreasingly in the quantity || Vy|l 2 + [| VoIl 4) so that
for T < Ty:

~ 11
sup [2(W](Dll ga = 1Vollga+KsT 49 2 | Voll 2
[0,7]

Vol o2 + sup [|W | ¢a
[0,T1]

= Vollga+1Voll 2. (60)

As for the gradient, we apply semi-group estimates of Lemma 10 to yield that

1
t t 2
VEIVIWIO) Il La ) < Ko Vol 2 +K2f0 (:) (W =£0y) VW La(z,ds.

Combining then Hoélder inequalities (where 1/g* = 1/g —1/2) together with a Gagliardo—
Nirenberg inequality (interpolating the L9 -norm between the L? and H' norms) and the bound
already obtained on || W|| x, we bound:

3_
2

1
IW-VWllrazy < IWll 4 (Fo) IVWl2(gy = 52 4 ||W||§(
10w - VWl < VsIWIxIWlx,

Since s < 1, we end up with:

1
[ ts)2
\/Env@[W](t)qu(go)usnvollwazfo (:) dslVoll 2 (IVoll 2 + Vol a) -

1
J =) =er
— <Ct2,
o \l—s

hence we can choose T smaller if necessary (but decreasing in the quantity || Vgl o2 + || Vol £4) so
that for T < Tj:

By a homogeneity argument we have:

sup VI IV2IWI(0)l Lz < Ko (1 Voll 2 + [ Vol 2).
[0,T]

Finally, 2 maps B into B. With similar computations, we obtain that it is a contraction up
to restrict to a smaller Ty again and conclude that we propagate the property V € £9 and
VV € L9(%,) on a short time-interval. We note that on this time-interval AT, we have

IVWIL a2z < 1Wix — IVWIlnioamy;ca@y < 1Wllx, 61)
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To obtain further that V € 9 and VV € L9(%,) for all times we remark that by a standard
blow-up alternative, it is sufficient to obtain local bounds for ||V ()|l q + |V (£) ]| 2. Since this is
already known for ||V (1) || .2 we focus here on ||V (#) || ¢4. To this end, we note that choosing T} so
that

1.1
KsT)" *Vollge < 1/2
and applying (60) with V we have

sup [V (Dl ga = 21 Voll za + 1 Voll 2.
[0,T1]
Furthermore, since our system of equation is autonomous, we can reproduce this computation
starting from any fy > 0. Finally, since we already have a uniform bounds for || V (#)|| .- we obtain
that there exists a short time increment T; (independent of the initial data) so that for arbitrary
1 >0:
sup V(O llpa <21V (t)ll.za + Vol 2.
[to,t0+T1]
In particular, there can be no blow-up of ||V (#)]| ¢+ in finite-time. Then on a time-interval [0, T
since we have an a prioribound for || V| ¢4 + [ V|| 2, we can see our solution as a concatenation
oflocal-in-time solutions constructed as above on a small-time interval AT. By concatenating the
remarks (61) on the time-intervals [nAT, (n + 1)AT] we conclude that

VV e L' ((0, T); L*(Fo) N L (Fy)).

To complete the proof of Proposition 23, we show now that £y € I2([0,00)). Since VV €
L2(]0,00)), we first remark that:

(o¢]

Ve>0, IT.>0s.t f IVVI7, <e. (62)
T

Thanks to the representation formula (59), we have then that, for arbitrary ¢ > 0 we can split
0,(1) = 05(1) + € ni(2) where:

Cs()=Cswvy, InL(D)=Crp
where
t
I(t)=f S(t—s)IP[lgO(V—[V)'VV]ds.
0

Since Vp € %% n 29 we apply Lemma 10 to yield that:

1
|£5()] < min (1, — | 1Voll 24 € L((0,00)).

1
ta

For the nonlinear term, we apply the duality estimates of Lemma 10 with r > 2. We obtain:

¢ 1

[N (D) S[ —— IV=20,)® V(g
0 (t—s)2tr

At this point, let fix T > 0 (sufﬁcientlyllarlge) and remark that the right-hand side can be seen as

a truncated (time-)convolution of 1/s2*7 and |[(V — £€,) ® V| 1r( 710, 71- By a Hardy-Littlewood-

Sobolev inequality, we have then:

A -
”éNL”LZ(O,T)SH' | 27T *“(V éy)@V”Lf(yo) 12(0,T)

T R ST AU
i 1v-coevityg | =ar [ i g | e ([ neavi s,
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where p is the conjugate exponent of r. For the first-integral on the right-hand side, we apply
again a Gagliardo-Nirenberg inequality and the fact that p is the conjugate exponent of r to yield
that:

’ 2p 2ot 2 2p
fo IV ) = Cr SUP ||V(t)||ﬁ;2f0 IVVIZ < CrliVolly,

To estimate the last term, we introduce an intermediate time T;,;, to be fixed later on. We note
here that, for arbitrary 0 < T} < T» combining a standard Hoélder inequality and a Gagliardo
Nirenberg inequality entails that (since p < 2):

1

T p Iy Zg T ZZJ -5
e, VI, s(f 10, ) (f vl :”)
-[Tl Y (F0) T Y T L

p 2p T, zzlp( _;) l‘g
<yl sup IVIl (f Ivvisr
PP gy R U, r
Recalling that p and r are conjugate exponents yield that
2 2
2p (1 - _) —2
2-p r
and we infer that:
T2 p p 2p T ) 1-3
Ll ”|€V| V”Lr(go) = C”[V”IAZ(Tl,Tz) "V0”22 (Ll ”VV”LZ)

When T > T,,i4, combining the previous computations between 77 = 0 and T> = Ty,;q and
between T = T),;4 and T> = T, we conclude that:

<=
D=

2 Timia
2 T 2
Nentl 20,1 < CrIVolZe + Cr €0l 201,00 1 Vo ( fo ||VV||L2)

<=
o=

2 T
+cr||£y||L2(Tmid,T)||%||;€2(fT ||vvuiz)

mid

At this point, we recall the remark (62) and choose T,;4 so that:

2 (oo L\ 1
cong ([~ wviz)” <3

i 2
mid
Splitting ¢, = ¢s + ¢ N1 and arguing that, on compact time-interval, we can always control |¢,| by
IVl 2 < I Voll 2, we infer that :

1
1€l 20,7y = 151l 12(0,00) + Cr (1 +v Tmid) ||V0||i>2 + > 1€l 20,7y -

Eventually, we conclude that, for arbitrary T > T,;4 we have:

1002001y < Car (1Yol 0 + (14 v/ Tonia) Vo2 ).
This concludes the proof of Proposition 23. U

4.2. Proof of Proposition 24

Proof. This proof is inspired of [7, Section 5]. Let g <2and V € %% 9. We recall that we take
u< é - % so that £? N %9 < D(A™H). Thanks to Proposition 23, we have that the unique finite-

energy solution satisfies

e VeC([0,00); 290 %% N C((0,00); W9 (R 0 H (R2)).
* 15,(V-£,)-VVeL] ((0,00);L*®R%) N LI([R?))

loc
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In particular, we have:
0 V—AV=P(V—-0,)-VV) V,_, =V
where V € C([0,00); D(A™")) and P(V—¢,)-VV) € L} (0,00; D(A™H)). Consequently, we can apply

loc
the operator A™* to this equation and we obtain that U = AV is a mild solution to:

0,U-AU=A*P(V-¢,)-VV) U,_, = Uo.
We have in particular for arbitrary ¢ > 0 that
1 ! Lo
EllU(l‘)llnzgz +f0 ||VU(S)||izdSSf0 (ATFP((V = ¢,)-VV),U)ds.
However, for arbitrary s € (0, f) there holds:

[(ATFP((V - £,)-VV),U)| = U (I((v-¢,)-VIA™HU) - Vdx
Fo

1_
< (IVI4 )+ IV 12001 142U g2

< C(I61+IVV I 2(5) | AU o2

vl
P2

where we applied a Gagliardo-Nirenberg inequality to pass from the second to the last line. At
this point, we argue by interpolation that

| 44U 2 | 427U, < ClUIL

A? UH ,
32
thus

1 2 1y 1. 92
CLV+ IVl 10Nz [ 42U, = C1€01+ IV VI IUNS + 5 | 42U,

This yields finally that, for all ¢ = 0:

t t 2
||U(t)||§£2+f0 ||VU(s)||§2dsSCf0 (12014 19Vl 25 ) TU I, .

Eventually a Gronwall lemma yields that:

t t 2
||U(r)||_§f,2+fO ||VU(s)||izdss||Uo||§fzexp[f0 1l + 19Vl 25 ) |

Since the integral in the exponential is bounded by Proposition 23, we have then a uniform bound
(e e]
sup |l U(l‘)lligz +[ IVU(s) IIizdS =G
>0 0

where the constant Cy depends on the whole solution V' (and a priori not only on V).

At this point, we argue in the same manner as in [7, Corollary 4.2]. The situation is even
more favorable since we have uniform bounds. Indeed, since VU € L%((0,00); L?(R?)), we can
construct a sequence of times ¢, growing to infinity such that [|VU(t,)ll;2 — 0. We have then
that ||A1/2U(tn) | o2 goes to 0 while |U(¢,) | 2> remains bounded. By interpolation, ||V (£,) [ &2 =
IA¥U ()|l o2 (Where u < 1/2) goes also to 0 as n goes to infinity. This ends the proof of Proposi-
tion 24. Il

Appendix A. Technical lemmas
We gather in this section technical lemmas used throughout the paper. We start with handling
nonlinearities in the Duhamel formula. We recall that, given #;, > 0 and T > 0 we denote:

X :=C([to, to + T); %) N C((to, to + T1; H (R*) N L (By))

that we endow with the norm:

(t—1to)?
[Wlix :=sup W (D)l 2 + sup ————

(||Vw(t)||L2(g¢0) + Ifw(t)l).
=1 >ty 0
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Other notations are introduced in Section 3.

Lemma 25. Let ty, T > 0. Given (W,, Wj,) € X we denote:
t
F(t):=| S(t-9P[lg, (wa—"La) -Vwp|ds VY re(ty,to+T).
to

Then there holds:

e FeX
o there exists a constant C > 0 for which:

. 1
IFlx < Cmin(1,V3+T2 ) I Walx I Wyl x

We emphasize that, in this lemma, the assumption W, € X induces that, for every s € (¢, fo +
T), W,(s) is a rigid motion on By. Obviously, we denote ¢, the translation velocity (with respect
to the origin) associated with this motion.

Proof. We only give a proof of the second item. To this end, we remark that, since w, is
divergence free:

(Wq—424) - Vwp=div((wg—€2)® wp), on F.
Since (w,—¢4)-n = 0 on dB we can then extend by 0 to create an L? (R%)-source term which fulfills

the assumptions of [4, Corollary 3.10]. This yields, for arbitrary ¢ € [#y, fop + T] (recalling also that
0<1)

|
IFl <K [ = lwa ) 0wl iz,
to -
S |
1/2 1/2 1/2 1/2

K| ﬁ(wanwbugwnwaugz Vwall}2 5 IWpl 2 IVwpl 12 )
cx [ A2 asimaly 1wy
= N X b .

to \/t—S\/S_tO @ X

Hence, we have || F(2) || 2 < CO | Wl x | Wpl x.
For the second part, we first split F = F; + F, + F5 with t,,,;4 = (£ + fy)/2 and denote:

Imi
Fl(t)zf dS(t—s)[FDdiv[lgo(wu—éa)obwb]ds

To
t

Fz(t):f S(t—9s)Plw,-Vwylds
tmid
t

F3(t)=f S(t—8)P[l,-Vwylds.
tmid

For the first term, we combine [4, Corollary 3.10] with standard continuity properties of S.
Remarking that:

tmid
Fi(n)=S(t- tmid)f S (tmia — $)Pdiv[1g, (we —4) ® wy] ds,
to

we obtain with obvious notations and similar computations that:

1 tmid
(1) + |\VF (t s—f S(tpia—S)Pdiv|lg, (ws—¥4) @ wy|ds
101+l 1( )"LZ(go) m " (tmia ) [90( a a) b] o2
C (™ L ywa-¢ ||
< Wwa—¥Ca)®w
\/l‘—_tof Vimia=s e fd O Wiy
Co
< Wl x Wl x.

T Vi—bh
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For the other terms, we apply standard continuity properties of S. First we note that w, - Vwy, €
L*3(R?) with:

- Tyl g2y < 1all 2, IVl %, &) VWbl 2 g2)

3

2
s ——  lwallx llwpll x
(t— t0)3/4

Since P : L*/3(R?) — %*/3 is bounded (see [17, Remark 2.4]), we infer that:
1
. (t—S)3/4 (t— 7 )3/4

t
3
Ifz(t)|+IIVFz(t)|IL2(gO)SK62[ dsllwallx lwpll x
tm

cs?
/t_

Finally, we bound (applying the standard contlnuity of P: L?(R?) — £?)
t

<

[Wal x I Wpll x -

3D+ IVE (O 2(gy = |[ | vabuLz(RZ) ds

mzd\/ -
t 52
<K — I x Wl
tmia VI—SS— 1o X
< co Wall x I Wpll
\/t—_ allX bllx-

Finally, we split again F = F} + F» + F3 with t,,;4 = t; so that F; = 0. We remark then that similar
estimate holds for (F», £,) while, for F3, we note that we can bound || < || Wy | &2 to obtain:

t
1581+ IVE (0] 23, st
fo

6 ds

th VI=SVS
SC5||Wa||X||Wb”X*

= Cal IV wpl 2 a2) ds

||Wa||X||Wb||X

This concludes the proof of Lemma 25. O

Appendix B. Proof of Proposition 16

We provide here a proof of Proposition 16. To estimate (< + £) ™ as required in the content of
Proposition 16 we rely on the integral representation (because « is a positive selfadjoint operator,
see [13, Section 2.6]):

(J+ g)_u = Sin;n“) foo (/14-15)” (527+/1+g)_1d/1. (63)

In order to construct R, . we work at first on a construction of (of + )71 involving (.QZ) + )71 for
A > 0. To this end, we introduce objects that are crucial to the analysis.
We recall here basics on some modified Bessel functions. The following statements are taken
from [12, Section 8]. The function Kj : (0,00) — R is the unique smooth solution to:
1d

- rdK(r)
rdr | dr

that behaves asymptotically like:

Ko(r) ~ { 1/ %exp(—r) when r — oo

—In(r) when r — 0.

+Ko(r)=0 Vr>0,
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Furthermore, all derivatives of Ky enjoy the same decay at infinity as Ky and K{(r) ~ —1/r in 0. We
mention also that Ky = 0 and K{j < 0 on (0,00) (see [12, Theorem 8.1]). Similarly, K; : (0,00) — R is
the smooth solution to:
1d d
rar T

that has the asymptotic expansion:

,lzlexp(—r) when r — oo
K~ 17

— whenr —0
r

We have again that K; =0 and K| < 0 on (0,00), that the derivatives of K; enjoy the same decay as
K at infinity and K7 (r) ~ —1/r%in0.
Then, for arbitrary A > 0, we define ¢, : R?> — R by:

1
+(1+—2 Ki(r)=0 Vr>0,
r

Ko(\//Tlxl) .
27 if [x|>1
ko (V) - VA (V)
Pr(x) = m
Ko(ﬁ)
27 iflx|<1
AKo (V) - = VAK; (V)
anqu5R2—>Rby
K (\/I|X|) . 1
(271 + ) K (VA) - 7,271 VK] (VA) if x| >
Pa(x) =4 . (ﬂ) § 'f 1
e A (VA 2r g VKA

We recall that the symbols m and _# appearing in these formulas stand resepctively for the mass
and inertia of the disk. The aim of this construction is the following proposition:

Proposition 26. Let A > 0. Given (F,1) € R2 x R, let define:
1

VAETI(x) = (p;t(x)F+1//A(x)Tlx7| V xeR2.

Then there holds V) [F, 1] € D(A) with:
(7 A) ValET) = (F+ 7x") 1.

Proof. Let A > 0 and (F,7) € R? x R. For the proof, we denote V = V)[F ] for legibility. By
construction, ¥, and ¢, are continuous on R?. Furthermore, since Ky, K; are smooth and decay
exponentially at infinity, we have that ¢, € H*(%,). The explicit values for ¢; and ¥, when
r < 1yield also that, on B(0,1), we have:
(V7] ki (Vi)
V(x)= F+ x* on By.
Mo (V) - ZVAKY(VE) (2771 +A) K (VA)-27.2-1VEK] (V)
Finally, we obtain that V € I? [Bpl N [HY(R?)]2 and thus that V € @(g’ﬂ.
We go now to polar coordinates (r,8) and exploit the ODE satisfied by Kp, K] to obtain that

—AV+/LV:(&7+)L)V:0 in %
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This is why we introduced Bessel functions. While, in By, we have:

(427+)L)V=[+a)yl

with
, 1 - ﬂKo(\/x) F
= Jos, """ U+/1K0(\/I)—%\/EK6(\//T)
T
w=_¢ (faBOZ 6"Vda+(2+/1)K1(\/I)—2ﬂf_1\/x1<{(ﬂ)
1Ky (\/%)T

N .
(s + 1) K (VA) -2n 21 VAK] (V2)

Going again to polar coordinates (r,6), we note that 8,, = —d, and that z* = (—sin(f), cos(6)).
For symmetry reasons, we thus have that:

271\/11((’) (ﬁ)
- Onpvdo = — o ) F
0 AKy (\/z) - EﬂKO (\/1)
Zn\/IK{ (\/X)

f zlanvdaz - T
o8y (21 +2) K (VA) - 2721 VAK] (VA)

Introducing these identities in the above computations of ¢ and w, we end up with ¢ = F and
o = 1. This concludes the proof of Proposition 26. g

We combine now this construction with the operator o to compute the resolvant of . Given
A>0and W € L?[Bo], we have:

W= (fw+wwyl)]130+w11go.

Consider V/{O) (W] = (a% + A)_l(w]lgzo). We have V;(LO) € @(a%) c 9(3’5 so that we can compute
AV
A

_ 1
0) _ 0) -1 1 0) 1
(74 2) (v 1w)) = [E( , Onvd Wida |+ 7 UaBOZ 0,0 [W]da)y 1p, + wl .
Consequently, we correct the value on By by setting:
1
FOw) ::—(f 0 v(o)[W]dU), tOmwy:= gt (f zt.0 u“”[W]da), (64)
A m \Jog, nea A j 5B, nea
and
VAW = VO W)+ Vi [w - FO W, 0w -7 (W] (65)

By linearity, we obtain that V, € 2 (/) satisfies:
(J+ /1) VWl =W.

and is the unique one by injectivity of o+ N
With this construction at-hand, we are in position to prove Proposition 16.
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Proof of Proposition 16. Fix g € (1,2) and p < ¢y = 1/g—1/2. Let € > 0 and W € L?[Byl.
Plugging (65) into (63) we obtain that

- sin(mu) [° 1 —~ -1
(A+e) ™= n’“‘f o[ Farerd) (s w)ar

sin(rp) [ 1 0 0
I [T Ve [ew = B Whow +79,. (W] 42
Thus, we have the expected representation formula with:

sm(ﬂ,u)
R’qu— f (A+E)”V£+A

To complete the proof, it remains to obtain (44). For this, we first bound by introducing the
explicit value of V., :

[RucWle=C | (mw lonselle (11 + [ 1] ar

~ ©
Cfo (}L+£)“ ||1V/1+s||L2(|wwl+ ME[W]Dd;L

We note here that the constant C appearing in the right-hand side depends only on the physical
parameters of the system. We denote by C such constants below. They can depend on the physical
parameters or on the data g, 1. They can also vary between lines.

We proceed by estimating the two integrals independently. For the first one, let denote:

Cw— F(O)

A+e

W,y +1© [W]] da.

A+e

1
K(s) = <15l 2y (1wl +|FPw1))

By looking at the explicit value of ¢5, we have:

c 1 ([ 2
o= s (09 o [ ot aaa) |

and, with ¢’ the conjugate exponant of g :

-

1

Ko(v/s)s7

We postpone the proof of this latter inequality to the end of the appendix.
When s € (0, 1) the asymptotics of Ky and Ké ensure that Ky € L”((0,00)) for all p =1 and that

At o0a) mea- 7

|F;°’[W]|sc””’”LﬂU Ko (a)|7 ada) : (66)

C Wl

s V/S[KG (V5
ClW | a

= sh—kerietlIn(s)|’

K(s) =

where 1/s# Heritt1|In(s)| € L((0,1)) since g — perir < 0. While, when s € (1,00), the same asymp-
totics guarantee that (remember that g’ > 2 to bound a!~9/2 < s1/2=474 for \/5s < a):

1

1+exp(v/s)s 27 (fj‘gexp( q a)da)i')
s1exp(—v/s)

c|\w
K(s) < IWilLa

B (M + L (f; exp(—Za)da) ;)
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P I
and finally K(s) < ClW 142y $ Hogg ! € L'(1,00). Hence, we have a uniform bound C indepen-
dent of € € (0, 1) such that:

fo aron 1reliz @) (1wl + )Fm[m )) di = fo K(s)ds < C| W] a.
For the second integral we denote similarly:
= 1
— (0)
K(s) = W “wSHLZ([RZ) (|CUW| + |T5 [W]D
With the explicit form of ¥ we have:

C 1 ([® z
lvsll 2@y = FETANGENGAND (|K1(\/a|+%(f\/§ |K1(a)|2ada) )

and )
T

o0
120wy < c L ( f Ky (@) ada) ’ 67)
Ki(vs)s7 Ve

When s € (1,00), Kp and K; admit a similar exponential bound, so we obtain with similar
arguments as previously that K is dominated by an L'-function multiplied by [|W||;4 ®2)- When
s € (0,1) we proceed more carefully but similarly again. We have |K; (a)| < 1/a when a < 1. Hence,

we compute that:

oo 0 / 1
f IKi (@)? ada < C(1+In(s))), f Ky ()7 ada < —
Vs Vs sT-
Consequently:
~ 1
|K(9)] = CA+ns)DZ IWIL(g2)-

We conclude like previously. 0

To end up this section, we provide a proof of identities (66)-(67). This is the content of the
following proposition:

Proposition 27. Let A >0 and q € (1,2). There exists a constant C depending only on the physical
parameters and q such that, given W € L?[By] N [L9(R?]? we have:

1
f 1Ko (s)]9 st) !

’F(O)[W])sc—”w””(%) (
A Vi

1

Ko(\/Z)M

1
lwll La(g) (

f K ()| sds) v
VA

1

K (\/Z)ﬁ

where F /{0) [W] and 1510) [W] are defined in (64) and q' is the conjugate exponent of q.

[#Pw1|<c

Proof. We provide a proof of the second inequality. The first one is obtained with a similar
construction based on Kj.
Let w e Rand

By construction, we have:

—-Au+Au=0on %, u(x)= wx* on 0By.

(0)
A

Introducing the latter identity into the definition of 7,” [W], we derive:

r(f)[W]wzf dnv/(lo)[W]uda,
0By
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so that we can integrate by parts. Recalling that v/(lo) (W] = V;EO) [W]1 g, satisfies a specific PDE and
vanishes on 0By, then using the PDE satisfied by u, we deduce successively that:

) _
75 [Wlw = fg

0

(0) 0.
Avl -u+f Vv;L :Vu
Fo

=— w-u+ /Ivflo)-u—f V;O)'Au
F Fo Fo

:—f w-u.
Fo

Via a standard Holder inequality and homogeneity arguments we thus infer that:

RRUE :

K (\/I)M

1

w w 0 ’ q

<M(f IKl(S)Iq SdS)q X
VA

Since w is arbitrary, this concludes the proof of Proposition 27. d
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