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Abstract. We show that the empirical Christoffel function associated with a cloud of finitely many points
sampled from a distribution, can provide a simple tool for supervised classification in data analysis, with
good generalization properties.

Résumé. Nous montrons que la fonction de Christoffel empirique associée à un échantillon fini de points
peut fournir un outil simple pour la classification supervisée en analyse de données, avec de bonnes
propriétés de généralisation.
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1. Introduction

In this note we are mainly concerned with supervised classification with noiseless deterministic
labels where the objects of interest x ∈ X belong to m classes with supports X j ⊂ X ⊂ Rn , j ∈ [m]
(with [m] = {1, . . . ,m} =: Y). The supports satisfy Xi ∩X j = ; for all i , j with i 6= j . The data set
consists of clouds of finitely many points (x(i )) ⊂ X j sampled from an underlying distribution
φ j on X j , j ∈ [m]. In this situation, an exact classifier f : X → Y, selects j =: f (x) whenever
x ∈ X j . When constructing a classifier from a sample of data points, as e.g. in machine learning,
a sensitive issue is its generalization properties when applied on a test set different from the
training set. For the reader interested in recent developments on various techniques and issues in
supervised and unsupervised classification, we refer to e.g. the book [1] and the many references
therein.
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Contribution. We first introduce a simple and natural ideal classifier ft : X → Y, with nice
asymptotic properties as t increases. It is based on the Christoffel function Λµt associated with
the joint distribution dµ(x, y) on X × Y. As µ is supported on the graph {(x, f (x)) : x ∈ X } of
the exact classifier f , recent results of [5] transported in our context suggest that the classifier
ft (x) := argmaxy∈YΛ

µ
t (x, y) should approximate f nicely. This is the case and indeed, by a

slight modification of the definition of Λµt , we show that ft is simply expressed in terms of the

Christoffel functions Λ
φ j
t of the φ j ; namely, ft (x) = argmaxkΛ

φk
t (x). Notice that this simple form

of ft mathematically justifies for supervised classification, the intuitive argument that Λ
φ j
t (x) >

Λ
φk
t (x), ∀ k 6= j , whenever t is sufficiently large and x ∈ X j . Indeed as x ∈ X j is outside the support

Xk of φk , for every k 6= j , the “score” Λφk
t (x) is close to zero for sufficiently large t , as it decreases

exponentially fast to zero (while the decrease ofΛ
φ j
t (x) is at most polynomial in t ).

We next consider the practical case where we only have access to a discrete sample of points

in each class X j (e.g., the training set in Machine Learning) so that Λ
φ j
t is not available. We

provide a data-driven analogue of the previous result which, as expected, is in terms of the

Christoffel functions Λ
φ j ,N
t associated with the discrete empirical measures φ j ,N . Namely the

empirical discrete analogue f N
t of the classifier ft simply reads f N

t (x) = argmaxkΛ
φk,N
t (x), and

has same properties as ft , but of course in an almost-sure sense with respect to random samples.
In particular it shows good generalization properties. Indeed with ε > 0 fixed and t sufficiently
large, with probability 1 (with respect to random samples), f N

t (x) = j for every j ∈ [m] and all
x ∈ X j at distance at least ε from the boundary ∂X j , for sufficiently large N .

Finally, we also briefly discuss more general joint distributions of pairs (x, y) (where possibly
Xi ∩X j 6= ; for some (i , j )) which covers practical cases where some misclassification may occur
and/or some ambiguity is allowed.

1.1. Notation, definitions and preliminary results

Let R[x] denote the ring of real polynomials in the variables x = (x1, . . . , xn) and R[x]t ⊂R[x] be its
subset of polynomials of total degree at most t . Let Nn

t := {α ∈ Nn : |α| ≤ t } (where |α| = ∑
i αi )

with cardinal s(t ) = (n+t
n

)
. Let vt (x) = (xα)α∈Nn

t
be the vector of monomials up to degree t .

The support of a Borel measure µ onRn is the smallest closed set A such that µ(Rn \ A) = 0, and
such a set A is unique.

Moment matrix. Let φ be a Borel measure whose support Ω ⊂ Rn is compact with nonempty
interior. Its moment matrix of order (or degree) t is the real symmetric matrix Mt (φ) with rows
and columns indexed byNn

t , and with entries

Mt (φ)(α,β) :=
∫
Ω

xα+βdφ=φα+β , α,β ∈Nn
t .

Then necessarily Mt is positive semidefinite for all t , denoted Mt (φ) º 0.

Christoffel function. If Ω has nonempty interior then Mt is positive definite for all t , denoted
Mt (φ) Â 0. Let (Pα)α∈Nn ⊂R[x] be a family of polynomials, orthonormal with respect to φ, i.e.,∫

Ω
PαPβdφ= δα=β , ∀α,β ∈Nn .

Then the Christoffel function (CF)Λφt :Rn →R+ associated with φ, is defined by

x 7→Λ
φ
t (x) :=

[ ∑
α∈Nn

t

Pα(x)2

]−1

, ∀ x ∈Rn , (1)
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and recalling that Mt (µ) is nonsingular, it turns out that

Λ
φ
t (x) = [

vt (x)T Mt (φ)−1 vt (x)
]−1

, ∀ x ∈Rn . (2)

An equivalent and variational definition is also

Λ
φ
t (x) = inf

p∈R[x]t

{∫
Ω

p2 dφ : p(x) = 1

}
, ∀ x ∈Rn . (3)

One interesting and distinguishing feature of the CF is that as t increases,Λφt (x) ↓ 0 exponentially

fast for every x 6∈ support(φ). In other words Λφt identifies the support of φ when t is sufficiently
large. In addition, at least in dimension n = 2 or n = 3, one may visualize this property even for
small t , as the resulting superlevel setsΩγ := {x :Λφt (x) ≥ γ }, γ ∈ R, capture the shape ofΩ quite
well; see e.g. [2].

1.2. Setting

Let Y := {1,2, . . . ,m} be the set of m classes, and for each (class) j ∈ Y, let X j ⊂ Rn be the set of
points in the class j , assumed to be open with compact closure X j , Let X := ⋃m

j=1 X j ⊂ Rn be

the open set (with compact closure X = ⋃m
j=1 X j ) of all points to be classified and µ be the joint

probability distribution of (x, y) on X×Y. Write

dµ(x, y) =ϕ(dy |x)φ(dx) , (4)

where µ has been disintegrated into its marginal φ on X and its conditional probability distri-
bution ϕ(d y |x) on Y given x ∈ X. Next, each point x ∈ X belongs to only one class and therefore
Xi ∩X j =; for all pairs (i , j ) with i 6= j , and so we may and will assume that φ(Xi ∩X j ) = 0 for all
pairs (i , j ) with i 6= j . Therefore one may write µ=∑m

j=1µ j , with

dµ j (x, y) = δ{ j }(dy)φ j (dx) , j ∈ Y ,

for some marginals φ j on X j , j ∈ Y. In particular:

φ(A) =µ(A×Y) =
m∑

j=1
µ j (A×Y) =

m∑
j=1

φ j (A) , ∀ A ∈B(X) ,

and therefore φ=∑m
j=1φ j . Next, let f : X → Y be the exact classifier

x 7→ f (x) =
{∑m

j=1 j ·1X j (x) if x ∈ X,

0 otherwise.
(5)

So f (x) identifies the class of x ∈ X and returns f (x) = 0 if x belong to some intersection Xi ∩X j .
Notice that one may write

dµ(x, y) = δ f (x)(dy)φ(dx) , (6)

and so the joint distribution µ is supported on the graph G := {(x, f (x)) : x ∈ X } of the function f .
The Christoffel function is a powerful tool from the theory of approximation and orthogonal

polynomials and one of its distinguishing features is its ability to identify the support of the
underlying measure. So the CF Λµt associated with µ is an appropriate tool to approximate f
since the graph of f is precisely the support of the measure µ in (6). In Marx et al. [5] the authors
propose to approximate f (when ‖ f ‖∞ < M) by:

f̂ t (x) := argmin
y
Λ
µ+εµ0
t (x, y)−1 , ∀ x ∈ X , (7)

with a small ε > 0 and where µ0 is a measure with a density w.r.t. Lebesgue measure, positive
on X× [−M , M ]. They prove nice theoretical convergence guarantees as t increases; see [5] for
more details. Notice that in the present supervised classification framework, the function to
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approximate is a step function so that the support of its graph is contained in a real algebraic
variety, an even more specific case.

2. Main result

We first consider the ideal case of approximating the classifier f in (5) via the CF of the joint
distribution µ in (6). Then we next consider the more practical setting (as in machine learning)
where we only have access to a finite sample (the training set). In this case we use the empirical
measures φ j ,N associated with the points of the sample in class “ j ”. In Section 2.2 we invoke

results from [4] that relate the degree t of the CF Λ
φ j ,N
t with the size N of the sample to ensure

that important asymptotic properties ofΛ
φ j ,N
t andΛ

φ j
t as t and N increase, coincide.

2.1. The CF on a real variety

Let q ∈ R[x, y] be the polynomial (x, y) 7→ v(x, y) = ∏m
i=1(y − i ) and let µ be the probability

measure on Ω = X × Y defined in (6). Its support Ω is contained in the real algebraic variety
V := {(x, y) : v(x, y) = 0} = Rn ×Y and the ideal I = 〈v 〉 ⊂ R[x, y] generated by the polynomial
v is the ideal of polynomials that vanish on V .

Observe that the moment matrix Mt (µ) is singular since the vector v of coefficients of the
polynomial v is in the kernel of Mt (µ) as soon as t ≥ m. Indeed vT Mt (µ)v = ∫

v2 dµ = 0 because
the support of µ is contained in V . So the definition (2) of the CF is not valid any more. Denote by
L2

t (µ) ⊂R[x, y] the space of polynomials on V of total degree at most t (and degree at most m −1
in the variable y), equipped with the inner product and norm inherited from L2(Ω,µ). It turns
out that L2

t (µ) is a RKHS (Reproducing Kernel Hilbert Space). Then in this context, the variational
definition (3) of the CF associated with µ reads

(x, y) 7→Λ
µ
t (x, y) := inf

p∈L2
t (µ)

{∫
Ω

p2 dµ : p(x, y) = 1

}
, ∀ (x, y) ∈ V . (8)

The set Γt := {xα yk : k ≤ m −1; |α| +k ≤ t } ⊂ R[x, y] is a monomial basis of L2
t (µ). Let M′

t (µ) be
the moment matrix associated with µ in (6) with rows and columns indexed by all monomials
(xα yk ) of Γt (and not all monomials xα yk of total degree at most t ), e.g., listed according to the
lexicographic ordering. Then M′

t (µ) is non singular and

Λ
µ
t (x, y)−1 = v′t (x, y)T M′

t (µ)−1 v′t (x, y) , ∀ (x, y) ∈ V ,

where v′t (x, y) is the vector of all monomials of Γt . Alternatively

Λ
µ
t (x, y)−1 = ∑

(α,k)∈Γt

1

λα,k
Qα,k (x, y)2 ,

where the Qα,k ’s and the λα,k ’s are the eigenvectors and their respective eigenvalues associated
with M′

t (µ). Following [5], one may consider the perturbed measure µ + εµ0 where µ0 is a
probability uniformly distributed on X× [0,m] and ε> 0 is a small parameter. Then

Λ
µ+εµ0
t (x, y)−1 = vt (x, y)T Mt (µ+εµ0)−1 vt (x, y) , ∀ (x, y) ∈ Rn ×R .

Recall that vt (x, y) is the vector of all monomials xα yk of degree at most t , and Mt (µ+ εµ0) is
the moment matrix of µ+εµ0 of order t , which is non singular for all ε> 0. In addition Λµ+εµ0

t is
defined for all (x, y) ∈Rn+1 whereasΛµt in (8) is defined for all (x, y) ∈V . Then as proved in [5] the
classifier f̂ t in (7) approximates f as t increases. Next we show that by a slightly change of the
vector space L2

t (µ) in (8), the resulting CF has nice additional properties that can be exploited to
provide the resulting classifier (7) with a clear and more intuitive interpretation.
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A slight variant of the CF. We now introduce a slight variant Λ̂µt of the CFΛµt , defined by:

(x, y) 7→ Λ̂
µ
t (x, y) := inf

p∈L 2
t (µ)

{∫
Ω

p2 dµ : p(x, y) = 1

}
, ∀ (x, y) ∈ V , (9)

where L 2
t (µ) =:R[x, y]t ,m−1 is the vector space of polynomials of degree at most t with respect to

the variable x and at most m−1 with respect to the variable y , so that L2
t (µ) ⊂ L 2

t (µ) ⊂ L2
t+m−1(µ).

Proposition 1. LetΛµt and Λ̂µt be as in (8) and (9) respectively. Then:

Λ
µ
t+m−1(x, y) ≤ Λ̂µt (x, y) ≤ Λµt (x, y) , ∀ (x, y) ∈ V . (10)

Proof. Follows from L2
t (µ) ⊂ L 2

t (µ) ⊂ L2
t+m−1(µ) and the definitions (8) and (9). �

Proposition 1 states that Λ̂µt and Λ
µ
t are close but as we next see, Λ̂µt has an interesting

additional feature. Namely, it has a nice characterization in closed form which when exploited
for classification leads to a classifier with a clear interpretation. Let (θ j ) j∈[m] ⊂ R[y]m−1 be the
interpolation polynomials at the points {1,2, . . . ,m} of Y, i.e.,

y 7→ θ j (y) :=
∏

i 6= j (y − i )∏
i 6= j ( j − i )

, i = 1, . . . ,m ,

which form an orthonormal family with respect to the uniform probability measure on Y.

Theorem 2. For each j ∈ Y, let (P j
α)α∈N ⊂ R[x] be a family of polynomials that are orthonormal

with respect to the marginal probability measure φ j of µ j , and let Λ
φ j
t be the standard Christoffel

function associated with φ j on X j . Then:

(i) The family (θ j (y)P j
α(x))α∈Nn

t
⊂R[x, y] is an orthonormal basis of L 2

t (µ).
(ii) The Christoffel function Λ̂µt defined in (9) satisfies

Λ̂
µ
t (x, y)−1 = ∑

j∈Y
θ j (y)2

∑
α∈Nn

t

P j
α(x)2 , ∀ (x, y) ∈Rn ×Y (11)

= ∑
j∈Y

θ j (y)2Λ
φ j
t (x)−1 , ∀ (x, y) ∈Rn ×Y (12)

= ∑
j∈Y

δy= j Λ
φ j
t (x)−1 , ∀ (x, y) ∈Rn ×Y . (13)

Proof. (i). Every element of L 2
t (µ) = R[x, y]t ,m−1 is of the form

∑m−1
j=0 y j q j (x) with q j ∈ R[x]t .

Hence consider a polynomial u ∈ L 2
t (µ) in the form u(x, y) := p(y) q(x) for some q ∈ R[x]t and

some p ∈R[y]m−1, arbitrary. Then as (P j
α)α∈Nn

t
generates R[x]t , observe that for every j ∈ Y:

q(x) = ∑
α∈Nn

t

q j
αP j

α(x) , ∀ x ∈Rn ,

for some coefficients (q j
α)α∈Nn

t
. Next, as the polynomials (θ j ) j∈Y generate R[y]m−1, write p(y) =∑

j∈Y p j θ j (y) for some coefficients (p j ) j∈Y, and therefore

u(x, y) = ∑
j∈Y

p j (θ j (y) q(x)) = ∑
α∈Nn

t , j∈Y
p j q j

α

[
θ j (y)P j

α(x)
]

.

Orthogonality. If i 6= j then θi (y)θ j (y) = 0 everywhere on the support of µ and therefore∫
Ω
θi (y)P i

α(x)θ j (y)P j
β

(x)dµ(x, y) = 0,
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whereas if i = j then∫
Ω
θi (y)2 P i

α(x)P i
β(x)dµ(x, y) =

m∑
j=1

∫
Ω
θi (y)2 P i

α(x)P i
β(x)dµ j (x, y)

=
∫
Ω
θi (y)2 P i

α(x)P i
β(x)dµi (x, y) =

∫
Ω

P i
α(x)P i

β(x)dφi (x) = δα=β .

Next, as L 2
t (µ) ⊂ R[x, y]t ,m−1, its cardinality is r (t ) := m · (n+t

t

)
which is also the number of terms

in the family (θ j (y)P j
α(x))α∈Nn

t , j∈Y which also generates L 2
t (µ). Hence (θ j (y)P j

α(x))α∈Nn
t , j∈Y is an

orthonormal basis of L 2
t (µ).

(ii). Let M̂t (µ) be the moment matrix of degree t with rows and columns indexed by monomials
(xα y j )α∈Nn

t ,0≤ j≤m−1 (e.g. with lexicographic ordering), and let v̂t (x, y) be the vector of monomials

xα yk listed with the same ordering. Observe that (9) reads

Λ̂
µ
t (x, y) = min

p
{pT M̂t (µ)p : 〈p, v̂t (x, y)〉 = 1} , (14)

where p ∈ Rr (t ) is the vector of coefficients of p ∈ L 2
t (µ) in that basis. Then (14) is a convex

optimization problem whose optimal solution p∗ satisfies 2M̂t (µ)p∗ =λ∗ v̂t (x, y) for some scalar
λ∗. Hence λ∗ = 2Λ̂µt (x, y) and

p∗ = Λ̂µt (x, y)M̂t (µ)−1 v̂t (x, y)

so that the corresponding polynomial p∗ ∈L 2
t (µ) reads

p∗(u, z) = Λ̂µt (x, y) v̂t (u, z)T M̂t (µ)−1 v̂t (x, y)

= Λ̂µt (x, y)
∑

α∈Nn
t , j∈Y

θ j (y)θ j (z)P j
α(u)P j

α(x) , (u, z) ∈Rn ×Y ,

and therefore

1 = p∗(x, y) = Λ̂µt (x, y)
∑

α∈Nn
t , j∈Y

θ j (y)2 P j
α(x)2 , ∀ (x, y) ∈Rn ×Y ,

which is (11). In particular we also retrieve that

Λ̂
µ
t (x, y)−1 = v̂t (x, y)T M̂t (µ)−1 v̂t (x, y) , ∀ (x, y) ∈ V . (15)

Next (12) follows from the definition of the Christoffel function associated with φ j for each j ∈ Y,
and (13) follows from the properties of interpolation polynomials (θ j ) j∈Y. �

So whenever y ∈ Y, the Christoffel function Λ̂µt (x, y) has a very simple expression (12), stated

directly in terms of the Christoffel functions (Λ
φ j
t (x)) j=1,...,m associated with the classes j =

1, . . . ,m. This is quite natural but is proper to the CF Λ̂µt and not to the standard CFΛµt .

An ideal classifier. Given the Christoffel function Λ̂µt defined in (12) and inspired by (7), a natural
candidate classifier is the function

x 7→ f̂ t (x) := argmin
y∈Y

Λ̂
µ
t (x, y)−1 = argmax

y∈Y
Λ̂
µ
t (x, y), ∀ x ∈ X , (16)

which in view of (13) reads:

x 7→ f̂ t (x) := arg max
k∈[m]

Λ
φk
t (x) , ∀ x ∈ X . (17)

Observe that the “max” in (17) is over y ∈ [m] and not over the interval [0,m]. This is because
in supervised classification, we know that f (x) ∈ [m] for all x ∈ X. The rationale is the following:
Let x ∈ X j be fixed arbitrary, so that x 6∈ Xk for every k 6= j . As t increases, Λφk

t (x) decreases to
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zero exponentially while Λ
φ j
t (x) decreases not faster than t n . Therefore for t sufficiently large,

necessarilyΛφk
t (x) <Λφ j

t (x) for all k 6= j , and so by (13),

x ∈ X j ⇒∃ t0 s.t. f̂ t (x) = argmin
y∈Y

Λ̂
µ
t (x, y)−1 = argmax

k
Λ
φk
t (x) = j , ∀ t ≥ t0 .

An even stronger almost-uniform result holds. Let ∂X j denote the boundary of the set X j ⊂Rn .

Theorem 3. Let f̂ be as in (17) and let Xεj := {x ∈ X j : d(x,∂X j ) > ε } where ε > 0 is fixed. Assume
that for every j ∈ [m], φ j has a density w.r.t. Lebesgue measure λ restricted to X j , bounded from
below by c > 0. Then there exists tε such that f̂ t (x) = j for all x ∈ Xεj and all t ≥ tε.

Proof. Let s(t ) := (n+t
t

)
and denote by diam(S) the diameter of a bounded set S ⊂ Rn . Let

γk :=φk (Xk ), k ∈ [m]. If x ∈ Xεj then d(x,Xk ) > ε for all k 6= j . Hence by [3, Lemma 6.6] (and using

thatΛφk /γk
t =Λφk

t /γk ),

γk

s(t )
Λ
φk
t (x)−1 ≥ 2

t ε
ε+diam(Xk ) −3

t−n (
n

e
)n exp(−n2/t ) , ∀ x ∈ Xεj .

On the other hand, as d(x,∂X j ) > ε, we can invoke [3, Lemma 6.2] extended to measures
with density w.r.t. Lebesgue bounded from below by c > 0 (see [3, Assumption 3.11]) and use
(t +1)(t +2)(t +3)/((n + t +1)(n + t +2)(n +2t +6)) ≥ 1/2(n +1)3, to obtain

γ j

s(t )
Λ
φ j
t (x)−1 ≤ 2λ(X j )

c εnωn
(1+n)3 , ∀ x ∈ Xεj ,

where ωn is the n-dimensional area of Sn+1. Hence clearly there exists tε such that Λφk
t (x)−1 >

Λ
φ j
t (x)−1 for all k 6= j and all x ∈ Xεj , whenever t ≥ tε. In particular, as the functionsΛφk

t are strictly

positive, continuous and X j is compact, there exists a j > 0 such that

∀ x ∈ Xεj : Λ
φk
t (x) < Λφ j

t (x)−a j , ∀ k 6= j . (18)

Therefore the result follows from (13) and (16). �

2.2. Application to supervised classification with noiseless deterministic labels

In supervised classification we do not have access to the CF Λµt or Λ̂µt . We only have access to
a sample of N points TrN = {(x(i ), y(i )) : i = 1, . . . , N } ⊂ X (the training data set) and a sample of
test points (the test data set). For instance, in a typical Machine Learning (ML) approach one
tries to learn a classifier function f in (5) from the supervised data TrN by computing parameters
of a deep neural network that minimize some loss function. Usually, the number of parameters
is very large (compared to N ) making the resulting solution sensitive to a classical overfitting
phenomenon. One way to attenuate this overfitting phenomenon is to add an appropriate
regularization term to the loss function in the criterion to minimize.

One reason behind this overfitting phenomenon is that in minimizing the loss function,
each data point (x(i ), y(i )) is treated separately. Ideally one should somehow consider the entire
training set TrN itself and not its members separately. This is precisely what the CF function
approach does. Indeed the training set TrN is used to construct the empirical (discrete) analogues

φ j ,N of the measures φ j , and their associated empirical Christoffel functionΛ
φ j ,N
t , now obtained

from empirical moments. Remarkably, even though the geometry of the support of φ j ,N is quite

trivial, the CF Λ
φ j ,N
t is still close to Λ

φ j
t in a certain sense and the training set TrN can still be

used to infer properties of the underlying measures φ j . Hence, and importantly, even though the

mathematical object Λ
φ j ,N
t is built from individual items, it is in fact concerned with the cloud

of points of TrN in class { j }, rather than the points x(i ) in that class taken separately. However
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of course, for Λ
φ j ,N
t to recover asymptotic properties of Λ

φ j
t , the sample size N and the degree t

cannot be chosen independently; see [3, 4] for more details.

Setting. For every j ∈ [m], let Tr j
N = (x(i ))i≤N ⊂ X j be a training set for class { j }, where x(i ) are

i.i.d. random vectors with common distributionφ j whose support is X j . So the whole training set
TrN has a total of mN points where the N points in each class j are sampled from φ j . For every
fixed t , a natural approach suggested by (17), consists of:

• Computing the Christoffel functionΛ
φ j ,N
t associated with the empirical prob. measure

φ j ,N := 1

N

∑
x(i )∈X j

δ{x(i )} , ∀ j ∈ [m] . (19)

Following (2), Λ
φ j ,N
t (x)−1 = vt (x)T Mt (φ j ,N )−1 vt (x), for all x ∈ Rn and all j ∈ [m]. The

moments of φ j ,N are easily obtained by

φ j ,N (α) :=
{

1

N

∑
i

x(i )α : x(i ) ∈ Tr j
N

}
, ∀α ∈Nn ,

and the moment matrix Mt (φ j ,N ) is nonsingular for sufficiently large t .
• Following (17), introduce the empirical classifier

x 7→ f̂ N
t (x) := argmax

k
Λ
φk,N
t (x) , ∀ x ∈ X . (20)

Then the empirical version of Theorem 3 reads as follows:

Theorem 4. For every j ∈ [m], let (x(i ))i≤N ⊂ X j be i.i.d. random vectors according to a distribution
φ j whose support is X j and which satisfies the assumption in Theorem 3. Letφ j ,N be as in (19), and
f̂ N

t be as in (20). Given ε> 0 fixed, let Xεj := {x ∈ X j : d(x,∂X j ) > ε }, j ∈ [m]. Then there exists tε such

that for all t > tε fixed, with probability 1 (with respect to the random samples Trk
N ⊂ Xk , k ∈ [m]),

f̂ N
t (x) = j for all x ∈ Xεj , for sufficiently large N .

Proof. By Theorem 3 there exist tε and a j > 0, such thatΛ
φ j
t (x)−Λφk

t (x) > a j for all k 6= j , all t ≥ tε
and all x ∈ Xεj ; see (18). On the other hand, with t fixed, by [3, Theorem 3.13],

For every j ∈ [m]: sup
x∈Rn

∣∣∣Λφ j ,N
t (x)−Λφ j

t (x)
∣∣∣ a.s.→ 0, as N →∞ ,

where the “a.s.” is with respect to the random sample Tr j
N ⊂ X j . Hence for every t > tε fixed, with

probability 1 (with respect to the m random samples Trk
N ⊂ Xk , k ∈ [m])

∀ x ∈ Xεj , ∀ k 6= j : Λ
φk,N
t (x) < Λφ j ,N

t (x)−a j /2,

for sufficiently large N , and therefore f̂ N
t (x) = j for all x ∈ Xεj , j ∈ [m]. �

2.3. The general case where the supports X j are not disjoint

We next briefly consider the case where the assumption Xi ∩X j = ; for all i 6= j , is not satisfied.
That is, misclassifications occur or some points x ∈ X may indeed belong to several classes, as can
be the case in some practical situations.

So let µ on X×Y, ϕ(dy |·) on Y and φ on X be as in (4), but now with possibly Xi ∩X j 6= ; for
some i 6= j . For each j ∈ [m], introduce the measures φ j on X, j ∈ [m], defined by:

φ j (dx) :=ϕ( j |x)φ(dx) , j ∈ Y . (21)

So in contrast to Section 2.1,φ j (Xi ) 6= 0 is allowed for i 6= j . Then an analogue of Theorem 2 reads:
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Theorem 5. For each j ∈ Y, let (P j
α)α∈N ⊂ R[x] be a family of polynomials that are orthonormal

with respect to the measureφ j on X defined in (21), and letΛ
φ j
t be the standard Christoffel function

associated with φ j . Then:

(i) The family (θ j (y)P j
α(x))α∈Nn

t
⊂R[x, y] is an orthonormal basis of L 2

t (µ).
(ii) The Christoffel function Λ̂µt defined in (9) satisfies

Λ̂
µ
t (x, y)−1 = ∑

j∈Y
θ j (y)2

∑
α∈Nn

t

P j
α(x)2 , ∀ (x, y) ∈Rn ×Y (22)

= ∑
j∈Y

θ j (y)2Λ
φ j
t (x)−1 = ∑

j∈[m]
δy= j Λ

φ j
t (x)−1 , ∀ (x, y) ∈Rn ×Y . (23)

Proof. (i). If i 6= j then θi (y)θ j (y) = 0 everywhere on the support of µ and therefore∫
Ω
θi (y)P i

α(x)θ j (y)P j
β

(x)dµ(x, y) = 0,

whereas if i = j then∫
Ω
θi (y)2 P i

α(x)P i
β(x)dµ(x, y) =

∫
X

P i
α(x)P i

β(x)

(∫
Y
θi (y)2ϕ(dy |x)

)
φ(dx)

=
∫

X
P i
α(x)P i

β(x)

( ∑
j∈[m]

θi ( j )2ϕ( j |x)

)
φ(dx)

=
∫

X
P i
α(x)P i

β(x)φi (dx) = δα=β .

(ii). The rest of the proof is similar to that of Theorem 2. �

By (23), Λ
φ j
t is easily obtained as Λ̂µt ( · , j ), j ∈ [m], and Λ̂µt (x, y) is in turn obtained for instance

via (15) from the moment matrix M̂t (µ) of the joint distribution µ. As the CF is an appropriate
tool for support inference, notice that intersections of super level sets Gi ,γ∩G j ,γ, with Gi ,γ := {x :

Λ
φi
t (x) ≥ γ}, should provide indications on whether Xi ∩X j =; if i 6= j .

Once again the CF Λ̂
µ
t has the simple and nice expression (23) only in terms of the CF’s

Λ
φ j
t , which suggests to define a classifier f̂ t (x) exactly as in (16). The only difference is the

meaning of φ j and its implications. For instance if Xi ∩X j 6= ; then a point x ∈ X can belong to

supp(φi )∩supp(φ j ) with i 6= j , and therefore the two scoresΛφi
t (x) andΛ

φ j
t (x) can be comparable

even for large t , whereas before for sufficiently large t , the score Λ
φ j
t (x) (with j = class(x)) clearly

dominates all other scores. In particular there is no analogue of Theorem 3. Evaluating how
efficient the resulting classifier f̂ t can be in a practical empirical context of sampled data as in
Section 2.2, is beyond the scope of the present note.

3. Conclusion

The Christoffel function can provide a simple tool in supervised classification, with some theo-

retical guarantees. However to obtain Λ
φ j ,N
t explicitly one must handle matrices of size

(n+t
n

)
(in-

version or eigenvectors) with a computational cost O(t n) that grows rapidly with t . Therefore so
far, in this form this tool is limited to small dimension problems. On the other hand, evaluation

of Λ
φ j ,N
t (ξ) at a point ξ ∈Rn via (8) only requires to solve a simple convex quadratic optimization

problem, which can be done efficiently even for large n. Finally a detailed analysis of possible
learning rates that can be obtained with this method remains to be done.
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