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Abstract. A result of G. Walker and R. Wood states that the space of indecomposable elements in degree 2n −
1−n of the polynomial algebra F2[x1, . . . , xn ], considered as a module over the mod 2 Steenrod algebra, is
isomorphic to the Steinberg representation of GLn (F2). We generalize this result to all finite fields by studying
a family of finite quotient rings Rn,k , k ∈ N∗, of Fq [x1, . . . , xn ], where each Rn,k is defined as a quotient of
the Stanley–Reisner ring of a matroid complex. By considering a variant of Rn,k , we also show that the space
of indecomposable elements of Fq [x1, . . . , xn ] in degree qn−1 −n has dimension equal to that of a complex
cuspidal representation of GLn (Fq ), that is (q −1)(q2 −1) · · · (qn−1 −1).

Over the field F2, we also establish a decomposition of the Steinberg summand of Rn,2 into a direct
sum of suspensions of Brown–Gitler modules. The module Rn,2 can be realized as the mod 2 cohomlogy
of a topological space and the result suggests that the Steinberg summand of this space admits a stable
decomposition into a wedge of suspensions of Brown–Gitler spectra.

Résumé. Un résultat de G. Walker et R. Wood dit que l’espace des indécomposables en degré 2n − 1 − n
de l’algèbre polynômiale F2[x1, . . . , xn ], considérée comme module sur l’algèbre de Steenrod modulo 2,
est isomorphe à la représentation de Steinberg de GLn (F2). Dans ce travail, on cherche à généraliser ce
résultat à tous les corps finis. Pour ce faire, on étudie une famille d’anneaux quotients finis Rn,k , k ∈N∗, de
Fq [x1, . . . , xn ], où chaque Rn,k est défini comme quotient de l’anneau de Stanley–Reisner d’un complexe de
matroïde. On montre aussi en utilisant un variant de Rn,k que la dimension de l’espace des indécomposables
de Fq [x1, . . . , xn ] en degré qn−1 −n est égale à celle d’une représentation cuspidale complexe de GLn (Fq ), à
savoir (q −1)(q2 −1) · · · (qn−1 −1).

Sur le corps F2, on établit une décomposition du facteur de Steinberg de Rn,2 en somme directe de
suspensions de modules de Brown–Gitler. Ceci suggère une décomposition du facteur stable de Steinberg
de la réalisation topologique de Rn,2 en bouquet de suspensions de spectres de Brown–Gitler.
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1. Introduction

Let Fq denote a finite field of q elements where q is a power of a fixed prime p. Let V be an n-
dimensional vector space over Fq . The symmetric power algebra S(V ∗) = ⊕

k ≥0 Sk (V ∗) on the
dual V ∗ of V is identified with the polynomial algebra Fq [x1, . . . , xn] where {x1, . . . , xn} is a basis
of V ∗. We assign to each variable xi degree one, so Sk (V ∗) has a basis consisting of all monomials
of degree k.

The algebra P of Steenrod reduced powers over the finite field Fq , defined as in [18], acts on
S(V ∗) as follows:

P i (
xm)= (

m

i

)
xm+(q−1)i , x ∈ S1 (

V ∗)
,

P i (
f1 f2

)= ∑
i1+i2=i

P i1
(

f1
)
P i2

(
f2

)
, f1, f2 ∈ S

(
V ∗)

.

This action commutes with the right action of GLn := GLn(Fq ) by linear substitutions of the
variables:

( f · g ) (x1, . . . , xn) = f
(
x1 · g , . . . , xn · g

)
,

where f ∈ S(V ∗), g = (gi , j ) ∈ GLn , and xi · g = gi ,1x1 +·· ·+ gi ,n xn for 1 ≤ i ≤ n.
The Peterson hit problem in algebraic topology, focused mainly on the finite field F2, asks

for a determination of a minimal generating set of the polynomial algebra S(V ∗) as a module
over the algebra P . This is the same as the problem of determining the graded vector space
Q(S(V ∗)). Here given M a P-module, Q(M) stands for the quotient M/P+M , P+ denoting the
augmentation ideal of P . Since the actions of P and GLn commute, one is also interested in
studying Q(S(V ∗)) as a graded module over the group ring Fq [GLn]. Though much work has
been done for the hit problem, the general answer seems to be out of reach with the present
techniques. The reader is referred to the recent volumes by G. Walker and R. M. W. Wood [24, 25]
for a thorough exposition of this problem.

The starting point of this work is the following result, which is also due to Walker and
Wood [23]:

Theorem 1 (Walker–Wood). For q = 2, Q2n−1−n(S(V ∗)) is isomorphic to the Steinberg representa-
tion of GLn(F2).

Walker and Wood proved this by establishing a link between the hit problem over F2 and Young
tableaux. They proved that in suitable generic degrees δ, the semistandard tableaux can be used
to index a generating set for Qδ(S(V ∗)). When δ = 2n − 1−n, the hook formula gives the upper

bound dimF2 Qδ(S(V ∗)) ≤ 2
n(n−1)

2 and the equality then follows from the first occurrence of the
Steinberg module in this degree [7, 13].

The purpose of this paper is to present a new approach to the above result which is valid for
all finite fields. The point we discover here is that there is a finite quotient R(V ∗) of S(V ∗) such
that its top-degree submodule, R(qn−1)/(q−1)−n(V ∗), is P-indecomposable and isomorphic to the
Steinberg module, and that the natural projection Qi (S(V ∗)) � Qi (R(V ∗)) is an isomorphism in
the range 0 ≤ i ≤ (qn − 1)/(q − 1)−n. Apart from classical tools in studying the hit problem, a
novel one which we are going to employ in this work is the Stanley–Reisner ring of a simplicial
complex [20]. We note that our method also leads to a formula for the dimension of Q(S(V ∗)) in
degree qn−1−n. This dimension is equal to that of a complex cuspidal representation of GLn(Fq ).

We now describe the main results of the paper. For this let us choose a non-zero vector u` on
each line ` in V ∗. Given a subspace W of V ∗, denote by LW the set of all lines in W . Put LW =
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∏
`∈LW

u`, the “product of all lines” in W . If W ′ is a subspace of W , put VW ′,W =∏
`∈LW \LW ′ u`. If

{x1, . . . , xn} is a basis of V ∗ then it is well-known that LV ∗ is (up to non-zero scalar) the polynomial

Ln = L (x1, . . . , xn) := det
(
xq i−1

j

)
1≤ i , j ≤n

introduced by Dickson [5]. Similarly, if H is the hyperplane generated by x1, . . . , xn−1 then VH ,V ∗

is (up to non-zero scalar) the polynomial

Vn = V (x1, . . . , xn) := ∏
λi ∈Fq

(λ1x1 +·· ·+λn−1xn−1 +xn)

introduced by Mùi [14].
For k ≥ 1, let I (V ∗,k) (or In,k ) denote the ideal of S(V ∗) generated by the polynomials (VH ,V ∗ )k ,

where H runs over the set of all hyperplanes of V ∗. Since GLn acts transitively on the set of
hyperplanes of V ∗, it is equivalent to say that I (V ∗,k) is generated by the orbit of Vk

n under the
action of GLn . Let R(V ∗,k) (or Rn,k ) denote the quotient S(V ∗)/I (V ∗,k). It is clear that the natural
projection S(V ∗) � R(V ∗,k) is GLn-linear. Since each generator of the ideal I (V ∗,k) is a product
of elements in S1(V ∗), it is easy to check that I (V ∗,k) is stable under the action of the algebra P ,
and thus the projection S(V ∗)�R(V ∗,k) is also P-linear.

The Steinberg representation Stn [21] is a projective absolutely irreducible representation of

GLn of dimension q
n(n−1)

2 . It is isomorphic to the right Fq [GLn]-module en ·Fq [GLn] where en is
the Steinberg idempotent defined by

en = 1

[GLn : Un]

∑
b∈Bn ,σ∈Σn

sgn(σ)bσ,

Bn ,Un ,Σn denoting respectively the subgroup of upper triangular matrices, the subgroup of
upper triangular matrices with 1’s on the diagonal, and the symmetric group of permutation
matrices. Let deti , i ∈ Z, denote the i th power of the determinant representation of GLn . Then
we have deti ∼= det j if i ≡ j mod(q −1) and det0, . . . , detq−2 form a complete set of distinct one-
dimensional representations of GLn over Fq . A twisted Steinberg module is defined to be a tensor
product Stn ⊗deti and this is again a projective absolutely irreducible representation of GLn of

dimension q
n(n−1)

2 . The idempotent corresponding to Stn ⊗deti is denoted by e(i )
n and is given by

e(i )
n =φi (en) where φi is the automorphism of Fq [GLn] given by φi (g ) = deti (g−1)g (see [12, § 2]).

Theorem 2. For k ≥ 1 and n = dimV , set d := k(qn−1)
q−1 −n.

(1) Rd (V ∗,k) is isomorphic to the twisted Steinberg module Stn ⊗detk−1 and Ri (V ∗,k) van-
ishes if i > d.

(2) If k = q s r with s ≥ 0 and 1 ≤ r ≤ q −1, the following hold:
(a) For each 0 ≤ i ≤ d, the natural projection S(V ∗) � R(V ∗,k) induces an isomorphism

of GLn-modules Qi (S(V ∗)) ∼= Qi (R(V ∗,k)).
(b) The natural projection Rd (V ∗,k)�Qd (R(V ∗,k)) is an isomorphism of GLn-modules.

As a consequence, we obtain the following

Corollary 3. If k = q s r with s ≥ 0 and 1 ≤ r ≤ q −1, there is an isomorphism of GLn-modules:

Qd (
S

(
V ∗))∼= Stn ⊗detk−1,

where d = k(qn−1)
q−1 −n.

When q = 2 and k = 1, this gives Theorem 1 of Walker and Wood mentioned above.
The corollary is deduced from the following sequence of isomorphisms of GLn-modules:

Stn ⊗detk−1 ∼= Rd (
V ∗,k

) ∼=−→ Qd (
R

(
V ∗,k

)) ∼=←− Qd (
S

(
V ∗))

,
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where the first isomorphism follows from Theorem 2(1), the second from (2b) and the third
from (2a).

The strategy for the proof of Theorem 2(1) is as follows. We consider a simplicial complex
∆(V ∗,k) whose Alexander dual is homotopy equivalent to the Tits building of GLn . The complex
∆(V ∗,k) is a matroid complex and so the Stanley–Reisner ring Fq [∆(V ∗,k)] is Cohen–Macaulay.
The quotient algebra R(V ∗,k) defined above is then shown to be isomorphic to the quotient of
Fq [∆(V ∗,k)] by the ideal generated by a well-chosen regular sequence of Fq [∆(V ∗,k)]. The linear
structure of R(V ∗,k), in particular of its top-degree submodule, will follow from some classical
results in the theory of Stanley–Reisner rings [20]. In order to prove Theorem 2(2a), we need
to show that all elements of degree ≤ d in the ideal I (V ∗,k) are hit (i.e. P-decomposable) in
S(V ∗). For example, when k = 1, this is proved by using the χ-trick [26] and the following identity
(Lemma 13):

Vn = (−1)n−1
n−1∑
i=0

χ

(
P

qn−1−1
q−1 −i

)
(ei xn) ,

where χ : P → P is the canonical anti-automorphism, and ei is the i th elementary symmetric
function of xq−1

1 , . . . , xq−1
n−1 . Theorem 2(2b) will be proved by showing that R(V ∗,k) can be embed-

ded in a direct product of copies of the quotient

Fq [x1, . . . , xn]
/(

xqn−1k
1 , . . . , xqk

n−1, xk
n

)
(which is example of a Poincaré duality algebra with trivial Wu classes [10]).

Our method can also be used to obtain the following:

Theorem 4. For n = dimV ≥ 2, dimFq Qqn−1−n(S(V ∗)) = (q −1)(q2 −1) · · · (qn−1 −1).

This will be proved by considering a simplicial complex whose Alexander dual is homotopy
equivalent to a complex employed by G. Lusztig [9] in his work on constructing discrete series
(a.k.a. cuspidal representations) of GLn .

To state the final result of the paper, suppose q = k = 2 and denote by A the mod 2 Steenrod
algebra. Using the work of Masateru Inoue [6] on the hit problem of the Steinberg summand, we
show that the Steinberg summand of R(V ∗,2) is decomposed into a direct sum of suspensions of
Brown–Gitler modules [3].

Theorem 5. Put d = 2(2n −1)−n =∑n
j=1(2 j −1). There is an isomorphism of A -modules

n⊕
j=0

Σd−(
2 j −1

)
B

(
2 j −1

) ∼=−→ Rn,2 ·en .

Here B(k) denotes the Brown-Gitler module B(k) :=A /A 〈χ(Sqi ) | 2i > k〉 and Rn,2 ·en denotes the
direct summand of Rn,2 associated to the Steinberg idempotent en .

We end this introduction by noting that, using the work [4] of M. W. Davis and T. Januszkiewicz,
it is possible to interpret Rn,k as the mod 2 cohomology of the orbit space ρ(n,k)reg/V , where
ρ(n,k) denotes the direct sum of k copies of the reduced regular representation of V andρ(n,k)reg

denotes the regular part of the action of V on ρ(n,k). The decomposition in Theorem 5 strongly
suggests that there may exist a homotopy equivalence (of 2-completed spectra)

en ·Σ∞ (
ρ(n,2)reg/V

)
+ '

n∨
j=0

Σd−(
2 j −1

)
B

(
2 j −1

)
,

B(k) denoting the Brown–Gitler spectrum whose mod 2 cohomology is B(k). We intend to go back
to this topological problem in a future work.

The remaining of the paper is organized as follows. In section 2, we review some facts about
the Stanley–Reisner ring of a simplicial complex. In section 3, we define the module R(V ∗,k) and
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prove the first part of Theorem 2. In section 4 we study the P-module structure of R(V ∗,k) and
prove the second part of Theorem 2. In section 5, we prove Theorem 4 and finally in section 6, we
prove Theorem 5.

Acknowledgements

The author is very grateful to the referee for his valuable comments and suggestions which helped
to improve the quality of the manuscript.

2. The Stanley–Reisner ring of a simplicial complex

In this section, we review some facts about the Stanley–Reisner ring of a simplicial complex which
will be used in proving Theorem 2(1). Our main reference is [20].

Let S be a non-empty finite set. A simplicial complex ∆ on the vertex set S is a collection of
subsets of S that is closed under inclusion. A subset F of S is called a face of ∆ if F ∈ ∆ and is
called a non-face of ∆ if F 6∈∆. The dimension of a face F is dimF := |F |−1 and the dimension of
∆ is dim∆ := maxF ∈∆dimF . A maximal face under inclusion is called a facet and ∆ is said to be
pure if all facets have the same dimension.

Let K be a field and let K[Xs | s ∈ S] denote the polynomial algebra over K in the variables Xs

indexed by the vertex set S. Given a subset F of S, let XF denote the monomial
∏

s∈F Xs . The face
ring (or the Stanley–Reisner ring)K[∆] of ∆ is then defined to be the quotient ring

K [∆] :=K [Xs |s ∈ S]/I∆,

where I∆ is the Stanley–Reisner ideal defined by I∆ := (XF |F 6∈∆). It is clear that I∆ can be defined
by using only monomials corresponding to minimal non-faces of ∆.

Next recall that the Poincaré series of an N-graded K-vector space M (with dimKM i finite
for all i ) is defined by P(M , t ) := ∑

i ≥0(dimKM i )t i . Suppose that dim∆ = d − 1 and regard the
variables Xs as being of degree one. The face ring K[∆] is then a graded ring and its Poincaré
series is given by:

P (K[∆], t ) =
d−1∑

i=−1

fi t i+1

(1− t )i+1
, (1)

where f−1 = 1 and fi := fi (∆), i ≥ 0, is the number of i -dimensional faces of ∆ [20, Theorem 1.4].
The sequence ( f0, . . . , fd−1) is called the f -vector of ∆. Writing P(K[∆], t ) in the form

P (K[∆], t ) = h0 +h1t +·· ·+hd t d

(1− t )d
, (2)

then the sequence (h0, . . . , hd ) is called the h-vector of ∆. In terms of the f -vector, each hk :=
hk (∆) is given by hk =∑k

i=0(−1)k−i
(d−i

k−i

)
fi−1. In particular, hd =∑d

i=0(−1)d−i fi−1 and so

hd (∆) = (−1)d−1χ̃(∆), (3)

where χ̃(∆) = ∑
i ≥−1(−1)i fi = ∑

i ≥−1(−1)i dimK H̃i (∆;K) is the reduced Euler characteristic of ∆.
Here H̃i (∆;K) denotes the reduced homology of ∆ with coefficients in K [20, Definition 3.1]. We
will also need to express hd in terms of the reduced characteristic of the Alexander dual of ∆.
Recall that the Alexander dual ∆∗ of ∆ is the simplicial complex with the same vertex set S such
that a subset F of S is a face of ∆∗ if the complement S \ F is not a face of ∆. Since for each
0 ≤ i ≤ |S|, the number of subsets of cardinality i of S is equal to fi−1(∆)+ f|S|−i−1(∆∗) and the
alternating sum of these numbers is zero, it follows that χ̃(∆∗)+ (−1)|S|χ̃(∆∗) = 0, and so

hd (∆) = (−1)|S|−d χ̃
(
∆∗)

. (4)
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We review now some commutative algebra. For this let R be an N-graded finitely-generated
commutative algebra over K. The Krull dimension of R is the maximal number of algebraically
independent homogeneous elements of R. Suppose that the Krull dimension of R is d . A se-
quence (θ1, . . . , θd ) of homogeneous elements of R is called a homogeneous system of parame-
ters (h.s.o.p.) if R/(θ1, . . . , θd ) is a finite-dimensional K-vector space. Equivalently, (θ1, . . . , θd ) is
a h.s.o.p. if θ1, . . . , θd are algebraically independent and R is a finitely-generated K[θ1, . . . , θd ]-
module. A h.s.o.p. (θ1, . . . , θd ) is called a linear system of parameters (l.s.o.p.) if each θi is of de-
gree one. A h.s.o.p (θ1, . . . , θd ) of R is called a regular sequence if θi+1 is not a zero-divisor in
R/(θ1, . . . , θi ) for 0 ≤ i < d . Equivalently, (θ1, . . . , θd ) is a regular sequence if θ1, . . . , θd are alge-
braically independent and R is a finite-dimensional free K[θ1, . . . , θd ]-module. The K-algebra R
is Cohen–Macaulay if it admits a regular sequence. It is known that if R is Cohen–Macaulay then
any h.s.o.p. is a regular sequence.

The Krull dimension of the face ring K[∆] is 1+dim∆ [20, Theorem 1.3]. If the face ring K[∆]
is Cohen–Macaulay, then we say that ∆ is a Cohen–Macaulay complex (over K). A fundamental
result of G. A. Reisner [17] states that ∆ is Cohen–Macaulay over K if and only if for all F ∈∆ and
all i < dim(linkF ), we have H̃i (linkF ;K) = 0. Here linkF is the link of F defined by linkF = {G ∈
∆|G ∪F ∈∆, G ∩F =;}.

We note that the existence of a l.s.o.p. for K[∆] is assured by Noether’s Normalization Lemma
whenK is infinite. WhenK is finite, one may need to pass to an infinite extension field; this does
not affect the Cohen–Macaulay property. We need the following result to recognize a l.s.o.p. in
K[∆].

Lemma 6 ([20, Lemma 2.4]).

(1) Let K[∆] be a face ring of Krull dimension d and let θ1, . . . , θd ∈ K[∆]1. Then (θ1, . . . , θd )
is a l.s.o.p. for K[∆] if and only if for every face F of ∆, the restrictions θ1|F , . . . , θd |F span a
vector space of dimension equal to |F |. Here the restriction θ|F of an element θ =∑

s∈S αs Xs

ofK[∆]1 to a face F is defined by θ|F =∑
s∈F αs Xs .

(2) If (θ1, . . . ,θd ) is a l.s.o.p. for K[∆], then the quotient ring K[∆]/(θ1, . . . , θd ) is spanned as a
K-vector space by the monomials XF , F ∈∆.

Matroid complexes provide a rich source of Cohen–Macaulay complexes. Recall that a sim-
plicial complex ∆ on the vertex set S is a matroid complex if it satisfies the exchange property :
given F,G ∈ ∆ with |F | < |G|, there exists v ∈ G \ F such that F ∪ {v} ∈ ∆ [15]. It is known that a
matroid complex is pure and for every linear order of S, the induced lexicographical order on
the facets of the matroid complex ∆ make it into a shellable complex [2, Theorem 7.3.3]. Re-
call that a shellable complex is a pure simplicial complex ∆ together with an order of its facets
F1, . . . ,Fs such that for each 1 ≤ i ≤ s, there is a unique minimal subset r (Fi ) of Fi not contained
in F j for any j < i [20, Definition 2.1]. A shellable complex is Cohen–Macaulay over any field; fur-
thermore, if (θ1, . . . , θd ) is a l.s.o.p. for K[∆], then K[∆] is a free K[θ1, . . . , θd ]-module with basis
{Xr (Fi ) : 1 ≤ i ≤ s} (see [1, Theorem 1.7, Corollary 1.8] or [20, Theorem 2.5]).

The following proposition will be used in the next sections. In order to state it, let us iden-
tify the polynomial algebra K[Xs |s ∈ S] with the symmetric power algebra S(KS ) where KS de-
notes the K-vector space of functions from S to K. The dual of KS is the space K〈S〉 of formal
sums

∑
s∈S αs Ys with αs ∈ K where Ys is dual to Xs . For each monomorphism of vector spaces

ι : V ,→ K〈S〉, let ι∗(I∆) denote the image of the Stanley–Reisner ideal I∆ under the induced
epimorphism ι∗ : S(KS ) � S(V ∗). So ι∗(I∆) is the ideal of S(V ∗) generated by the polynomials
ι∗(XF ) =∏

s∈F ι
∗(Xs ), F ∈∆.
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Proposition 7. Let ∆ be a simplicial complex on S with d = 1+dim∆, V a K-vector space with
dimKV = |S|−d and ι : V ,→K〈S〉 a monomorphism satisfying the property:

For each face F of ∆, the intersection of ι(V ) with the subspaceK〈F 〉 ofK〈S〉 is trivial. (∗)

Then S(V ∗)/ι∗(I∆) is spanned as a K-vector space by the ι∗(XF ), F ∈ ∆. In particular, the top-
degree subspace (S(V ∗)/ι∗(I∆))d is spanned as a K-vector space by the set {ι∗(XF )|F is facet of ∆}.
Furthermore, if ∆ is Cohen–Macaulay over K (in particular if ∆ is a matroid complex), then the
Poincaré series of S(V ∗)/ι∗(I∆) is h0 +h1t +·· ·+hd t d , where hd can be computed by

hd = (−1)d−1χ̃(∆) = (−1)|S|−d χ̃
(
∆∗)

.

Proof. Let λ :K〈S〉�W be the cokernel of ι. So dimKW = d and there is a short exact sequence
of vector spaces

0 →V
ι−→K〈S〉 λ−→W → 0.

We now make use of property (∗) to produce a l.s.o.p. for K[∆]. For each face F of ∆, the triviality

of ι(V )∩K〈F 〉 implies the injectivity of the compositionK〈F 〉 ,→K〈S〉 λ−→W . Taking the dual of this

we see that the composition W ∗ λ∗−−→KS �KF is surjective. Note that KS �KF is the restriction
map θ 7→ θ|F defined in Lemma 6 above. It follows that if we choose a basis w1, . . . , wd of W ∗ and
put θi = λ∗(wi ), then θ1|F , . . . , θd |F span KF , and so by Lemma 6(1), (θ1, . . . , θd ) is a l.s.o.p. for
K[∆].

The map ι now induces an isomorphism ofK-algebras:

K[∆]/(θ1, . . . , θd ) ∼=K⊗S(W ∗)
(
S

(
KS)

/I∆
)∼= S

(
V ∗)

/ι∗ (I∆) . (5)

By Lemma 6(2), this isomorphism implies that theK-vector space S(V ∗)/ι∗(I∆) is spanned by the
ι∗(XF ), F ∈∆. IfK[∆] is Cohen–Macaulay, thenK[∆] is free overK[θ1, . . . , θd ] and so the Poincaré
series ofK[∆]/(θ1, . . . , θd ) is equal to (1− t )d P(K[∆], t ) = h0 +h1t +·· ·+hd t d . �

3. R(V ∗,k) and the Steinberg module

In this section we define the module R(V ∗,k) and prove the first part of Theorem 2.
Let p be a prime and let Fq denote a finite field of q elements where q is a power of p. Let

V be an n-dimensional vector space over Fq . Given a linear vector space W , denote by LW the
set of lines (i.e. 1-dimensional linear subspaces) in W and by HW the set of hyperplanes (i.e. 1-
codimensional linear subspaces) in W . A set of lines {`1, . . . , `m} in W is called an m-frame of W
if {`1, . . . , `m} linearly spans an m-dimensional subspace of W .

Definition 8. ∆(V ∗) is the simplicial complex on the vertex set L :=LV ∗ in which a face is of the
form L \ F where F is a set of lines which linearly spans V ∗.

For each k ≥ 1, in order to introduce the kth powers in the ideal I (V ∗,k), we also consider the
following generalization of ∆(V ∗):

Definition 9. ∆(V ∗,k) is the simplicial complex on L t ·· · tL (the disjoint union of k copies
of L ) in which a face is of the form (L \ F1)t·· ·t (L \ Fk ) where the union F1 ∪·· ·∪Fk linearly
spans V ∗.

It is straightforward to check that a facet of ∆(V ∗) is of the form L \ F where F is an n-frame
of V ∗ and a minimal non-face of ∆(V ∗) is of the form L \ LH where H is a hyperplane of V ∗.
Similarly a facet of∆(V ∗,k) is of the form (L \F1)t·· ·t(L \Fk ) where F1, . . . , Fk form a partition
of an n-frame of V ∗ and a minimal non-face of ∆(V ∗,k) is of the form (L \LH )t·· ·t (L \LH )
where H is a hyperplane of V ∗. The cardinality of a facet of ∆(V ∗,k) is thus given by

d := k
(
qn −1

)
/
(
q −1

)−n,



1016 Nguyen Dang Ho Hai

and so ∆(V ∗,k) is a (d −1)-dimensional simplicial complex.

Lemma 10. ∆(V ∗,k) is a matroid complex.

Proof. Recall that the dual of a matroid complex ∆ on S is defined to be the simplicial complex
∆# on S such that F is a facet of ∆# if S \ F is a facet of ∆. It is known that the dual of a matroid
complex is also a matroid complex [15, Theorem 2.1.1].

Let ∇(V ∗,k) denote the simplicial complex on L t ·· ·tL (the disjoint union of k copies of
L ) in which F1 t ·· · t Fk is a face if F1, . . . , Fk form a partition of an m-frame of V ∗ for some
m ≤ n. The exchange property is easily checked for ∇(V ∗,k) and so it is a matroid complex. Since
a facet of ∇(V ∗,k) is of the form F1 t ·· · tFk where F1, . . . , Fk form a partition of an n-frame of
V ∗, it follows that the dual of the matroid complex ∇(V ∗,k) is ∆(V ∗,k), and so ∆(V ∗,k) is also a
matroid complex. �

The space Fq 〈L t ·· · tL 〉 is the space of formal sums
∑

1≤ i ≤k, `∈L α`,i Y`,i with α`,i ∈ Fq ,
where Y`,i corresponds to ` ∈ L with L being at the i th position in the disjoint union L t
·· · tL . For each line ` in V ∗, choose a non-zero vector u` on it. Such a choice gives rise to a
homomorphism ι : V → Fq 〈L t·· ·tL 〉 defined by

ι(v) = ∑
1≤ i ≤k, `∈L

u`(v)Y`,i .

Lemma 11. The map ι is a monomorphism satisfying property (∗) of Proposition 7 and its dual
ι∗ : FL t···tL

q →V ∗ sends each basis element X`,i to u`. Here X`,i is dual to {Y`,i }.

Proof. That ι is a monomorphism is clear. Given (L \ F1)t ·· · t (L \ Fk ) a face of ∆(V ∗,k), if
ι(v) =∑

1≤i≤k, `∈L u`(v)Y`,i belongs to Fq 〈(L \ F1)t·· ·t (L \ Fk )〉, then we must have u`(v) = 0
for all ` ∈ F1∪·· ·∪Fk , which implies that v = 0 since F1∪·· ·∪Fk linearly spans V ∗. For the second
assertion, we have

ι∗
(
X`,i

)
(v) = X`,i (ι(v)) = X`,i

( ∑
1≤ i ≤k, `∈L

u`(v)Y`,i

)
= u`(v)

for all v ∈V . �

We now prove the following which is the first part of Theorem 2. For this recall from the
introduction that R(V ∗,k) (or Rn,k ) denote the quotient S(V ∗)/I (V ∗,k), where I (V ∗,k) (or In,k )
is the ideal of S(V ∗) generated by the polynomials (

∏
`∈L \LH

u`)k , H running over the set of all
hyperplanes of V ∗.

Proposition 12. For k ≥ 1 and n = dimV , set

d := k(qn −1)

q −1
−n.

Then Rd (V ∗,k) is isomorphic to the twisted Steinberg module Stn ⊗detk−1 and Ri (V ∗,k) vanishes
if i > d.

Proof. Recall that a minimal non-face of ∆(V ∗,k) is of the form (L \LH )t·· ·t (L \LH ) where
H is a hyperplane of V ∗. The generator of the Stanley-Reisner ideal I∆(V ∗,k) of Fq [X`,i | ` ∈L , 1 ≤
i ≤ k] corresponding to such a minimal non-face is

∏
1≤ i ≤k, `∈L \LH

X`,i . By Lemma 11, this is
sent by ι∗ to (

∏
`∈L \LH

u`)k in S(V ∗). It follows that the ideal ι∗(I∆(V ∗,k)) of S(V ∗) is generated by
the polynomials (

∏
`∈L \LH

u`)k where H runs over the set of hyperplanes of V ∗. The quotient
ring S(V ∗)/ι∗(I∆(V ∗,k)) is thus exactly the ring R(V ∗,k) we are considering.

Since ∆(V ∗,k) is a matroid complex (Lemma 10) and ι satisfies property (∗) (Lemma 11), we
can apply Proposition 7 to analyze the top-degree module Rd (V ∗,k). Given a facet of ∆(V ∗,k) of
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the form F := (L \F1)t·· ·t(L \Fk ) where F1, . . . ,Fk form a partition of an n-frame {`1, . . . ,`n} of
V ∗, the corresponding generator ι∗(XF ) of Rd (V ∗,k) is given by

ι∗ (XF ) =
(∏

`∈L u`
)k

u`1 · · ·u`n

.

It is well-known [5] that the “product of lines”
∏
`∈L u` is up to non-zero scalar equal to Ln where

Ln = L (x1, . . . , xn) := det
(
xq i−1

j

)
1≤ i , j ≤n

.

Since GLn acts transitively on the set of n-frames of V ∗, it follows that if we put γ := Lk
n

x1···xn
then

by Proposition 7, {γ · g | g ∈ GLn} is a spanning set of Rd (V ∗,k).
But it was proved by S. Mitchell [12, Corollary A.7] that γ is fixed by e(k−1)

n , where e(k−1)
n is the

idempotent corresponding to the twisted Steinberg representation Stn⊗detk−1. It follows that the
GLn-linear map

Stn ⊗detk−1 ∼= e(k−1)
n ·Fq [GLn] → Rd (

V ∗,k
)

, e(k−1)
n · g 7→ γ · g ,

is an epimorphism.
To conclude that this is an isomorphism, we need to show that the dimension of Rd (V ∗,k)

is q
n(n−1)

2 . For this we use the formula hd = (−1)n χ̃(∆(V ∗,k)∗) (see (4)) and proceed as follows.
Recall [22] first that to every poset (partially ordered set) P , one can associate a simplicial complex
c(P ), called the order complex of P , whose faces are the chains (i.e. totally ordered subsets) of
P . The (reduced) homology of P is defined to be the (reduced) homology of c(P ). Inversely, to
every simplicial complex ∆, one can associate a poset p(∆), called the face poset of ∆, which is
defined to be the poset of nonempty faces ordered by inclusion. It is known that c(p(∆)), called
the barycentric subdivision of ∆, and ∆ have the same geometric realizations. Now let T denote
the Tits building which is defined by

T := partially ordered set of proper subspaces of V ∗.

It is well-known [19] that H̃∗(T ;Fq ) is only non-trivial in degree n − 2, and in this degree,

H̃n−2(T ;Fq ) ∼= Stn . Note that the dimension of H̃n−2(T ;Fq ), which is q
n(n−1)

2 , can be computed by
induction using an exact sequence as in [9, Theorem 1.14]. The Alexander dual ∆∗ :=∆(V ∗,k)∗ is
related to the Tits building as follows. By definition, ∆∗ is the simplicial complex on L t·· ·tL
in which a face is of the form F1 t ·· · tFk where the union F1 ∪ ·· · ∪Fk does not linearly spans
V ∗. Consider the map of posets f : p(∆∗) → T which sends a face F1 t ·· · tFk to the subspace
spanned by F1 ∪·· ·∪Fk . For each proper subspace W of V ∗, the poset f −1(T≤W ) is contractible
because it has LW t·· ·tLW as its unique maximal element. The Quillen Fiber Lemma [16] then

implies that f is a homotopy equivalence. The identity hd = q
q(q−1)

2 follows. �

4. R(V ∗,k) as a P-module

In this section we prove the second part of Theorem 2. For this we first review some facts
about the action of the algebra of Steenrod reduced powers P on S(V ∗) ∼= Fq [x1, . . . , xn]. Larry
Smith [18] defined the algebra P := P(Fq ) as the Fq -subalgebra of the endomorphism algebra
of the functor V 7→ S(V ∗), generated by certains natural transformations 1 =P0,P1,P2, . . .. It is
sufficient for us to know that the action of the operations P i on S(V ∗) satisfies:

(1) the unstable condition: P i ( f ) = f q if i = deg f and P i ( f ) = 0 if i > deg f , ∀ f ∈ S(V ∗),
and

(2) the Cartan formula: P i ( f1 f2) =∑
i1+i2=i P

i1 ( f1)P i2 ( f2),∀ f1, f2 ∈ S(V ∗).
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Denote by P the total Steenrod reduced powers 1+P1+P2+·· · . These properties then implies
that the map

P : Fq [x1, . . . , xn] → Fq [x1, . . . , xn] , f 7→ ∑
i ≥0

P i ( f ),

is a homomorphism of algebras which satisfies P(x) = x +xq for all x ∈ S1(V ∗).
The algebra P is also a Hopf algebra with the coproduct ∆ : P →P ⊗P defined by

∆
(
P i

)
= ∑

i1+i2=i
P i1 ⊗P i2 , i ≥ 1.

The canonical anti-automorphism (the antipode) χ : P →P then satisfies the relations:∑
i1+i2=i

P i1χ
(
P i2

)
= ∑

i1+i2=i
χ

(
P i1

)
P i2 = 0, i ≥ 1.

This can be used to show that

χ(P i )(x) =
{

(−1)i xqr
if i = qr −1

q−1 ,

0 otherwise.

Since χ is a map of coalgebras, the Cartan formula also holds for χ(P i ):

χ
(
P i

)(
f1 f2

)= ∑
i1+i2=k

χ
(
P i1

)(
f1

) ·χ(
P i2

)(
f2

)
, ∀ f1, f2 ∈ S

(
V ∗)

.

In order to simplify signs, we write P̂ i for (−1)iχ(P i ) and let P̂ = 1+P̂1 +P̂2 +·· · denote the
(signed) total conjugate Steenrod reduced powers. The above formulae for χ then implies that
the map

P̂ : Fq [x1, . . . , xn] → Fq [[x1, . . . , xn]] , f 7→ ∑
i ≥0

P̂ i (
f
)

,

is a homomorphism of algebras which satisfies P̂(x) = x + xq + xq2 +·· · for all x ∈ S1(V ∗). Here
Fq [[x1, . . . , xn]] denotes the Fq -algebra of power series in x1, . . . , xn .

Finally, for all k ≥ 1 and f , g ∈ S(V ∗), we have the following congruence

Pk (
f
) · g ≡ f ·χ

(
Pk

)(
g
)(

modP+S
(
V ∗))

,

which is known as the the χ-trick [26]. Recall that this congruence follows from the identity

f ·χ
(
Pk

)(
g
)+ k∑

i=1
P i

(
f ·χ

(
Pk−i

)(
g
))= k∑

i=0

i∑
j=0

P j (
f
) ·P i− j

(
χ

(
Pk−i

)(
g
))

=
k∑

j=0

(
P j (

f
) · ∑

a+b=k− j
Pa

(
χ

(
Pb

)(
g
)))

=Pk (
f
) · g .

4.1. Proof of Theorem 2 (2a)

We suppose k = q s r with s ≥ 0, 1 ≤ r ≤ q −1, and as in the previous section, we set

d := k
(
qn −1

)
q −1

−n.

We need the following

Lemma 13. Given r elements y1, . . . , yr in S1(V ∗), the following identity holds

V
(
x1, . . . , xn−1, y1

)q s · · ·V(
x1, . . . , xn−1, yr

)q s = (−1)n−1
n−1∑
i=0

χ

(
P

(qn−1−1)qs r
q−1 −i

)(
ei · y q s

1 · · · y q s

r

)
,

where ei := ei (xq−1
1 , . . . , xq−1

n−1) is the i th elementary symmetric function of xq−1
1 , . . . , xq−1

n−1 .
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Proof. Recall that the map P̂ : Fq [x1, . . . , xn] → Fq [[x1, . . . , xn]], f 7→ ∑
i ≥0 P̂ i ( f ), is a homo-

morphism of algebras and P̂(x) = x + xq + xq2 + ·· · for x ∈ S1(V ∗). Here P̂ i = (−1)iχ(P i ) and
P̂ = 1+P̂1 +P̂2 +·· · .

Set

P
(
x1, . . . , xn−1; y1, . . . , yr

)
:= P̂

(
n−1∏
i=1

(
1−xq−1

i

)
· y q s

1 · · · y q s

r

)
and let R(x1, . . . , xn−1; y1, . . . , yr ) denote its homogeneous component of degree qn−1+s r . Since

n−1∏
i=1

(
1−xq−1

i

)
=

n−1∑
i=0

(−1)i ei ,

the lemma will follow from the identity

R
(
x1, . . . , xn−1 ; y1, . . . , yr

)= V
(
x1, . . . , xn−1, y1

)q s · · ·V(
x1, . . . , xn−1, yr

)q s

.

For this it is sufficient to prove that R(x1, . . . , xn−1; y1, . . . , yr ) is null whenever each y j is a linear
combination of x1, . . . , xn−1. (This is because each V(x1, . . . , xn−1, y j ) is equal to∏

x∈Fq 〈x1, ..., xn−1〉
(y j +x) and R

(
x1, . . . , xn−1; y1, . . . , yr

)
is clearly divisible by y q s

1 · · · y q s

r .)
Now since P (x1, . . . , xn−1; y1, . . . , yr ) is linear in each y j and symmetric in x1, . . . , xn−1 as well

as in y1, . . . , yr , we need only to prove that R(x1, . . . , xn−1; y1, . . . , yr ) is null if y1 = x1. But since

P̂
(
x1

(
1−xq−1

1

))
= P̂

(
x1 −xq

1

)= x1,

it follows that

P
(
x1, . . . , xn−1 ; x1, y2, . . . , yr

)
= x1

(
x1 +xq

1 +·· ·)q s−1
n−1∏
i=2

(
1− (

xi +xq
i +·· ·)q−1

) r∏
j=2

(
y j + y q

j +·· ·
)q s

= x1

s−1∏
k=0

(
xqk

1 +xqk+1

1 +·· ·
)q−1 n−1∏

i=2

(
1− (

xi +xq
i +·· ·)q−1

) r∏
j=2

(
y q s

j + y q s+1

j +·· ·
)

.

It is clear that a monomial occurring in this product is of the form x1+i1
1 xi2

2 · · ·xin−1
n−1 y j2

2 · · · y jr
r where

α(i1) ≤ s(q −1), α(i`) ∈ {0, q −1} for 2 ≤ `≤ n −1, and α( j`) = 1 for 2 ≤ `≤ r . Here the function α

is defined by α(a) := a0 + a1 +·· · where a = a0 + a1q + a2q2 +·· · is the q-adic expansion of a. It
follows that if the degree of such a monomial is qn−1+s r then we must have

α
(
qn−1+s r −1

)=α(
i1 + i2 +·· ·+ in−1 + j2 +·· ·+ jr

)
≤α (i1)+α (i2)+·· ·+α (in−1)+α(

j2
)+·· ·+α(

jr
)

≤ (n −2+ s)
(
q −1

)+ (r −1).

But this is a contradiction since we have qn−1+s r −1 = (q −1)(1+q +·· ·+qn−2+s )+ (r −1)qn−1+s ,
which implies that α(qn−1+s r − 1) = (n − 1 + s)(q − 1) + (r − 1). Here we use the hypothesis
1 ≤ r ≤ q −1. The Lemma 13 follows. �

Proof of Theorem 2 (2a). We need to prove that, for each 0 ≤ i ≤ d , the natural projection
S(V ∗)�R(V ∗,k) induces an isomorphism of GLn-modules

Qi (
S

(
V ∗))∼= Qi (

R
(
V ∗,k

))
.

It is sufficient to prove that f ·Vk
n is P-decomposable in S(V ∗) if

deg
(

f
)≤ d −deg

(
Vk

n

)
= d −kqn−1 = k

(
qn−1 −1

)
q −1

−n.
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By Lemma 13 and the χ-trick, we have

f ·Vk
n = (−1)n−1

n−1∑
i=0

f ·χ
(
P

(qn−1−1)k
q−1 −i

)(
ei · xk

n

)
≡ (−1)n−1

n−1∑
i=0

ei · xk
n ·P

(qn−1−1)k
q−1 −i (

f
)

mod
(
P+S

(
V ∗))

.

By instability, P
(qn−1−1)k

q−1 −i ( f ) = 0 for all 0 ≤ i ≤ n −1. �

Remark 14. Lemma 13 can be seen a generalization of the formula

Qm,0 =χ
(
P

qm−1
q−1 −m

)
(em)

in [11, Theorem 1.1]. Indeed, by putting n = m + 1, in the simplest case where r = 1 and s = 0,
Lemma 13 gives:

V (x1, . . . , xm , x) = (−1)m
m∑

i=0
χ

(
P

qm−1
q−1 −i

)
(xei ) ,

Comparing this with the formula defining the Dickson invariants Qm,0, . . . , Qm,m−1 [5]:

V (x1, . . . , xm , x) =
m−1∑
j=0

(−1)m− j Qm, j xq j
,

we obtain

Qm, j =
m∑

i=0
χ

(
P

qm−q j

q−1 −i
)

(ei ) .

Note that [11, Lemma 2.4] if f is of degree s and α(r (q −1)+ s) > s then P̂r ( f ) = 0 (this is proved
easily by letting P̂ act on a product of s elements in S1(V ∗), and then using the definition of the
function α). Applying this to each term in the above expression of Qm, j , we have

α

((
qm −q j

q −1
− i

)(
q −1

)+ i
(
q −1

))=α(
qm −q j

)
= (

m − j
)(

q −1;
)> i

(
q −1

)⇐⇒ m − j > i .

It follows that the expression above for Qm, j can be simplified to:

Qm, j =
m∑

i=m− j
χ

(
P

qm−q j

q−1 −i
)

(ei ) .

For j = 0, we recover the above formula for the top Dickson invariant Qm,0.

4.2. Proof of Theorem 2 (2b)

Recall that k = q s r with 1 ≤ r ≤ r −1. We need the following

Lemma 15. For each 0 6= y ∈ V ∗, I (V ∗,k)+ (yk ) = I (W, qk)+ (yk ) where W is linear complement
of Fq 〈y〉 in V ∗.

Proof. Let W be a linear complement of Fq 〈y〉 in V ∗. If H is a hyperplane of V ∗ not passing
through y , then VH ,V ∗ = LV ∗/LH is divisible by y . It follows that I (V ∗,k)+ (yk ) is generated by
(yk ) and the Vk

H ,V ∗ ’s where H is a hyperplane passing through y . Let H be such a hyperplane.
Then W ′ := H ∩W is a hyperplane in W and H = Fq 〈y〉⊕W ′. Choose a basis {y2, . . . , yn} of W
such that {y2, . . . , yn−1} is a basis of W ′. Then, up to non-zero scalars, we have

LV ∗ = L
(
y, y2, . . . , yn

)
, LH = L

(
y, y2, . . . , yn−1

)
, LW = L

(
y2, . . . , yn

)
, LW ′ = L

(
y2, . . . , yn−1

)
,
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where, recalling from the introduction, L(x1, . . . , xn) is given by L(x1, . . . , xn) := det(xq i−1

j )1≤ i , j ≤n .
By definition, VH ,V ∗ = LV ∗/LH , and so∣∣∣∣∣∣∣∣∣∣

y y2 · · · yn−1

y q y q
2 · · · y q

n−1
...

...
. . .

...

y qn−2
y qn−2

2 · · · y qn−2

n−1

∣∣∣∣∣∣∣∣∣∣
VH ,V ∗ =

∣∣∣∣∣∣∣∣∣∣
y y2 · · · yn

y q y q
2 · · · y q

n
...

...
. . .

...

y qn−1
y qn−1

2 · · · y qn−1

n

∣∣∣∣∣∣∣∣∣∣
.

Expanding along the first column of each determinant gives

yLq
W ′VH ,V ∗ ≡ yLq

W mod
(
y q )

,

and so

Lq
W ′VH ,V ∗ ≡ Lq

W mod
(
y q−1),

which, using VW ′,W = LW /LW ′ , in turn gives

VH ,V ∗ ≡ Vq
W ′,W mod

(
y q−1).

Taking the q s th power of this congruence then gives

Vq s

H ,V ∗ ≡ Vq s+1

W ′,W mod
(

y q s (q−1)
)

and so

Vq s r
H ,V ∗ ≡ Vq s+1r

W ′,W mod
(

y q s (q−1)
)

.

But since k = q s r with 1 ≤ r ≤ q −1, this implies that

Vk
H ,V ∗ ≡ Vqk

W ′,W mod
(

yk
)

.

We have thus proved that I (V ∗,k)+(yk ) is generated by yk and the Vqk
W ′,W ’s where W ′ = H∩W with

H a hyperplane of V ∗ passing through y . The identity I (V ∗,k)+(yk ) = I (W, qk)+(yk ) follows. �

Proposition 16.

(1) Rn,k can be embedded as a P-submodule into a direct product of qn−1
q−1 copies of Rn−1,qk ⊗

R1,k .
(2) For all u ∈ Rn,k , we have χ(P i )(u) = 0 whenever |u|+qi > d.

Proof. The kernel of the natural map of P-modules S(V ∗) →∏
`∈LV ∗ S(V ∗)/(uk

`
) is the principal

ideal of S(V ∗) generated by Lk
n . Since Lk

n belongs to the ideal IV ∗,k , this map induces an inclusion
of P-modules

S
(
V ∗)

/I
(
V ∗,k

)
,→ ∏

`∈LV ∗
S

(
V ∗)

/
(
I
(
V ∗,k

)+ (
uk
`

))
.

The part (1) of the proposition now follows from Lemma 15.
For the part (2), by induction we see that Rn,k is embedded in a direct product of copies of

Fq [x]/(xqn−1k )⊗·· ·⊗Fq [x]/(xk ). By the Cartan formula, it suffices now to prove that, for all m ≥ 0,
we have χ(P i )(x t ) = 0 in Fq [x]/(xqm r ) whenever t + qi > qmr − 1. Suppose in contrary that
χ(P i )(x t ) =λx t+(q−1)i with λ ∈ F×q , then using χ-trick and instability, we have

λxqm r−1 = xqm r−1−(q−1)i−t ·χ
(
P i

)(
x t )≡ x t ·P i

(
xqm r−1−(q−1)i−t

)
= 0

modulo P-decomposable elements in Fq [x]/(xqm r ). This contradicts the fact that the monomial
xqm r−1 is P-indecomposable in Fq [x]/(xqm r ). Indeed if xqm r−1 were P-decomposable, then up
to non-zero scalar it would be the image under some operation Ppa

of xqm r−1−pa (q−1) (noting
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that P is multiplicatively generated by all the Ppa
, a ≥ 0, and not by all the Pqa

, a ≥ 0 [18,
page 338]). But we have

Ppa
(
xqm r−1−pa(q−1)

)
=

(
qmr −1−pa

(
q −1

)
pa

)
xqm r−1 =

((
qmr −pa q

)+ (
pa −1

)
pa

)
xqm r−1.

Since qmr −pa q > 0, we get qm > pa q/r > pa , and so (qmr −pa q) is divisible by pa+1. It follows
that pa does not appear in the p-adic expansion of (qmr − pa q)+ (pa −1) and so the binomial
coefficient

((qm r−pa q)+(pa−1)
pa

)
is zero, completing the proof that xqm r−1 is P-indecomposable. �

Proof of Theorem 2 (2b). We need to prove that the natural projection Rd (V ∗,k)�Qd (R(V ∗,k))
is an isomorphism of GLn-modules. For this it is sufficient to prove that P+R(V ∗,k) vanishes in
degree d . Using the antipode χ, we need to prove that χ(P i )(u) = 0 for u ∈ R(V ∗,k) and i > 0
such that |u|+ (q −1)i = d . But the identity |u|+ (q −1)i = d implies |u|+qi = d + i > d , and we
can apply Proposition 16(2) to conclude χ(P i )(u) = 0. �

Remark 17. The second part of Proposition 16 is equivalent to the fact that the P-module
ΣdD(Rn,k ) is unstable. Here given M a P-module, D(M) is the Spanier–Whitehead dual of M ,
which is defined by {

(DM)−i = HomFq

(
M i ,Fq

)
, i ∈Z,

θ( f ) = f ◦ (
χ (θ)

)
, f ∈DM ,θ ∈P .

5. Proof of Theorem 4

In this section we prove the following:

Theorem 18 (Theorem 4). For n = dimV ≥ 2, dimFq Qqn−1−n(S(V ∗)) = (q−1)(q2−1) · · · (qn−1−1).

This is proved by considering a matroid complex K which can be seen as an affine version of
the complex ∆(V ∗). To define K , let us fix a hyperplane W in V ∗ and let E denote an affine space
not containing the origin and parallel to W . Let K be the simplicial complex on the vertex set E
in which a face is of the form E \ F where F affinely spans E , or equivalently, F linearly spans V ∗.

We check easily that the facets of K are complements in E of affine bases of E and a minimal
non-face of K is of the form E \ H where H is a hyperplane in the affine space E . Since a facet of
K has cardinality d := qn−1 −1, K is a (d −1)-dimensional simplicial complex.

The Alexander dual K ∗ of K is the simplicial complex on the vertex set E in which F is a face if
F does not affinely span E . A facet of K ∗ is thus a hyperplane in the affine space E .

Lemma 19. K is a matroid complex.

Proof. Let B be the simplicial complex on E whose faces are affinely independent subsets of E .
It is clear that E is a matroid complex. The dual of this matroid complex is K and so K is also a
matroid complex. �

Consider the map ι : V → Fq 〈E〉 defined by ι(v) = ∑
α∈E α(v)Yα where Fq 〈E〉 is the space of

formal sums Σα∈E Yα.

Lemma 20. The map ι : V → Fq 〈E〉 is a monomorphism satisfying property (∗) of Proposition 7
and its dual ι∗ : FE

q →V ∗ sends each basis element Xα ∈ FE
q to α ∈V ∗.Here Xα is dual to Yα.

Proof. It is clear that ι is a monomorphism. Now given E \ F a face of K , if ι(v) = ∑
α∈E α(v)Yα

belongs to Fq 〈E \ F 〉, then one must have α(v) = 0 for all α ∈ F , which implies that v = 0 since F is
a spanning set of V ∗. �
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Now we can apply Proposition 7 to study S(V ∗)/ι∗(IK ). The Stanley-Reisner ideal IK is gen-
erated by the monomials

∏
α∈E\H Xα where H is running on the set of hyperplanes in the affine

space E . It follows that the polynomials ΦH := ∏
α∈E\H α generates the ideal I := ι∗(IK ) of S(V ∗).

Note that I is stable under the action of the affine subgroup Aff(E) of GL(V ∗) and so the natural
projection S(V ∗)� S(V ∗)/I is a map of Aff(E)-modules.

Proposition 21. For each 0 ≤ i ≤ qn−1 −n, the natural projection S(V ∗) � S(V ∗)/I induces an
isomorphism of Aff(E)-modules Qi (S(V ∗)) ∼= Qi (S(V ∗)/I ).

Proof. Let H be a hyperplane in the affine space E . We need to prove that f · ΦH is P-
decomposable whenever

deg
(

f
)≤ (

qn−1 −n
)−deg(ΦH ) = (

qn−1 −n
)− (

qn−1 −qn−2)= qn−2 −n.

Suppose E = y +W and H = y +W ′ where y ∈ H and W ′ is a hyperplane in W . Choose a basis
{y1, . . . , yn−1} of W such that {y1, . . . , yn−2} is a basis of W ′. We have

ΦH = ∏
w ′∈W ′,a∈F×q

(
w ′+ayn−1 + y

)= ∏
a∈F×q

V
(
y1, . . . , yn−2, ayn−1 + y

)
,

and so by Lemma 13,

ΦH = (−1)n−2
n−2∑
i=0

χ
(
Pqn−2−1−i

)(
ei ·Y

)
,

where ei := ei (y q−1
1 , . . . , y q−1

n−2) and Y = ∏
a∈F×q (ayn−1 + y). By instability, Pqn−2−1−i ( f ) = 0 for all

0 ≤ i ≤ n −2 and so the result follows from the χ-trick. �

Proposition 22. S(V ∗)/I can be embedded as a P-submodule into a direct product of qn−1 copies
of R(W, q −1).

Proof. The kernel of the natural map S(V ∗) → ∏
y ∈E S(V ∗)/(y) is the principal ideal of S(V ∗)

generated by
∏

y∈E y . Since this generator belongs to I , this map induces an inclusion of P-
modules:

S
(
V ∗)

/I ,→ ∏
y ∈E

S
(
V ∗)

/I + (y).

It suffices now to prove that, for each y ∈ E , I + (y) = I (W, q − 1)+ (y), and so S(V ∗)/I + (y) ∼=
R(W, q −1). Indeed, given H a hyperplane in E , if y 6∈ H then ΦH is divisible by y . If y ∈ H then
E = y+W and H = y+W ′ where W ′ is a hyperplane in W . Choose a basis {y1, . . . , yn−1} of W such
that {y1, . . . , yn−2} is a basis of W ′. We have then

ΦH = ∏
w ′∈W ′,a∈F×q

(
w ′+ayn−1 + y

)≡ ∏
a∈F×q

V
(
y1, . . . , yn−2, ayn−1

)(
(y)

)
=−V

(
y1, . . . , yn−2, yn−1

)q−1 (
(y)

)
=−Vq−1

W ′,W
(
(y)

)
.

The result follows. �

By Proposition 16, we know that the top-degree module Rqn−1−n(W, q − 1) is P-indecom-
posable, and so the above proposition implies that the top-degree module (S(V ∗)/I )qn−1−n is P-
indecomposable. Combining this with Proposition 21 yields an isomorphism:

Qqn−1−n (
S

(
V ∗))∼= (

S
(
V ∗)/

I
)qn−1−n .

To compute the dimension of (S(V ∗)/I )qn−1−n , we need to compute the reduced Euler character-
istic χ̃(K ∗). Recall that the Alexander dual K ∗ of K is the simplicial complex on the vertex set E
in which a face is a set of points F such that F does not affinely span E . Folowing Lusztig [9], let
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S be the poset of all affine subspaces of E other than E (which is denoted by S I (E) in [9]). Then
as in the linear case, the map of posets f : p(K ∗) → S sending a face F of K ∗ to the affine sub-
space spanned by F is a homotopy equivalence. This is because for each affine subspace E ′ of E
other than E , the poset f −1(S≤E ′ ) has E ′ as its unique maximal element. The homotopy equiva-
lence then again follows from the Quillen Fiber lemma. The reduced homology H̃∗(S ;Fq ) is only
non-trivial in degree n−2, and in this degree, H̃n−2(S ;Fq ), known as the affine Steinberg module
associated to E [9, 1.14], is of dimension (q −1)(q2 −1) · · · (qn−1 −1). It follows that χ̃(K ∗) is up to
sign equal to this dimension and so the proof of Theorem 4 is complete.

Remark 23. By Proposition 7, the elements
∏

y ∈E\B α, where B is an affine basis of E , span the

Fq -vector space (S(V ∗)/I )qn−1−n . It would be interesting to figure out a basis of this space from a
shelling of the matroid complex K .

Remark 24. The poset S above appeared in the study of discrete series (a.k.a. cuspidal repre-
sentations) of GLn(Fq ) by G. Lusztig [9]. Lusztig constructed in this work a distinguished discrete
series, D(V ), which is a free module of rank (q −1)(q2 −1) · · · (qn−1 −1) over the ring WFq of Witt
vectors of Fq . He showed that the restriction of D(V ) to the affine subgroup Aff(E) is isomorphic
to H̃n−2(S ;WFq ). The Fq -reduction Fq ⊗WFq

D(V ) is also shown by Lusztig to be isomorphic to

H̃n−2(T (V );G ) where T (V ) is the Tits building of V and G the coefficient system over T (V )
which to any flag σ = (Vi0 ⊂ Vi1 ⊂ ·· · ⊂ Vim ) associates the vector space Gσ = Vi0 . We conjecture
that the Fq -reduction of D(V ) and Qqn−1−n(S(V ∗)) are isomorphic as Fq [GLn]-modules.

6. The Steinberg summand of Rn,2 and Brown–Gitler modules

In this section we take q = 2 and we denote by A the mod 2 Steenrod algebra. Since A ∼=P(F2),
each reduced power P i of P(F2) is now denoted by Sqi .

Recall that Rn,2 = F2[x1, . . . , xn]/In,2, where In,2 is the ideal generated by the orbit of the action
of GLn(F2) on V2

n =∏
λi ∈F2 (λ1x1 +·· ·+λn−1xn−1 +xn)2.

Put d = 2(2n −1)−n =∑n
j=1(2 j −1).

We now prove Theorem 5 by establishing an isomorphism of A -modules
n⊕

j=0
Σd−(

2 j −1
)
B

(
2 j −1

) ∼=−→ Rn,2 ·en .

Here B(k) denotes the Brown–Gitler module B(k) :=A /Jk where Jk is the left ideal

A
〈
χ

(
Sqi

)∣∣∣2i > k
〉

.

We need the following lemmas:

Lemma 25. There is an A -generating set {α0,α1, . . . , αn} with |α j | = d − (2 j −1) for Rn,2 ·en .

Proof. Recall that Rn,2 is a quotient of the polynomial algebra Sn := F2[x1, . . . , xn] which is trivial
in degree greater than d . In [6], M. Inoue proved that the Steinberg summand F2[x1, . . . , xn] ·en is
minimally A -generated by the classes

Sq2i1 · · ·Sq2in
(

1

x1 . . . xn

)
where i1 > i2 > ·· · > in ≥ 0. In degrees less than or equal to d , these corresponds to the sequences
(i1, . . . , in) = (n, . . . , ĵ , . . . , 0) with 0 ≤ j ≤ n. Projecting these generators to Rn,2·en gives the desired
result. �

Remark 26. The above generating set for Rn,2 is minimal since we have Qi (Sn) ∼= Qi (Rn,2) in the
range 0 ≤ i ≤ d (Theorem 2(2a)). However we do not need this fact to produce the surjective map
in the following lemma.
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Lemma 27. Evaluating on the generators α0,α1, . . . , αn yields an epimorphism of A -modules:
n⊕

j=0
Σ

∣∣α j
∣∣
A �Rn,2 ·en ,

(
Σ

∣∣α j
∣∣
θ j

)
0≤ j ≤n

7→
n∑

j=0
θ j

(
α j

)
,

which factors through the canonical projection
⊕n

j=0Σ
|α j |A �

⊕n
j=0Σ

|α j |A /Jd−|α j |. As a conse-
quence, we have an epimorphism of A -modules:

n⊕
j=0

Σd−(
2 j −1

)
B

(
2 j −1

)
�Rn,2 ·en .

Proof. We have χ(Sqi )(α j ) = 0 in Rn,2 whenever 2i > d −|α j | (Proposition 16). �

Remark 28. Note that [8, Proposition 5.4.4] ΣkDB(k) is isomorphic to the unstable Brown–Gitler
module J(k) (D denoting the Spanier–Whitehead dual). Taking the Spanier–Whitehead dual of the
epimorphism

⊕n
j=0Σ

d−(2 j −1)B(2 j −1)�Rn,2 ·en yields a monomorphism:

ΣdD
(
Rn,2 ·en

)
,→

n⊕
j=0

J
(
2 j −1

)
,

which is a monomorphism of unstable A -modules since
⊕n

j=0 J(2 j − 1) is unstable (cf. Re-
mark 17).

Lemma 29. In each degree, the dimension of Rn,2 ·en is greater than or equal to the dimension of⊕n
j=0Σ

d−(2 j −1)B(2 j −1).

Proof. Using the exact sequences (known as Mahowald’s exact sequences)

0 →Σ2 j−1
B

(
2 j−1

)
→ B

(
2 j

)
→ B

(
2 j −1

)
→ 0,

we see that the Poincaré series of
⊕n

j=0Σ
d−(2 j −1)B(2 j − 1) is the same as the Poincaré series of

Σ2n−1−nB(2n). Since B(2n) has a basis {χ(Sqi1 · · ·Sqin ) | 2n−1 ≥ i1 ≥ 2i2 ≥ ·· · ≥ 2n−1in ≥ 0} [3], it
follows that

P

(
n⊕

j=0
Σd−(

2 j −1
)
B

(
2 j −1

)
, t

)
= ∑

2n−1 ≥ i1 ≥2i2 ≥···≥2n−1 in ≥0

t 2n−1−n+i1+i2+···+in

= ∑
2n−1 ≥ i1 ≥2i2 ≥···≥2n−1 in ≥0

t (2n−1+i1)+(2n−2+i2)+···+(1+in )−n

= ∑
2n ≥ j1 ≥2 j2 ≥···≥2n−1 jn >0

t j1+ j2+···+ jn−n .

For the Poincaré series of Rn,2 ·en , we prove that the set{
Sq j1 · · ·Sq jn

(
1

x1 · · ·xn

)∣∣∣∣2n ≥ j1 ≥ 2 j2 ≥ ·· · ≥ 2n−1 jn > 0

}
is linearly independent in Rn,2. Note that each element in this set is fixed by the Steinberg idem-
potent en [13, Lemma 5.9]. By Lemma 15, we see that In,2 is contained in the ideal (x2n

1 , . . . , x2
n).

The linear independence then follows from the natural projection

Rn,2 � F2 [x1, . . . , xn]/
(
x2n

1 , . . . , x2
n

)
and the formula [13, Lemma 3.6]

Sq j1 · · ·Sq jn

(
1

x1 · · ·xn

)
= x j1−1

1 · · ·x jn−1
n +monomials of lower order

(in the lexicographical order starting at the left). The proposition is proved. �
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Proof of Theorem 5. The epimorphism
⊕n

j=0Σ
d−(2 j −1)B(2 j − 1) � Rn,2 · en is an isomorphism

since in each degree the dimension of Rn,2 · en is greater than or equal to the dimension of⊕n
j=0Σ

d−(2 j −1)B(2 j −1). �
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