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Abstract. Let A be a sequence of r k terms which is made up of k distinct integers each appearing exactly r
times in A . The sum of all terms of a subsequence of A is called a subsequence sum of A . For a nonnegative
integer α ≤ r k, let Σα(A ) be the set of all subsequence sums of A that correspond to the subsequences of
length α or more. When r = 1, we call the subsequence sums as subset sums and we write Σα(A) for Σα(A ).
In this article, using some simple combinatorial arguments, we establish optimal lower bounds for the size of
Σα(A) and Σα(A ). As special cases, we also obtain some already known results in this study.
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1. Introduction

Let A be a set of k integers. The sum of all elements of a subset of A is called a subset sum of A. So,
the subset sum of the empty set is 0. For a nonnegative integer α≤ k, let

Σα(A) :=
{ ∑

a∈ A′
a : A′ ⊂ A,

∣∣A′∣∣≥α}
and

Σα(A) :=
{ ∑

a∈ A′
a : A′ ⊂ A,

∣∣A′∣∣≤ k −α
}

.

That is, Σα(A) is the set of subset sums corresponding to the subsets of A that are of the size at
least α and Σα(A) is the set of subset sums corresponding to the subsets of A that are of the size
at most k −α. So, Σα(A) =∑

a∈ A a −Σα(A). Therefore |Σα(A)| = |Σα(A)|.
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Now, we extend the above definitions for sequences of integers. Before we go for extension, we
mention some notation that are used throughout the paper.

Let

A =

a1, . . . , a1︸ ︷︷ ︸
r copies

, a2, . . . , a2︸ ︷︷ ︸
r copies

, . . . , ak , . . . , ak︸ ︷︷ ︸
r copies


be a sequence of r k terms, where a1, a2, . . . , ak are distinct integers each appearing exactly r times
in A . We denote this sequence by A = (a1, a2, . . . , ak )r . If A ′ is a subsequence of A , then we write
A ′ ⊂A . By x ∈A , we mean x is a term in A . For the number of terms in a sequence A , we use the
notation |A |. For an integer x, we let x∗A be the sequence which is obtained from by multiplying
each term of A by x. For two nonempty sequences A , B, by A ∩B, we mean the sequence of
all those terms that are in both A and B. Furthermore, for integers a, b with b ≥ a, by [a,b]r , we
mean the sequence (a, a +1, . . . , b)r .

Let A = (a1, a2, . . . , ak )r be a sequence of integers with r k terms. The sum of all terms of a
subsequence of A is called a subsequence sum of A . For a nonnegative integer α≤ r k, let

Σα(A ) :=
{ ∑

a∈A ′
a : A ′ ⊂A ,

∣∣A ′∣∣≥α}
and

Σα(A ) :=
{ ∑

a∈A ′
a : A ′ ⊂A ,

∣∣A ′∣∣≤ r k −α
}

.

That is,Σα(A ) is the set of subsequence sums corresponding to the subsequences of A that are of
the size at least α and Σα(A ) is the set of subsequence sums corresponding to the subsequences
of A that are of the size at most r k −α. Then in the same line with the subset sums, we have
|Σα(A )| = |Σα(A )| for all 0 ≤α≤ r k.

The set of subset sums Σα(A) and Σα(A) and the set of subsequence sums Σα(A ) and Σα(A )
may also be written as unions of sumsets:

For a finite set A of k integers and for positive integers h,r , the h-fold sumset h A is the
collection of all sums of h not-necessarily-distinct elements of A, the h-fold restricted sumset h Â
is the collection of all sums of h distinct elements of A, and the generalized sumset h(r ) A is the
collection of all sums of h elements of A with at most r repetitions for each element (see [15]).
Then Σα(A) =⋃k

h=αh Â, Σα(A) =⋃k−α
h=0 h Â, Σα(A ) =⋃r k

h=αh(r ) A, and Σα(A ) =⋃r k−α
h=0 h(r ) A, where

A = (A)r and 0 Â = 0(r ) A = {0}.
An important problem in additive number theory is to find the optimal lower bound for

|Σα(A)| and |Σα(A )|. Such problems are very useful in some other combinatorial problems such
as the zero-sum problems (see [6,8,11,21]). Nathanson [18] established the optimal lower bound
for |Σ1(A)| for sets of integers A. Mistri and Pandey [16, 17] and Jiang and Li [14] extended
Nathanson’s results to Σ1(A ) for sequences of integers A . Note that these subset and subse-
quence sums may also be studied in any abelian group (for earlier works, in case α= 0 and α= 1,
see [1, 3, 7–10, 12, 13, 20]). Recently, Balandraud [2] proved the optimal lower bound for |Σα(A)| in
the finite prime field Fp , where p is a prime number. Inspired by Balandraud’s work [2], in this
paper we establish optimal lower bounds for |Σα(A)| and |Σα(A )| in the group of integers. Note
that, in [5], we have already settled this problem when the set A (or sequence A ) contains non-
negative or nonpositive integers. So, in this paper we consider the sets (or sequences) which may
contain both positive and negative integers.

In Section 2, we prove optimal lower bounds for |Σα(A)| for finite sets of integers A. In
Section 3, we extend the results of Section 2 to sequences of integers.

The following results are used to prove the results in this paper.
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Theorem 1 ([19, Theorem 1.4]). Let A, B be nonempty finite sets of integers. Set A +B = {a +b :
a ∈ A,b ∈ B}. Then

|A+B | ≥ |A|+ |B |−1.

This lower bound is optimal.

Theorem 2 ([19, Theorem 1.3]). Let A be a nonempty finite set of integers and h be a positive
integer. Then

|h A| ≥ h|A|−h +1.

This lower bound is optimal.

Theorem 3 ([2, Theorem 4]). Let A be a nonempty subset of Fp such that A ∩ (−A) =;. Then for
any integer α ∈ [0, |A|], we have

|Σα(A)| ≥ min

{
p,

|A|(|A|+1)

2
− α(α+1)

2
+1

}
.

This lower bound is optimal.

2. Subset sum

In Theorem 4 and Corollary 5, we prove optimal lower bound for |Σα(A)| under the assumptions
A ∩ (−A) = ; and A ∩ (−A) = {0}, respectively. In Theorem 7 and Corollary 8, we prove optimal
lower bound for |Σα(A)| for arbitrary finite sets of integers A. The bounds in Theorem 7 and
Corollary 8 depends on the number of positive elements and the number of negative elements
in set A. In Corollary 9, we prove lower bounds for |Σα(A)|, which holds for arbitrary finite sets of
integers A and only depend on the total number of elements of A not the number of positive and
negative elements of A.

Theorem 4. Let A be a set of k integers such that A∩ (−A) =;. For any integer α ∈ [0,k], we have

|Σα(A)| ≥ k(k +1)

2
− α(α+1)

2
+1. (1)

This lower bound is optimal.

Proof. Let p be a prime number such that

p > max
{

2max∗(A), k(k+1)
2 − α(α+1)

2 +1
}

,

where max∗(A) = max{|a| : a ∈ A}. Now, the elements of A can be thought of residue classes
modulo p. Since p > 2max∗(A), any two elements of A are different modulo p. Furthermore
A∩ (−A) =;. Hence, by Theorem 3, we get

|Σα(A)| ≥ k(k +1)

2
− α(α+1)

2
+1.

Next, to verify that the lower bound in (1) is optimal, let A = [1,k]. Then A∩ (−A) =; and

Σα(A) ⊂ [1+2+·· ·+α,1+2+·· ·+k] =
[
α(α+1)

2
,

k(k +1)

2

]
.

Therefore

|Σα(A)| ≤ k(k +1)

2
− α(α+1)

2
+1.

This together with (1) gives

|Σα(A)| = k(k +1)

2
− α(α+1)

2
+1.

Thus, the lower bound in (1) is optimal. This completes the proof of the theorem. �
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Corollary 5. Let A be a set of k integers such that A∩(−A) = {0}. For any integerα ∈ [0,k], we have

|Σα(A)| ≥ k(k −1)

2
− α(α−1)

2
+1. (2)

This lower bound is optimal.

Proof. If A = {0}, then Σα(A) = {0}. Therefore |Σα(A)| = 1, and (2) holds. So, let A 6= {0} and set
A′ = A \ {0}. Then it is easy to see that Σ0(A) = Σ0(A′) and Σα(A) = Σα−1(A′) for α ≥ 1. Since
A′∩ (−A′) =;, by Theorem 4, we get

|Σ0(A)| = ∣∣Σ0
(

A′)∣∣≥ k(k −1)

2
+1

and

|Σα(A)| = ∣∣Σα−1
(

A′)∣∣≥ k(k −1)

2
− α(α−1)

2
+1

for α≥ 1. Hence (2) is established.
Now, let A = [0,k −1]. Then

A∩ (−A) = {0} and Σα(A) ⊂
[
α(α−1)

2
,

k(k −1)

2

]
.

Therefore

|Σα(A)| ≤ k(k −1)

2
− α(α−1)

2
+1.

This together with (2) gives that the lower bound in (2) is optimal. �

Remark 6. Nathanson’s theorem [18, Theorem 3] is a particular case of Theorem 4 and Corol-
lary 5, for α= 1.

Theorem 7. Let n and p be positive integers and A be a set of n negative and p positive integers.
Let α ∈ [0,n +p] be an integer.

(i) If α≤ n and α≤ p, then |Σα(A)| ≥ n(n+1)
2 + p(p+1)

2 +1.

(ii) If α≤ n and α> p, then |Σα(A)| ≥ n(n+1)
2 + p(p+1)

2 − (α−p)(α−p+1)
2 +1.

(iii) If α> n and α≤ p, then |Σα(A)| ≥ n(n+1)
2 + p(p+1)

2 − (α−n)(α−n+1)
2 +1.

(iv) If α> n and α> p, then |Σα(A)| ≥ n(n+1)
2 + p(p+1)

2 − (α−n)(α−n+1)
2 − (α−p)(α−p+1)

2 +1.

These lower bounds are optimal.

Proof. Let A = An ∪ Ap , where An = {b1, . . . ,bn} and Ap = {c1, . . . ,cp } such that bn < bn−1 < ·· · <
b1 < 0 < c1 < c2 < ·· · < cp .

(i) If α≤ n and α≤ p, then(
Σα (An)+Σ0

(
Ap

))∪(
Σ1 ({b1, . . . , bα})+

p∑
j=1

c j

)
⊂Σα(A)

with (
Σα (An)+Σ0

(
Ap

))∩(
Σ1 ({b1, . . . , bα})+

p∑
j=1

c j

)
=;.

Hence, by Theorem 1 and Theorem 4, we have

|Σα(A)| ≥ ∣∣Σα (An)+Σ0
(

Ap
)∣∣+ ∣∣Σ1 ({b1, . . . , bα})

∣∣
≥ |Σα (An)|+ ∣∣Σ0

(
Ap

)∣∣+ ∣∣Σ1 ({b1, . . . , bα})
∣∣−1

≥
(

n(n +1)

2
− α(α+1)

2
+1

)
+

(
p(p +1)

2
+1

)
+ α(α+1)

2
−1

= n(n +1)

2
+ p(p +1)

2
+1.
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(ii) If α≤ n and α> p, then(
Σα (An)+Σ0

(
Ap

))∪(
Σα−p ({b1, . . . , bα})+

p∑
j=1

c j

)
⊂Σα(A)

with (
Σα (An)+Σ0

(
Ap

))∩(
Σα−p ({b1, . . . , bα})+

p∑
j=1

c j

)
=

{
α∑

j=1
b j +

p∑
j=1

c j

}
.

Hence, by Theorem 1 and Theorem 4, we have

|Σα(A)| ≥ ∣∣Σα (An)+Σ0
(

Ap
)∣∣+ ∣∣Σα−p ({b1, . . . , bα})

∣∣−1

≥ |Σα (An)|+ ∣∣Σ0
(

Ap
)∣∣+ ∣∣Σα−p ({b1, . . . , bα})

∣∣−2

≥
(

n(n +1)

2
− α(α+1)

2
+1

)
+

(
p

(
p +1

)
2

+1

)
+

(
α(α+1)

2
−

(
α−p

)(
α−p +1

)
2

+1

)
−2

= n(n +1)

2
+ p

(
p +1

)
2

−
(
α−p

)(
α−p +1

)
2

+1.

(iii) If α> n and α≤ p, then by applying the result of (ii) for (−A), we obtain

|Σα(A)| = |Σα(−A)| ≥ n(n +1)

2
+ p

(
p +1

)
2

− (α−n)(α−n +1)

2
+1.

(iv) If α> n and α> p, then(
n∑

j=1
b j +Σα−n(Ap )

)
∪

(
Σα−p (An)+

p∑
j=1

c j

)
⊂Σα(A)

with (
n∑

j=1
b j +Σα−n(Ap )

)
∩

(
Σα−p (An)+

p∑
j=1

c j

)
=

{
n∑

j=1
b j +

p∑
j=1

c j

}
.

Hence, by Theorem 4, we get

|Σα(A)| ≥ ∣∣Σα−n
(

Ap
)∣∣+ ∣∣Σα−p (An)

∣∣−1

≥
(

p
(
p +1

)
2

− (α−n)(α−n +1)

2
+1

)
+

(
n(n +1)

2
−

(
α−p

)(
α−p +1

)
2

+1

)
−1

= n(n +1)

2
+ p

(
p +1

)
2

− (α−n)(α−n +1)

2
−

(
α−p

)(
α−p +1

)
2

+1.

It can be easily verified that all the lower bounds mentioned in the theorem are optimal for
A = [−n, p] \ {0}. �

Corollary 8. Let n and p be positive integers and A be a set of n negative integers, p positive
integers and zero. Let α ∈ [0,n +p +1] be an integer.

(i) If α≤ n and α≤ p, then |Σα(A)| ≥ n(n+1)
2 + p(p+1)

2 +1.

(ii) If α≤ n and α> p, then |Σα(A)| ≥ n(n+1)
2 + p(p+1)

2 − (α−p)(α−p−1)
2 +1.

(iii) If α> n and α≤ p, then |Σα(A)| ≥ n(n+1)
2 + p(p+1)

2 − (α−n)(α−n−1)
2 +1.

(iv) If α> n and α> p, then |Σα(A)| ≥ n(n+1)
2 + p(p+1)

2 − (α−n)(α−n−1)
2 − (α−p)(α−p−1)

2 +1.

These lower bounds are optimal.

Proof. The lower bounds for |Σα(A)| easily follows from Theorem 7 and the fact that Σ0(A) =
Σ0(A′) and Σα(A) = Σα−1(A′) for α ≥ 1, where A′ = A \ {0}. Furthermore, the optimality of these
bounds can be verified by taking A = [−n, p]. �
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Corollary 9. Let k ≥ 2 and A be a set of k integers. Let α ∈ [0,k] be an integer. If 0 ∉ A, then

|Σα(A)| ≥
⌊

(k +1)2

4

⌋
− α(α+1)

2
+1. (3)

If 0 ∈ A, then

|Σα(A)| ≥
⌊

k2

4

⌋
− α(α−1)

2
+1. (4)

Proof.
Case 1. 0 ∉ A . If k = 2, then A = {a1, a2} for some integers a1, a2 with a1 < a2. Therefore Σ1(A) =
{a1, a2, a1 + a2} ⊂ Σ0(A) and Σ2(A) = {a1 + a2}. Hence (3) holds for k = 2. So, assume that k ≥ 3.
As k(k +1)/2 > (k +1)2/4 for k ≥ 3, if |Σα(A)| ≥ k(k +1)/2−α(α+1)/2+1, then we are done. So,
let |Σα(A)| < k(k +1)/2−α(α+1)/2+1. Then, Theorem 4 implies that A contains both positive
and negative integers. Let An and Ap be subsets of A that contain respectively, all negative and
all positive integers of A. Let also |An | = n and |Ap | = p. Then n ≥ 1 and p ≥ 1. By Theorem 7,
we have

|Σα(A)| ≥ n(n +1)

2
+ p

(
p +1

)
2

− α(α+1)

2
+1

for all α ∈ [0,k]. Since k = n+p, without loss of generality we may assume that n ≥ k/2. Therefore

|Σα(A)| ≥ n(n +1)

2
+ (k −n)(k −n +1)

2
− α(α+1)

2
+1

=
(
n − k

2

)2

+ (k +1)2 −1

4
− α(α+1)

2
+1

≥ (k +1)2 −1

4
− α(α+1)

2
+1.

Hence

|Σα(A)| ≥
⌊

(k +1)2

4

⌋
− α(α+1)

2
+1.

Case 2. 0 ∈ A. Set A′ = A \ {0}. Then Σ0(A) = Σ0(A′) and Σα(A) = Σα−1(A′) for α ≥ 1. Hence, by
Case 1, we get

|Σ0(A)| = ∣∣Σ0
(

A′)∣∣≥ ⌊
k2

4

⌋
+1

and

|Σα(A)| = ∣∣Σα−1
(

A′)∣∣≥ ⌊
k2

4

⌋
− α(α−1)

2
+1

for α≥ 1. Hence

|Σα(A)| ≥
⌊

k2

4

⌋
− α(α−1)

2
+1

for all α ∈ [0,k]. This completes the proof of the corollary. �

Remark 10. Nathanson [18] have already proved this corollary for α = 1. The purpose of this
corollary is to prove a similar result for every α ∈ [0,k]. Note that the lower bounds in Corollary 9
are not optimal for all α ∈ [0,k], except for α= 0 and α= 1.

Remark 11. The lower bounds in Corollary 9 can also be written in the following form:
If 0 ∉ A, then

|Σα(A)| ≥


(k +1)2

4
− α(α+1)

2
+1 if k ≡ 1 (mod 2)

(k +1)2 −1

4
− α(α+1)

2
+1 if k ≡ 0 (mod 2).
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If 0 ∈ A, then

|Σα(A)| ≥


k2 −1

4
− α(α−1)

2
+1 if k ≡ 1 (mod 2)

k2

4
− α(α−1)

2
+1 if k ≡ 0 (mod 2).

3. Subsequence sum

In this section, we extend the results of the previous section from sets of integers to sequences
of integers. In Theorem 12, we establish optimal lower bound for |Σα(A )| under the assumptions
A ∩ (−A ) = ; and A ∩ (−A ) = (0)r . In Theorem 14 and Corollary 15, we prove optimal lower
bound for |Σα(A )| for arbitrary finite sequences of integers A . The bounds in Theorem 14 and
Corollary 15 depends on the number of negative terms and the number of positive terms in
sequence A . In Corollary 16, we prove lower bounds for |Σα(A )|, which holds for arbitrary finite
sequences of integers A and only depend on the total number of terms of A not the number of
positive and negative terms of A .

If α= r k and A = (a1, . . . , ak )r , then Σα(A ) = {r a1 +r a2 +·· ·+r ak }. Therefore |Σα(A )| = 1. So,
in the rest of this section, we assume that α< r k.

Theorem 12. Let k ≥ 2, r ≥ 1, and α ∈ [0,r k −1] be integers. Let m ∈ [1,k] be an integer such that
(m −1)r ≤ α < mr . Let A be a sequence of r k terms which is made up of k distinct integers each
repeated exactly r times. If A ∩ (−A ) =;, then

|Σα(A )| ≥ r

(
k(k +1)

2
− m(m +1)

2

)
+m(mr −α)+1. (5)

If A ∩ (−A ) = (0)r , then

|Σα(A )| ≥ r

(
k(k −1)

2
− m(m −1)

2

)
+ (m −1)(mr −α)+1. (6)

These lower bounds are optimal.

Proof. Let A be the set of all distinct terms of sequence A . Since (m−1)r ≤α< mr , we can write
α as α= (m −1)r +u for some integer 0 ≤ u < r . Then

(r −u)Σm−1(A)+uΣm(A) ⊂Σα(A ),

where (r −u)Σm−1(A) is the (r −u)-fold sumset of Σm−1(A) and uΣm(A) is the u-fold sumset of
Σm(A). So, by Theorem 1 and Theorem 2, we have

|Σα(A )| ≥ |(r −u)Σm−1(A)|+ |uΣm(A)|−1 ≥ (r −u) |Σm−1(A)|+u |Σm(A)|− r +1.

If A ∩ (−A ) =;, then A∩ (−A) =;. Thus, by Theorem 4, we have

|Σα(A )| ≥ (r −u)

(
k(k +1)

2
− m(m −1)

2
+1

)
+u

(
k(k +1)

2
− m(m +1)

2
+1

)
− r +1

= r

(
k(k +1)

2
− m(m +1)

2

)
+m(r −u)+1

= r

(
k(k +1)

2
− m(m +1)

2

)
+m(mr −α)+1.
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Similarly, if A ∩ (−A ) = (0)r , then A∩ (−A) = {0}. Thus, by Corollary 5, we have

|Σα(A )| ≥ (r −u)

(
k(k −1)

2
− (m −1)(m −2)

2
+1

)
+u

(
k(k −1)

2
− m(m −1)

2
+1

)
− r +1

= r

(
k(k −1)

2
− m(m −1)

2

)
+ (m −1)(r −u)+1

= r

(
k(k −1)

2
− m(m −1)

2

)
+ (m −1)(mr −α)+1.

Hence (5) and (6) are established.
Next, to verify that the lower bounds in (5) and (6) are optimal, let A = [1,k]r and B = [0,k−1]r .

Then A ∩ (−A ) =; and B∩ (−B) = (0)r with

Σα(A ) ⊂ [
r ·1+·· ·+ r · (m −1)+ (α− (m −1)r ) ·m,r ·1+·· ·+ r ·k

]
and

Σα(B) ⊂ [
r ·1+·· ·+ r · (m −2)+ (α− (m −1)r ) · (m −1),r ·1+·· ·+ r · (k −1)

]
.

Therefore

|Σα(A )| ≤ r k(k +1)

2
− r m(m +1)

2
+m(mr −α)+1

and

|Σα(B)| ≤ r k(k −1)

2
− r m(m −1)

2
+ (m −1)(mr −α)+1.

These two inequalities together with (5) and (6) implies that the lower bounds in (5) and (6) are
optimal. This completes the proof of Theorem 12. �

Remark 13. Mistri and Pandey’s result [16, Theorem 1] is a particular case of Theorem 12, for
α= 1.

Theorem 14. Let k ≥ 2, r ≥ 1, and α ∈ [0,r k −1] be integers. Let m ∈ [1,k] be an integer such that
(m −1)r ≤α< mr . Let A be a sequence of r k terms which is made up of n negative integers and p
positive integers each repeated exactly r times.

(i) If m ≤ n and m ≤ p, then

|Σα(A )| ≥ r

(
n(n +1)

2
+ p(p +1)

2

)
+1.

(ii) If m ≤ n and m > p, then

|Σα(A )| ≥ r

(
n(n +1)

2
+ p

(
p +1

)
2

− (m −p)
(
m −p +1

)
2

)
+ (

m −p
)

(mr −α)+1.

(iii) If m > n and m ≤ p, then

|Σα(A )| ≥ r

(
n(n +1)

2
+ p

(
p +1

)
2

− (m −n)(m −n +1)

2

)
+ (m −n)(mr −α)+1.

(iv) If m > n and m > p, then

|Σα(A )|

≥ r

(
n(n +1)

2
+ p

(
p +1

)
2

− (m −n)(m −n +1)

2
−

(
m −p

)(
m −p +1

)
2

)
+(

2m −n −p
)

(mr−α)+1.

These lower bounds are optimal.
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Proof. Let An and Ap be sets that contain respectively, all distinct negative terms and all distinct
positive terms of A . Then |An | = n and |Ap | = p. Let also An = {b1,b2, . . . , bn} and Ap =
{c1,c2, . . . , cp }, where bn < bn−1 < ·· · < b1 < 0 < c1 < c2 < ·· · < cp .

(i) If m ≤ n and m ≤ p, then

r
(
Σm (An)+Σ0

(
Ap

))∪(
Σ1 (

(b1, . . . , bm)r
)+ p∑

j=1
r c j

)
⊂Σα(A )

with

r
(
Σm (An)+Σ0

(
Ap

))∩(
Σ1 (

(b1, . . . , bm)r
)+ p∑

j=1
r c j

)
=;.

Hence, by Theorem 1, Theorem 2, Theorem 4, and Theorem 12, we have

|Σα(A )| ≥ ∣∣r (
Σm (An)+Σ0

(
Ap

))∣∣+ ∣∣Σ1 (
(b1, . . . , bm)r

)∣∣
≥ r |Σm (An)|+ r

∣∣Σ0
(

Ap
)∣∣+ ∣∣Σ1 (

(b1, . . . , bm)r
)∣∣−2r +1

≥ r

(
n(n +1)

2
− m(m +1)

2
+1

)
+ r

(
p

(
p +1

)
2

+1

)
+ r m(m +1)

2
−2r +1

= r

(
n(n +1)

2
+ p

(
p +1

)
2

)
+1.

(ii) If m ≤ n and m > p, then

r
(
Σm(An)+Σ0

(
Ap

))∪(
Σα−pr

(
(b1, . . . , bm)r

)+ p∑
j=1

r c j

)
⊂Σα(A )

with

r
(
Σm (An)+Σ0

(
Ap

))∩(
Σα−pr

(
(b1, . . . , bm)r

)+ p∑
j=1

r c j

)
=

{
m∑

j=1
r b j +

p∑
j=1

r c j

}
.

Hence, by Theorem 1, Theorem 2, Theorem 4, and Theorem 12, we have

|Σα(A )| ≥ ∣∣r (
Σm (An)+Σ0

(
Ap

))∣∣+ ∣∣Σα−pr
(
(b1, . . . , bm)r

)∣∣−1

≥ r |Σm (An)|+ r
∣∣Σ0

(
Ap

)∣∣+ ∣∣Σα−pr
(
(b1, . . . , bm)r

)∣∣−2r +1

≥ r

(
n(n +1)

2
− m(m +1)

2
+1

)
+ r

(
p

(
p +1

)
2

+1

)
+ r

(
m(m +1)

2
−

(
m −p

)(
m −p +1

)
2

)
+ (m −p)(mr −α)−2r +1

= r

(
n(n +1)

2
+ p

(
p +1

)
2

−
(
m −p

)(
m −p +1

)
2

)
+ (

m −p
)

(mr −α)+1.

(iii) If m > n and m ≤ p, then by applying the result of (ii) for (−A ), we obtain

|Σα(A )| = |Σα(−A )| ≥ r

(
n(n +1)

2
+ p(p +1)

2
− (m −n)(m −n +1)

2

)
+ (m −n)(mr −α)+1.

(iv) If m > n and m > p, then(
n∑

j=1
r b j +Σα−nr

((
Ap

)
r

))∪(
Σα−pr

(
(An)r

)+ p∑
j=1

r c j

)
⊂Σα(A )

with (
n∑

j=1
r b j +Σα−nr

((
Ap

)
r

))∩(
Σα−pr

(
(An)r

)+ p∑
j=1

r c j

)
=

{
n∑

j=1
r b j +

p∑
j=1

r c j

}
.
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Hence, by Theorem 12, we have

|Σα(A )| ≥ ∣∣Σα−nr
((

Ap
)

r

)∣∣+ ∣∣Σα−pr
(
(An)r

)∣∣−1

≥ r

(
p

(
p +1

)
2

− (m −n)(m −n +1)

2

)
+ (m −n)(mr −α)

+ r

(
n(n +1)

2
−

(
m −p

)(
m −p +1

)
2

)
+ (

m −p
)

(mr −α)+1

= r

(
n(n +1)

2
+ p

(
p +1

)
2

− (m −n)(m −n +1)

2
−

(
m −p

)(
m −p +1

)
2

)
+ (

2m −n −p
)

(mr −α)+1.

Furthermore, the optimality of the lower bounds in (i)–(iv) can be verified by taking A =
[−n, p]r \ (0)r . �

Corollary 15. Let k ≥ 2, r ≥ 1, and α ∈ [0,r k −1] be integers. Let m ∈ [1,k] be an integer such that
(m − 1)r ≤ α < mr . Let A be a sequence of r k terms which is made up of n negative integers, p
positive integers and zero, each repeated exactly r times.

(i) If m ≤ n and m ≤ p, then

|Σα(A )| ≥ r

(
n(n +1)

2
+ p

(
p +1

)
2

)
+1.

(ii) If m ≤ n and m > p, then

|Σα(A )| ≥ r

(
n(n +1)

2
+ p

(
p +1

)
2

−
(
m −p

)(
m −p −1

)
2

)
+ (

m −p −1
)

(mr −α)+1.

(iii) If m > n and m ≤ p, then

|Σα(A )| ≥ r

(
n(n +1)

2
+ p

(
p +1

)
2

− (m −n)(m −n −1)

2

)
+ (m −n −1)(mr −α)+1.

(iv) If m > n and m > p, then

|Σα(A )| ≥ r

(
n(n +1)

2
+ p

(
p +1

)
2

− (m −n)(m −n −1)

2
−

(
m −p

)(
m −p −1

)
2

)
+ (

2m −n −p −2
)

(mr −α)+1.

These lower bounds are optimal.

Proof. The lower bounds for |Σα(A )| easily follows from Theorem 14 and the fact that Σα(A ) =
Σ0(A ′) for 0 ≤α< r and Σα(A ) =Σα−r (A ′) for r ≤α< r k, where A ′ =A \ (0)r . Furthermore, the
optimality of these bounds can be verified by taking A = [−n, p]r . �

Corollary 16. Let k ≥ 3, r ≥ 1, and α ∈ [0,r k −1] be integers. Let m ∈ [1,k] be an integer such that
(m −1)r ≤ α < mr . Let A be a sequence of r k terms which is made up of k distinct integers each
repeated exactly r times. If 0 ∉A , then

|Σα(A )| ≥


r

(
(k +1)2

4
− m(m +1)

2

)
+1 if k ≡ 1 (mod 2)

r

(
(k +1)2 −1

4
− m(m +1)

2

)
+1 if k ≡ 0 (mod 2).

If 0 ∈A , then

|Σα(A )| ≥


r

(
k2 −1

4
− m(m −1)

2

)
+1 if k ≡ 1 (mod 2)

r

(
k2

4
− m(m −1)

2

)
+1 if k ≡ 0 (mod 2).
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Proof. Note that

r k(k +1)

2
≥


r (k +1)2

4
+1 if k ≡ 1 (mod 2)

r ((k +1)2 −1)

4
+1 if k ≡ 0 (mod 2)

and

r k(k −1)

2
+1 ≥


r (k2 −1)

4
+1 if k ≡ 1 (mod 2)

r k2

4
+1 if k ≡ 0 (mod 2)

for k ≥ 3. If 0 ∉A and

|Σα(A )| ≥ r

(
k(k +1)

2
− m(m +1)

2

)
+m(mr −α)+1,

then we are done. So, let

|Σα(A )| < r

(
k(k +1)

2
− m(m +1)

2

)
+m(mr −α)+1

when 0 ∉ A . Then, Theorem 12 implies that A contains both positive and negative integers. By
similar arguments, when 0 ∈ A also, we can assume that A contains both positive and negative
integers. So, in both the cases 0 ∈A and 0 ∉A , we can assume that A contains both positive and
negative integers. Let An and Ap be sets that contain respectively, all distinct negative terms and
all distinct positive terms of sequence A . Let also |An | = n and |Ap | = p. Then n ≥ 1 and p ≥ 1.

Case 1. 0 ∉A . By Theorem 14, we have

|Σα(A )| ≥ r

(
n(n +1)

2
+ p

(
p +1

)
2

− m(m +1)

2

)
+1

for all α ∈ [0,r k −1]. Therefore

|Σα(A )| ≥ r

(
n(n +1)

2
+ (k −n)(k −n +1)

2
− m(m +1)

2

)
+1

= r

((
n − k

2

)2

+ k2 +2k

4
− m(m +1)

2

)
+1.

Since k = n +p, without loss of generality we may assume that n ≥ dk/2e. If k ≡ 1 (mod 2), then
k = 2t +1 for some positive integer t . Hence

|Σα(A )| ≥ r

((
n − t − 1

2

)2

+ k2 +2k

4
− m(m +1)

2

)
+1

= r

(
(n − t )(n − t −1)+ (k +1)2

4
− m(m +1)

2

)
+1

≥ r

(
(k +1)2

4
− m(m +1)

2

)
+1.

If k ≡ 0 (mod 2), then k = 2t for some positive integer t . Without loss of generality we may assume
that n ≥ t . Hence

|Σα(A )| ≥ r

(
(n − t )2 + k2 +2k

4
− m(m +1)

2

)
+1

≥ r

(
(k +1)2 −1

4
− m(m +1)

2

)
+1.
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Case 2. 0 ∈A . By Corollary 15, we have

|Σα(A )| ≥ r

(
n(n +1)

2
+ p

(
p +1

)
2

− m(m −1)

2

)
+1

for all α ∈ [0,r k −1]. Therefore

|Σα(A )| ≥ r

((
n − k −1

2

)2

+ k2 −1

4
− m(m −1)

2

)
+1.

Since k = n+p+1, without loss of generality we may assume that n ≥ d(k−1)/2e. If k ≡ 1 (mod 2),
then k = 2t +1 for some positive integer t . Hence

|Σα(A )| ≥ r

(
(n − t )2 + k2 −1

4
− m(m −1)

2

)
+1

≥ r

(
k2 −1

4
− m(m −1)

2

)
+1.

If k ≡ 0 (mod 2), then k = 2t for some positive integer t . Hence

|Σα(A )| ≥ r

((
n − t + 1

2

)2

+ k2 −1

4
− m(m −1)

2

)
+1

= r

(
(n − t )(n − t +1)+ k2

4
− m(m −1)

2

)
+1

≥ r

(
k2

4
− m(m −1)

2

)
+1.

This completes the proof of Corollary 16. �

Remark 17. Mistri and Pandey [16] have already proved this corollary for α= 1. The purpose of
this corollary is to prove a similar result for every α ∈ [0,r k − 1]. Note that the lower bounds in
Corollary 16 are not optimal for all α ∈ [0,r k −1], except for α= 0 and α= 1.

4. Open problems

(1) Along this line, it is important to find the optimal lower bound for |Σα(A )|, for arbitrary
finite sequence of integers

A =

a1, . . . , a1︸ ︷︷ ︸
r1 copies

, a2, . . . , a2︸ ︷︷ ︸
r2 copies

, . . . , ak , . . . , ak︸ ︷︷ ︸
rk copies

 .

When the sequence A contains nonnegative or nonpositive integers, we already have the
optimal lower bound for |Σα(A )| (see [5]). So, the only case that remains to study is when
the sequence A contains both positive and negative integers. Note that, in this paper we
settled this problem in the special case ri = r for all i = 1,2, . . . , k.

(2) It is also an important problem to study the structure of the sequence A for which
the lower bound for |Σα(A )| is optimal. When A contains nonnegative or nonpositive
integers this problem has already been established (see [5]). So, it remains to solve this
problem when the sequence A contains both positive and negative integers.

(3) For a finite set H of nonnegative integers and a finite set A of k integers, define the
sumsets

H A := ⋃
h∈H

h A, H Â := ⋃
h∈H

h Â and H (r ) A := ⋃
h∈H

h(r ) A.

Then H Â = Σα(A) for H = [α,k], H Â = Σα(A) for H = [0,k −α], H (r ) A = Σα(A ) for
H = [α,r k], and H (r ) A = Σα(A ) for H = [0,r k −α], where A = (A)r . Along the same line
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with the sumsets h A, h Â, and Σα(A), the first named author of this article established
optimal lower bounds for |H A| and |H Â|, when A contains nonnegative or nonpositive
integers (see [4]). The author also characterized the sets H and A for which the lower
bounds are achieved [4]. It will be interesting to generalize such results to the sumset
H (r ) A.
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