

INSTITUT DE FRANCE Académie des sciences

Comptes Rendus

Mathématique

Brendon Rhoades

Plethysm and a character embedding problem of Miller

Volume 360 (2022), p. 1113-1116

https://doi.org/10.5802/crmath.363

This article is licensed under the CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN : 1778-3569

Combinatorics / Combinatoire

Plethysm and a character embedding problem of Miller

Brendon Rhoades*, a

 a Department of Mathematics, University of California, San Diego La Jolla, CA, 92093, USA

E-mail: bprhoades@ucsd.edu

Abstract. We use a plethystic formula of Littlewood to answer a question of Miller on embeddings of symmetric group characters. We also reprove a result of Miller on character congruences.

Funding. B. Rhoades was partially supported by NSF Grant DMS-1953781. *Manuscript received 29 March 2022, revised 4 April 2022, accepted 5 April 2022.*

Given $d \ge 1$ and a partition $\lambda = (1^{m_1}2^{m_2}3^{m_3}\cdots)$ of a positive integer *n*, let $\boxplus^d(\lambda)$ be the partition of $d^2 \cdot n$ given by $\boxplus^d(\lambda) := (d^{dm_1}(2d)^{dm_2}(3d)^{dm_3}\cdots)$. The Young diagram of $\boxplus^d(\lambda)$ is obtained from that of λ by subdividing every box into a $d \times d$ grid, as suggested by the notation.

Let S_n be the symmetric group on n letters. For a partition $\lambda \vdash n$, let V^{λ} be the corresponding S_n -irreducible with character $\chi^{\lambda} : S_n \to \mathbb{C}$. For $d \ge 1$, define a new class function $\boxplus^d(\chi^{\lambda})$ on S_n whose value on permutations of cycle type $\mu \vdash n$ is given by

$$\boxplus^{d} \left(\chi^{\lambda} \right)_{\mu} := \chi^{\boxplus^{d} (\lambda)}_{\boxplus^{d} (\mu)}. \tag{1}$$

Thus, the values of the class function $\mathbb{H}^d(\chi^{\lambda})$ on S_n are embedded inside the character table of the larger symmetric group $S_{d^2.n}$. A. Miller conjectured [4] that the class functions $\mathbb{H}^d(\chi^{\lambda})$ are genuine characters of (rather than merely class functions on) S_n . We prove that this is so in Theorem 1 using *plethysm* of symmetric functions.

In the arguments that follow, we use standard material on symmetric functions; for details see [3]. For $\mu \vdash n$, let $m_i(\mu)$ be the multiplicity of *i* as a part of μ and $z_{\mu} := 1^{m_1(\mu)} 2^{m_2(\mu)} \cdots m_1(\mu)! m_2(\mu)! \cdots$ be the size of the centralizer of a permutation $w \in S_n$ of cycle type μ .

Let $\Lambda = \bigoplus_{n \ge 0} \Lambda_n$ be the ring of symmetric functions in an infinite variable set $(x_1, x_2, ...)$. Bases of Λ are indexed by partitions; we use the Schur basis $\{s_{\lambda}\}$ and power sum basis $\{p_{\lambda}\}$. The basis p_{λ} is *multiplicative*: if $\lambda = (\lambda_1, \lambda_2, ...)$ then $p_{\lambda} = p_{\lambda_1} p_{\lambda_2} \cdots$. The transition matrix from the Schur to the power sum basis encodes the character table of S_n ; for $\lambda \vdash n$ we have

$$s_{\lambda} = \sum_{\mu \vdash n} \frac{\chi_{\mu}^{\lambda}}{z_{\mu}} p_{\mu}.$$

^{*} Corresponding author.

Let $\langle -, - \rangle$ be the *Hall inner product* on Λ with respect to which the Schur basis $\{s_{\lambda}\}$ is orthonormal. The power sums are orthogonal with respect to this inner product. We have $\langle p_{\lambda}, p_{\mu} \rangle = z_{\lambda} \cdot \delta_{\lambda,\mu}$ where δ is the Kronecker delta.

Write $R = \bigoplus_{n \ge 0} R_n$ where R_n is the space of class functions $\varphi : S_n \to \mathbb{C}$. The *characteristic map* $ch_n : R_n \to \Lambda_n$ is given by $ch_n(\varphi) = \frac{1}{n!} \sum_{w \in S_n} \varphi(w) \cdot p_{cyc(w)}$ where $cyc(w) \vdash n$ is the cycle type of $w \in S_n$. The map $ch = \bigoplus_{n \ge 0} ch_n$ is a linear isomorphism $R \to \Lambda$. The space R has an *induction product* given by $\varphi \circ \psi := Ind_{S_n \times S_m}^{S_{n+m}}(\varphi \otimes \psi)$ for all $\varphi \in R_n$ and $\psi \in R_m$. Under this product, the map $ch : R \to \Lambda$ becomes a ring isomorphism. We record two properties of ch.

- We have $ch(\chi^{\lambda}) = s_{\lambda}$, so that ch sends the irreducible character basis of *R* to the Schur basis of Λ .
- If $\varphi : S_n \to \mathbb{C}$ is any class function and $\mu \vdash n$, then

$$ch(\varphi), p_{\mu}\rangle = value of \varphi on a permutation of cycle type \mu.$$
 (2)

Let $\psi^d : \Lambda \to \Lambda$ be the map $\psi^d : F(x_1, x_2, ...) \mapsto F(x_1^d, x_2^d, ...)$ which replaces each variable x_i with its d^{th} power x_i^d . The symmetric function $\psi^d(F)$ is the plethysm $p_d[F]$ of F into the power sum p_d . Let $\phi_d : \Lambda \to \Lambda$ be the adjoint of ψ^d characterized by $\langle \psi^d(F), G \rangle = \langle F, \phi_d(G) \rangle$ for all $F, G \in \Lambda$. In this note we apply the operators ψ^d and ϕ_d to character theory; see [6] for an application to the cyclic sieving phenomenon of enumerative combinatorics.

Theorem 1. Let $d \ge 1$ and $\lambda \vdash n$. Consider the chain of subgroups $\Delta(S_n) \subseteq S_n^d \subseteq S_{dn}$ where $S_n^d = S_n \times \cdots \times S_n$ is the *d*-fold self-product of S_n and $\Delta(S_n)$ is the diagonal $\{(w, \ldots, w) : w \in S_n\}$ in S_n^d . Then $\mathbb{H}^d(\chi^{\lambda})$ is the character of the $\Delta(S_n) \cong S_n$ module

$$\operatorname{Res}_{\Delta(S_n)}^{S_{dn}} \left(V^{\lambda} \circ \cdots \circ V^{\lambda} \right)$$
(3)

obtained by restricting the *d*-fold induction product $V^{\lambda} \circ \cdots \circ V^{\lambda} = \operatorname{Ind}_{S_n^d}^{S_{dn}^d}(V^{\lambda} \otimes \cdots \otimes V^{\lambda})$ to $\Delta(S_n)$.

Proof. Let $\lambda, \mu \vdash n$ be two partitions and let $d \ge 1$. By (2) we have the class function value

$$\chi_{\boxplus^{d}(\lambda)}^{\boxplus^{d}(\lambda)} = \left\langle s_{\boxplus^{d}(\lambda)}, p_{\boxplus^{d}(\mu)} \right\rangle = \left\langle s_{\boxplus^{d}(\lambda)}, \psi^{d}\left(p_{\mu}^{d}\right) \right\rangle = \left\langle \phi_{d}\left(s_{\boxplus^{d}(\lambda)}\right), p_{\mu}^{d} \right\rangle.$$
(4)

Littlewood [2, p. 340] proved (see also [1, Equation 13]) that for any partition $v \vdash dm$, with empty d-core, the image $\phi_d(s_v)$ is given by

$$\phi_d(s_v) = \epsilon_d(v) \cdot s_{v^{(1)}} \cdots s_{v^{(d)}}$$
(5)

where $\epsilon_d(v)$ is the *d*-sign of *v* and $(v^{(1)}, \ldots, v^{(d)})$ is the *d*-quotient of *v*. We refer the reader to [1,2] for definitions. In our context we have $\epsilon_d(\boxplus^d(\lambda)) = +1$ (since $\boxplus^d(\lambda)$ admits a *d*-ribbon tiling with only horizontal ribbons) and the *d*-quotient of $\boxplus^d(\lambda)$ is the constant *d*-tuple $(\lambda, \ldots, \lambda)$. Equation (5) reads

$$\phi_d\left(s_{\boxplus^d(\lambda)}\right) = s_\lambda^d. \tag{6}$$

Plugging (6) into (4) gives

$$\chi_{\boxplus^{d}(\mu)}^{\boxplus^{d}(\lambda)} = \left\langle \phi_{d}\left(s_{\boxplus^{d}(\lambda)}\right), p_{\mu}^{d} \right\rangle = \left\langle s_{\lambda}^{d}, p_{\mu}^{d} \right\rangle$$
(7)

which (thanks to (2)) agrees with the trace of $(w, ..., w) \in \Delta(S_n)$ on $V^{\lambda} \circ \cdots \circ V^{\lambda}$ for $w \in S_n$ of cycle type μ .

If $\lambda = (\lambda_1, \lambda_2, ...)$ is a partition, let $d \cdot \lambda = (d\lambda_1, d\lambda_2, ...)$ be the partition obtained by multiplying every part of λ by d. The argument proving Theorem 1 applies to show that for $\lambda \vdash n$, the class function $\chi^{d \cdot \lambda} : S_n \to \mathbb{C}$ given by $(\chi^{d \cdot \lambda})_{\mu} := \chi^{d \cdot \lambda}_{d \cdot \mu}$ is a genuine character (although its module does not have such a nice description). It may be interesting to find other ways to discover characters of S_n embedded inside characters of larger symmetric groups. In closing, we use plethysm to give a quick proof of a character congruence result of Miller [5, Thm. 1]. Miller gave an interesting combinatorial proof of the following theorem by introducing objects called "cascades".

Theorem 2. (Miller) Let $d \ge 1$. For any partitions $\lambda \vdash n$ and $\mu \vdash dn$, we have

$$\chi_{d\cdot\mu}^{\boxplus^d(\lambda)} \equiv 0 \mod d!. \tag{8}$$

Furthermore, suppose λ *,* $v \vdash n$ *with* $d \nmid n$ *. Then*

$$\chi_{d^2 \cdot \nu}^{\boxplus^d(\lambda)} = 0. \tag{9}$$

Proof. Arguing as in the proof of Theorem 1, we have

$$\chi_{d\cdot\mu}^{\boxplus^{d}(\lambda)} = \left\langle s_{\boxplus^{d}(\lambda)}, p_{d\cdot\mu} \right\rangle = \left\langle s_{\boxplus^{d}(\lambda)}, \psi^{d}(p_{\mu}) \right\rangle = \left\langle \phi_{d}\left(s_{\boxplus^{d}(\lambda)}\right), p_{\mu} \right\rangle = \left\langle s_{\lambda}^{d}, p_{\mu} \right\rangle \tag{10}$$

where the last equality used Equation (6). We have $s_{\lambda} = \sum_{\rho \vdash n} \frac{\chi_{\rho}^{*}}{z_{\rho}} p_{\rho}$ so that

$$\chi_{d\cdot\mu}^{\boxplus^d(\lambda)} = \left\langle s_{\lambda}^d, p_{\mu} \right\rangle = \left\langle \left(\sum_{\rho \vdash n} \frac{\chi_{\rho}^{\lambda}}{z_{\rho}} p_{\rho} \right)^d, p_{\mu} \right\rangle.$$
(11)

We expand far right of (11) using the orthogonality of the *p*'s to obtain

$$\left\langle \left(\sum_{\rho \vdash n} \frac{\chi_{\rho}^{\lambda}}{z_{\rho}} p_{\rho}\right)^{d}, p_{\mu} \right\rangle = \sum_{(\mu_{(1)}, \dots, \mu_{(d)})} \frac{z_{\mu}}{z_{\mu_{(1)}} \cdots z_{\mu_{(d)}}} \times \chi_{\mu_{(1)}}^{\lambda} \cdots \chi_{\mu_{(d)}}^{\lambda}$$
(12)

where the sum is over all *d*-tuples $(\mu_{(1)}, ..., \mu_{(d)})$ of partitions of *n* whose multiset of parts equals μ . In particular, (12) is zero unless every part of μ is $\leq n$; we assume this going forward. We want to show that (12) is divisible by *d*!. To show this, we examine what happens when some of the entries in a tuple $(\mu_{(1)}, ..., \mu_{(d)})$ coincide.

Fix a *d*-tuple $(\mu_{(1)}, \ldots, \mu_{(d)})$ of partitions of *n* whose multiset of parts is μ . The ratio of *z*'s in the corresponding term on the RHS of (12) is a product of multinomial coefficients

$$\frac{z_{\mu}}{z_{\mu_{(1)}}\cdots z_{\mu_{(d)}}} = \binom{m_1(\mu)}{m_1(\mu_{(1)}), \dots, m_1(\mu_{(d)})} \cdots \binom{m_n(\mu)}{m_n(\mu_{(1)}), \dots, m_n(\mu_{(d)})}.$$
(13)

Let $\sigma = (\sigma_1, ..., \sigma_r) \vdash d$ be the partition of d obtained by writing the entry multiplicities in the d-tuple $(\mu_{(1)}, ..., \mu_{(d)})$ in weakly decreasing order. For example, if n = 3, d = 5, and our d-tuple of partitions of n is $(\mu_{(1)}, ..., \mu_{(5)}) = ((2, 1), (3), (1, 1, 1), (3), (2, 1))$, then $\sigma = (2, 2, 1)$. Each multinomial coefficient in (13) for which $m_i(\mu) > 0$ is divisible by $\sigma_1! \cdots \sigma_r!$. Since each part of μ is $\leq n$, at least one $m_i(\mu) > 0$ and the whole product (13) of multinomial coefficients is divisible by $\sigma_1! \cdots \sigma_r!$. Thus, the sum of the terms in (12) indexed by rearrangements of $(\mu_{(1)}, ..., \mu_{(d)})$ is divisible by $\binom{d}{\sigma_1! \cdots \sigma_r!} = d!$, so that (12) itself is divisible by d!. This proves the first part of the theorem.

For the second part of the theorem, let $\lambda, v \vdash n$ where $d \nmid n$. Arguing as above, we have

$$\chi_{d^2 \cdot \nu}^{\boxplus^d(\lambda)} = \left\langle \left(\sum_{\rho \vdash n} \frac{\chi_{\rho}^{\lambda}}{z_{\rho}} p_{\rho} \right)^d, p_{d \cdot \nu} \right\rangle.$$
(14)

Since $d \nmid n$, each partition $\rho \vdash n$ appearing in the first argument of the inner product in (14) has at least one part not divisible by *d*. Since the *p*'s are an orthogonal basis of Λ , we see that (14) = 0, proving the second part of the theorem.

Acknowledgements

B. Rhoades is grateful to Alex Miller for many helpful conversations, as well as comments on a draft of this manuscript.

References

- A. Lascoux, B. Lecrec, J.-Y. Thibon, "Ribbon tableaux, Hall–Littlewood symmetric functions, quantum affine algebras, and unipotent varieties", J. Math. Phys. 38 (1997), no. 2, p. 1041-1068.
- [2] D. E. Littlewood, "Modular representations of symmetric groups", Proc. R. Soc. Lond., Ser. A 209 (1951), p. 333-353.
- [3] I. G. Macdonald, Symmetric functions and Hall polynomials, second ed., Oxford Mathematical Monographs, Oxford University Press, 1995.
- [4] A. R. Miller, "Personal communication", 2021.
- [5] _____, "Congruences in character tables of symmetric groups", https://arxiv.org/abs/1908.03741v1, 2019.
- [6] B. Rhoades, "Hall-Littlewood polynomials and fixed point enumeration", Discrete Math. 310 (2010), no. 4, p. 869-876.