
Comptes Rendus

Mathématique

Simon Raulot

Nonexistence of DEC spin fill-ins

Volume 360 (2022), p. 1049-1054

https://doi.org/10.5802/crmath.366

This article is licensed under the
Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour l’édition scientifique ouverte

www.centre-mersenne.org
e-ISSN : 1778-3569

https://doi.org/10.5802/crmath.366
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org


Comptes Rendus
Mathématique
2022, Vol. 360, p. 1049-1054
https://doi.org/10.5802/crmath.366

Mathematical physics / Physique mathématique
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Abstract. In this note, we show that a closed spin Riemannian manifold does not admit a spin fill-in satisfying
the dominant energy condition (DEC) if a certain generalized mean curvature function is point-wise large.

Résumé. Dans cette note, on montre qu’une variété riemannienne fermée munie d’une structure spin
n’admet pas de remplissage spinoriel satisfaisant la condition d’énergie dominante (DEC) si une certaine
fonction, généralisant la courbure moyenne, est suffisamment grande.
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Given a closed n-dimensional Riemannian manifold (Σ,γ), it is a very interesting question
to know whether there exists an (n +1)-dimensional compact Riemannian manifold (Ω, g ) with
nonnegative scalar curvature (NNSC) whose boundary is isometric to (Σ,γ). If so, the Riemannian
manifold is called a fill-in of (Σ,γ) and the set of all such fill-ins, referred to as NNSC fill-ins of
(Σ,γ), is denoted by F (Σ,γ). The problem of the existence of such fill-ins has recently been solved
by Shi, Wang and Wei [13] where it is shown that if Σ is the boundary of an (n +1)-dimensional
compact manifold Ω then, any metric γ on Σ can be extended to a Riemannian metric g on Ω
with positive scalar curvature.

One can also try to find a fill-in whose mean curvature is prescribed by a smooth function H
on Σ. This problem is tightly related to the Bartnik quasi-local mass [2] and a triplet (Σ,γ, H) is
then usually called a Bartnik data.

In [10], Miao proved that if Σ is the boundary of some compact (n +1)-dimensional manifold
Ω, then given any Riemannian metric γ on Σ, there exists a constant H0, depending on γ and Ω,
such that, if minΣ H ≥ H0, there does not exist NNSC fill-ins of (Σ,γ, H). The proof makes use of
the work of Shi, Wang and Wei [13] and of Schoen and Yau’s results on closed manifolds [11, 12].
Such a result is also obtained for fill-ins with a negative scalar curvature lower bound.

This fact was previously demonstrated by Gromov [7] for spin manifolds. More precisely, he
showed that if (Ω, g ) is a NNSC spin fill-in of (Σ,γ, H), then

min
Σ

H ≤ n

Rad(Σ,γ)
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where Rad(Σ,γ) is a constant only depending on (Σ,γ) and known as the hyperspherical radius
of (Σ,γ). The main remark here, which is the key point of our argument, is that the nonexistence
of NNSC spin fill-ins can be obtained by taking another route. Indeed, it can be deduced from
an eigenvalue estimate on the first eigenvalue λ1(Σ,γ) of the Dirac operator of (Σ,γ) proved by
Hijazi, Montiel and Zhang [9] and which states that

min
Σ

H ≤ 2|λ1(Σ,γ)|. (1)

Since λ1(Σ,γ) depends only on Σ, γ and the involved spin structure, the nonexistence of NNSC
spin fill-ins is a direct consequence of (1). This inequality is sharp since round balls in the
Euclidean space satisfy the equality case. Note that a similar result can be deduced for spin fill-ins
with a negative scalar curvature lower bound from [8] as in [7].

In this note, we use the aforementioned observation to generalize this result in the context of
spin fill-ins satisfying the dominant energy condition (DEC). Following [3], a 5-uple (Σ,γ, H ,α,h)
is called a spacetime Bartnik data set if (Σ,γ) is an oriented, closed Riemannian manifold, H and
h are smooth functions on Σ and α is a smooth 1-form on Σ. In this situation, a triplet (Ω, g ,k) is
a fill-in of such a spacetime Bartnik data if

(1) (Ω, g ,k) is a compact initial data set, that is (Ω, g ) is an (n + 1)-dimensional compact
Riemannian manifold with boundary and k is a smooth symmetric (0,2)-tensor field on
Ω,

(2) there exists an isometry f : (Σ,γ) → (∂Ω, g |∂Ω) such that
(a) f ∗Hg = H , where Hg is the mean curvature of ∂Ω in (Ω, g ) with respect to the

outward unit normal ν̃,
(b) f ∗(

k(ν̃, · )T
)=α,

(c) f ∗(
Trg|∂Ω k

)= h.

Here Trg|∂Ω denotes the trace operator on ∂Ω andωT is the tangent part toΣ of a 1-formω defined
along Σ. In the following, we will omit the isometry f in the identification between Σ and ∂Ω.
Then, a fill-in (Ω, g ,k) of (Σ,γ, H ,α,h) satisfies the dominant energy condition, or is a DEC fill-
in, if

µ≥ |J |g
where µ and J are respectively the mass density and the current density defined by

µ= 1

2

(
Rg + (Trg k)2 −|k|2g

)
and

J = divg
(
k − (Trg k)g

)
.

Here Rg and Trg denote respectively the scalar curvature and the trace operator of (Ω, g ). In this
situation, a natural generalization of the mean curvature is given by the function

Hg := Hg −
√
|k(ν̃, · )T |2g + (Trg|∂Ω k)2

which corresponds, for a spacetime Bartnik data, to

H := f ∗Hg = H −
√

|α|2γ+h2. (2)

When Σ is endowed with a spin structure, we will say that (Ω, g ,k) is a DEC spin fill-in of the
spacetime Bartnik data (Σ,γ, H ,α,h) if (Ω, g ,k) is a DEC fill-in and if Ω is a spin manifold which
induces the given spin structure on Σ. We then have the following result.

Theorem 1. Given any Riemannian metric γ on an n-dimensional spin manifold Σ, there exists a
constant H0, depending only on Σ, γ and the spin structure of Σ, such that, if minΣH ≥H0, there
do not exist DEC spin fill-ins of (Σ,γ, H ,α,h).
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This question was tackled by Tsang in [14] where several partial results are proved. We remark
that if k = 0 then α= 0 and h= 0, and the DEC gives the nonnegativity of the scalar curvature so
that a DEC fill-in of (Σ,γ, H) corresponds to a NNSC fill-in. In a same way, if k = cg , c 6= 0, then
α = 0 and h = nc, and the DEC condition implies that the scalar curvature of (Ω, g ) is bounded
from below by a negative constant, namely Rg ≥ −n(n + 1)c2. These remarks imply that our
result covers both of these cases. As mentioned above, the proof is a direct consequence of an
eigenvalue estimate for the first eigenvalue of the Dirac operator of a spacetime Bartnik spin data
which admits a DEC spin fill-in. This lower bound is stated as follow.

Theorem 2. If a spacetime Bartnik spin data (Σ,γ, H ,α,h) admits a DEC spin fill-in (Ω, g ,k) with
H > 0, then the first eigenvalue λ1(Σ,γ) of the Dirac operator of (Σ,γ) satisfies

min
Σ

H ≤ 2|λ1(Σ,γ)|.
One can consider Fspi n(Σ,γ), the set of the DEC spin fill-ins of the Riemannian spin manifold

(Σ,γ) without specifying the data H , α and h. Then Theorem 2 implies that if Fspi n(Σ,γ) 6= ;, it
holds that

sup
(Ω,g ,k)∈Fspi n (Σ,γ)

min
Σ

H ≤ 2|λ1(Σ,γ)| <∞.

The proof of Theorem 2 relies on spin geometry and we refer especially to [4–6] for more details on
this subject. Let us briefly recall what we need here. Since (Ω, g ) is a Riemannian spin manifold,
there exists a smooth Hermitian vector bundle over Ω, the spinor bundle, denoted by SΩ, whose
sections are called spinor fields. The Hermitian scalar product is denoted by 〈 , 〉. Moreover, the
tangent bundle TΩ acts on SΩ by Clifford multiplication X ⊗ψ 7→ c(X )ψ for any tangent vector
fields X and any spinor fieldsψ. On the other hand, the Riemannian Levi-Civita connection∇ lifts
to the so-called spin Levi-Civita connection, also denoted by ∇, and defines a metric covariant
derivative on SΩ that preserves the Clifford multiplication. A quadruplet (SΩ,c,〈 , 〉,∇) which
satisfies the previous assumptions is usually referred to as a Dirac bundle. The Dirac operator
is then the first order elliptic differential operator acting on SΩ defined by D := c ◦∇. The spin
structure on Ω induces, via a choice of an unit normal field to ∂Ω ' Σ, a spin structure on Σ.
This allows to define the extrinsic spinor bundle S/ := SΩ|Σ over Σ on which there exists a Clifford
multiplication c/ and a metric covariant derivative ∇/. The quadruplet (S/,c/,〈 , 〉,∇/) is thus endowed
with a Dirac bundle structure. Similarly, the extrinsic Dirac operator is defined by taking the
Clifford trace of the covariant derivative ∇/ that is D/ := c/ ◦∇/. It is by now well-known that this
operator can be expressed using the Dirac operator DΣ of (Σ,γ) endowed with the induced spin
structure. What is important to us here is that the first nonnegative eigenvalue of the extrinsic
Dirac operator D/ corresponds to |λ1(Σ,γ)|, the absolute value of the first eigenvalue of DΣ and so
it only depends on (Σ,γ) and the spin structure on Σ.

Proof of Theorem 2. Let (Ω, g ,k) be a DEC spin fill-in of the spacetime Bartnik spin data
(Σ,γ, H ,α,h) and consider the modified spin covariant derivatives defined by

∇±
Xψ :=∇Xψ± i

2
c
(
k(X )

)
ψ (3)

for X ∈ Γ(TΩ) andψ ∈ Γ(SΩ). The associated Dirac-type operators given by D± := c ◦∇± are easily
seen to satisfy

D±ψ= Dψ∓ i

2
(Trg k)ψ. (4)

These are first order elliptic differential operators whose formal adjoints, with respect to the L2

scalar product on SΩ, are D∓ as deduced from the following integration by parts formulae∫
Ω
〈D±ψ,ϕ〉dµ=

∫
Ω
〈ψ,D∓ϕ〉dµ−

∫
Σ
〈c(ν)ψ,ϕ〉dσ (5)
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for all smooth spinor fields ψ, ϕ onΩ. Here dµ (resp. dσ) denotes the Riemannian volume (resp.
area) element of (Ω, g ) (resp. (Σ,γ)) and ν is the inner unit normal to Σ in (Ω, g ). In a same way, a
straightforward computation implies that(∇±)∗∇±ψ=−

n+1∑
j=1

∇∓
e j
∇±

e j
ψ (6)

where
(∇±)∗ denote the formal adjoints of the modified connection ∇± and {e1, · · · ,en+1} is a local

g -orthonormal frame of TΩ. In particular, the Stokes formula leads to∫
Ω
〈(∇±)∗∇±ψ,ψ〉dµ=

∫
Ω
|∇±ψ|2dµ+

∫
Σ
〈∇±

νψ,ψ〉dσ. (7)

Then, it follows from the fact that
(
D±)∗ = D∓, from (6) and the classical Schrödinger–

Lichnerowicz formula

D2ψ=∇∗∇ψ+ Rg

4
ψ

that (
D±)∗D±ψ= (∇±)∗∇±ψ+ 1

2

(
µψ± i c(J )ψ

)
(8)

for allψ ∈ Γ(SΩ). This is the (n+1)-dimensional Riemannian counterpart of the formula obtained
by Witten [15] in his proof of the positive energy theorem. Now observe that since the point-wise
symmetric endomorphism J± :=±i c(J ) satisfies

(
J±

)2
ψ= |J |2gψ it holds that

〈J±ψ,ψ〉 ≥−|J |g |ψ|2

so that the DEC and (8) imply the point-wise inequalities

〈(D±)∗D±ψ,ψ〉 ≥ 〈(∇±)∗∇±ψ,ψ〉
for all ψ ∈ Γ(SΩ). Now integrating by parts these estimates on Ω using (5) and (7) leads to the
following important integral inequalities∫

Ω

(
|∇±ψ|2 −|D±ψ|2

)
dµ≤−

∫
Σ
〈∇±

νψ+ c(ν)D±ψ,ψ〉dσ. (9)

From the very definitions (3) and (4) of the modified covariant derivatives and the associated
Dirac operators, we compute that

−∇±
νψ− c(ν)D±ψ= D/ψ− 1

2

(
Hψ∓ i c(V )ψ

)
(10)

where
V :=α]+hν ∈ Γ(TΩ|Σ)

since (Ω, g ,k) is a fill-in of the data (Σ,γ, H ,α,h). Here ] : T ∗Ω → TΩ denotes the classical
musical isomorphism between the cotangent bundle and the tangent bundle. Observe that
the endomorphisms V ± := ±i c(V ) of S/ is point-wise symmetric with respect to the Hermitian
structure and satisfies (V ±)2ψ= |V |2ψ in such a way that

〈V ±ψ,ψ〉 ≥−|V |g |ψ|2 =−
√
h2 +|α|2γ |ψ|2 (11)

for all ψ ∈ Γ(S/). Combining (9), (10) and (11) yields the following integral inequalities∫
Ω

(
|∇±ψ|2 −|D±ψ|2

)
dµ≤

∫
Σ
〈D/ψ− 1

2
Hψ,ψ〉dσ. (12)

which hold for all ψ ∈ Γ(SΩ) and where H is the generalized mean curvature function defined
in (2).

Now we are going to show that one can extend any spinor fields onΣ in a suitable way. For this,
we recall that the mapχ := i c(ν) is a boundary chirality operator (in the sense of [1, Example 7.26])
and so it is an orthogonal involution of S/ which induces an orthogonal splitting S/ = S/+ ⊕ S/−

into the eigenbundles of χ for the eigenvalues ±1. The associated projection maps P± : S/ → S/±
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define elliptic local boundary conditions for the Dirac-type operators D± (see [1, Corollary 7.23]
for example). This implies that the operators

D+
± :

{
ψ ∈ H 1(SΩ)/P±ψ|Σ = 0

}−→ L2(SΩ)

are of Fredholm type and that if Φ ∈ Γ(SΩ) and Ψ ∈ Γ(S/) are smooth spinor fields, any solutions
ψ ∈ Γ(SΩ) of the boundary problem {

D+ψ=Φ onΩ

P±ψ|Σ = P±Ψ on Σ
(13)

are smooth. The same holds for the operators D−
±. It turns out that these operators are isomor-

phisms. To prove this fact, we notice that it is enough to show that D+
± and D−

± are one-to-one
since it follows from the integration by parts formulae (5) that the adjoint of D+

± is D−
∓. So take

ψ±, non trivial, in the kernel of D+
±, that is ψ± ∈ Γ(SΩ) satisfies (13) with Φ= 0 and Ψ= 0. In par-

ticular, ψ± is smooth on Ω. On the other hand, from the self-adjointness of the Dirac operator D/
and the fact that D/χ=−χD/, we get that∫

Σ
〈D/ψ,ψ〉dσ= 2

∫
Σ

Re〈D/(P±ψ),P∓ψ〉dσ (14)

for all ψ ∈ Γ(SΩ). Using this formula for ψ=ψ±, we deduce from (12) that

0 ≤
∫
Ω
|∇±ψ±|2dµ≤−1

2
min
Σ

H

∫
Σ
|ψ±|2dσ.

Since we assumed that H is positive on Σ, we conclude that ψ± is zero on Σ and ∇±ψ± = 0. This
leads to a contradiction since this last property implies that ψ± is nowhere vanishing on Ω. The
same holds for D−

±.
Now takeΨ1 ∈ Γ(S/) an eigenspinor for the operator D/ associated with the eigenvalue |λ1(Σ,γ)|.

From the previous discussion, there exists an unique smooth solution ϕ ∈ Γ(SΩ) satisfying{
D+ϕ= 0 onΩ

P+ϕ|Σ = P+Ψ1 on Σ.

Taking ψ=ϕ in (12) and using the fact that

2Re〈P−Ψ1,P−ϕ〉 ≤ |P−Ψ1|2 +|P−ϕ|2,

finally lead to

0 ≤
(
|λ1(Σ,γ)|− 1

2
min
Σ

H
)∫
Σ
|ϕ|2dσ

which implies the estimate of Theorem 2. To get this last inequality, we implicitly used the fact
that

|λ1(Σ,γ)|
∫
Σ
|P−Ψ1|2dσ=

∫
Σ
〈D/(P+ϕ),P−Ψ1〉dσ

=
∫
Σ
〈P+ϕ,D/(P−Ψ1)〉dσ

=
∫
Σ
〈P+ϕ,P+(D/Ψ1)〉dσ

= |λ1(Σ,γ)|
∫
Σ
|P+ϕ|2dσ

which follows from the identity (14) and the self-adjointness of D/. �

We conclude this note by noticing that this method can be generalized to other situations (like
the Einstein–Maxwell equations with nonpositive cosmological constant).
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