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perturbation and operator convexity.
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1. Introduction

Let (X ,Y ) be a random vector in Rd ×R with distribution P . We consider the problem of random-
design regression, namely prediction of Y by linear functions of X . (This setting also allows to
consider nonlinear functions of general covariates X ′, taking values in a measurable space X ′,
by letting X = Φ(X ′) for some feature map Φ : X ′ → Rd .) Specifically, the prediction error of
a regression parameter θ ∈ Rd is defined by its risk L(θ) = E[(Y − 〈θ, X 〉)2], where 〈θ, x〉 = θ>x
is the standard scalar product on Rd . In the statistical setting, the true distribution P , and
in particular the (population) risk L : Rd → R+ and its minimizer θ∗ = argminθ∈Rd L(θ), are
unknown. The aim is then, given a random independent and identically distributed (i.i.d.) sample
(X1,Y1), . . . , (Xn ,Yn) from P , to find a good parameter θ̂, as measured by its excess risk

E (θ̂) = L(θ̂)−L(θ∗) . (1)

A popular approach to this problem is the method of regularized least squares (also called
empirical risk minimization), where the estimator θ̂minimizes the sum of an empirical error term
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and a regularization term favoring some structure on the parameter. In this note, we consider the
classical ridge estimator [14, 35], defined for λ> 0 by

θ̂λ := argminθ∈Rd

[
1

n

n∑
i=1

(Yi −〈θ, Xi 〉)2 +λ‖θ‖2
]
= (Σ̂n +λ)−1 · 1

n

n∑
i=1

Yi Xi , (2)

where ‖θ‖ := 〈θ,θ〉1/2 is the Euclidean norm and Σ̂n := n−1 ∑n
i=1 Xi X >

i is the empirical covariance
matrix. While this estimator is well-studied (see Section 3), our aim here is to present a short and
elementary analysis of its performance. In particular, the analysis presented here does not rely
on matrix concentration [1, 27, 30, 36] or uniform deviation bounds for empirical processes [4,
17,23], but rather on a combination of exchangeability and matrix convexity arguments. It draws
inspiration from an analysis of [26] in the context of conditional density estimation. Our main
error estimate is provided in Theorem 7 below.

Notation. Given a d ×d matrix A, we denote by Tr(A) its trace and ‖A‖op its operator norm. The
d ×d identity matrix is denoted Id , or simply I ; for λ ∈ R, we denote A +λ= A +λI . The symbol
4 denotes the standard order on symmetric matrices: A 4 B means that 〈Av, v〉6 〈B v, v〉 for all
v ∈ Rd .

2. Risk analysis of ridge regression

Assumptions.

The analysis requires two assumptions on the joint distribution P of (X ,Y ), the first one on the
distribution of the error Y −〈θ∗, X 〉, and the second one on the distribution of X .

Assumption 1. There exist θ∗ ∈ Rd and σ> 0 such that

E[Y |X ] = 〈θ∗, X 〉, and Var(Y |X )6σ2. (3)

The first condition in Assumption 1 states that the linear model is well-specified, in the sense
that the true regression function x 7→ E[Y |X = x] is linear. This condition is standard, although
restrictive when the dimension d is low. On the other hand, the guarantees we consider do not
explicit depend on the dimension d , and extend with minor changes in notation to the case
where Rd is replaced by an infinite-dimensional Hilbert space. This allows to handle the case of
reproducing kernel Hilbert spaces [2] (such as certain Sobolev spaces), for which ridge regression
is a classical estimator [33,41]. When considering a “universal” kernel, the corresponding Hilbert
space is dense in the space L2(PX ) of square-integrable functions of X [33], in which case the
well-specified assumption is considerably less restrictive. The main issue is then the dependence
of the bound on θ∗. In this respect, the bound of Theorem 7 will only depend on θ∗ through
the approximation properties of balls of the Hilbert space. Finally, the second condition in
Assumption 1 is a bound on the conditional variance of Y given X , which controls the amount
of noise. It holds for instance if Y is bounded, or if the error Y −〈θ∗, X 〉 is independent of X with
finite variance.

Assumption 2. There exists a constant R > 0 such that ‖X ‖6R almost surely.

The boundedness assumption 2 is classical in the context of ridge regression. This condition
is automatically satisfied, for instance, in the case where X is the feature associated to a bounded
reproducing kernel Hilbert space [33]. Assumption 2 implies in particular that the covariance
matrix Σ= E[X X >] of X is well-defined and satisfies Tr(Σ) = E‖X ‖26R2.
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Risk analysis of ridge regression.

The proof hinges on two main lemmas. Before presenting them, we start with a classical bias-
variance decomposition.

Lemma 3 (Error decomposition). Under Assumptions 1 and 2, we have for every λ> 0,

E[E (θ̂λ)]6λ2E[〈(Σ̂n +λ)−1Σ(Σ̂n +λ)−1θ∗,θ∗〉]+ σ2

n
·E[Tr{(Σ̂n +λ)−1Σ}] . (4)

Proof. Let Y = 〈θ∗, X 〉+ε, so that E[ε|X ] = 0 and E[ε2|X ]6σ2 almost surely. Then,

θ̂λ = (Σ̂n +λ)−1 1

n

n∑
i=1

Yi Xi = (Σ̂n +λ)−1Σ̂nθ
∗+ (Σ̂n +λ)−1 1

n

n∑
i=1

εi Xi ,

so that

θ̂λ−θ∗ =−λ(Σ̂n +λ)−1θ∗+ (Σ̂n +λ)−1 1

n

n∑
i=1

εi Xi .

Moreover, it is standard (by Pythagoras’ theorem in L2) that E (θ̂λ) = ‖θ̂λ − θ∗‖2
Σ, where ‖v‖2

Σ =
〈Σv, v〉 for all v ∈ Rd . Since E[εi |X1, . . . , Xn] = 0 and E[ε2

i |X1, . . . , Xn]6σ2, then

E[E (θ̂λ)] = E[‖θ̂λ−θ∗‖2
Σ]

=λ2E‖(Σ̂n +λ)−1θ∗‖2
Σ+

1

n2 E

[ n∑
i=1

‖(Σ̂n +λ)−1εi Xi‖2
Σ

]
6λ2E‖(Σ̂n +λ)−1θ∗‖2

Σ+
σ2

n2 E

[ n∑
i=1

Tr{Σ(Σ̂n +λ)−1Xi X >
i (Σ̂n +λ)−1}

]
=λ2E[〈(Σ̂n +λ)−1Σ(Σ̂n +λ)−1θ∗,θ∗〉]+ σ2

n
E[Tr{(Σ̂n +λ)−1Σ̂n(Σ̂n +λ)−1Σ}].

The bound (4) ensues by further bounding (Σ̂n +λ)−1Σ̂n(Σ̂n +λ)−1 4 (Σ̂n +λ)−1, and using that
Tr(AΣ)6Tr(BΣ) for symmetric matrices A,B since Σ is positive semi-definite. �

Lemma 3 shows the main quantities that need to be controlled in the random-design setting.
The first term in (4) is a bias term, due to the use of a regularization favoring solutions with
small norm. The second one is a variance term due to the presence of errors εi = Yi −〈θ∗, Xi 〉.
Both terms depend on the (random) sample covariance matrix Σ̂n , as well as the population
covariance matrix Σ. The fact that both of these matrices appear comes from the fact that, in
the random-design/statistical learning setting, one is interested in making a prediction at a new
point X , rather than at the points X1, . . . , Xn in the sample.

In order to argue that the sample covariance matrix Σ̂n is “close” to Σ in a suitable sense and
deduce an explicit error bound, some assumption on the distribution of X is needed. This is
where Assumption 2 is used. Under this assumption, one can apply Rudelson’s inequality for
sample covariance matrices [30]; this is the approach adopted, for instance, in [7, 15]. Rudelson’s
inequality, a consequence of the non-commutative Khintchine inequality of [22], is however a
non-trivial result, despite subsequent simplifications to its proof [1, 27, 36]. In addition, matrix
concentration through Rudelson’s inequality introduces an additional logarithmic term [36, 39].

In what follows, we present an alternative approach to controlling the random matrix terms in
the right-hand side of (4), which only uses short and elementary arguments. The proof relies on a
combination of exchangeability, matrix perturbation and operator convexity. It draws inspiration
from an analysis of [26], where similar arguments were used in the context of conditional density
estimation and logistic regression.

Lemma 4. Under Assumption 2, we have that for every λ> 0,

Tr[(Σ+λI )−1Σ]6 ETr[(Σ̂n +λI )−1Σ]6
(
1+ R2

λn

)
·Tr[(Σ+λI )−1Σ] . (5)
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Proof. The lower bound comes from convexity of A 7→ Tr(A−1Σ) over positive matrices (see
Lemma 8 below) and Jensen’s inequality. Let us now prove the upper bound. We start by writing:

E
[

Tr((Σ̂n +λI )−1Σ)
]= nE

[〈(nΣ̂n +λnI )−1Xn+1, Xn+1〉
]

,

where Xn+1 is a random variable distributed as X and independent of X1, . . . , Xn . Now, the
Sherman–Morrison identity (10) with S = nΣ̂n +λnI and v = Xn+1 shows that

〈(nΣ̂n +λnI )−1Xn+1, Xn+1〉
= (

1+n−1〈(Σ̂n +λI )−1Xn+1, Xn+1〉
)〈(nΣ̂n +Xn+1X >

n+1 +λnI )−1Xn+1, Xn+1〉

6
(
1+ R2

λn

)〈(
(n +1)Σ̂n+1 +λnI

)−1Xn+1, Xn+1
〉

where Σ̂n+1 = (n + 1)−1 ∑n+1
i=1 Xi X >

i , and where we used that, by Assumption 2, 〈(Σ̂n +
λI )−1Xn+1, Xn+1〉6 ‖Xn+1‖2/λ6R2/λ. It follows that

E
[

Tr((Σ̂n +λI )−1Σ)
]
6 n

(
1+ R2

λn

)
E[〈((n +1)Σ̂n+1 +λnI )−1Xn+1, Xn+1〉]

= n

(
1+ R2

λn

)
· 1

n +1

n+1∑
i=1

E[Tr{((n +1)Σ̂n+1 +λnI )−1Xi X >
i }] (6)

=
(
1+ R2

λn

)
·E[Tr{((1+1/n)Σ̂n+1 +λI )−1Σ̂n+1}]

6
(
1+ R2

λn

)
E[Tr{(Σ̂n+1 +λI )−1Σ̂n+1}]

6
(
1+ R2

λn

)
Tr[(Σ+λI )−1Σ] (7)

where (6) follows from exchangeability of (X1, . . . , Xn+1), while (7) follows from concavity of the
map A 7→ Tr[(A+λI )−1 A] over positive matrices (by Lemma 8). �

Next, we turn to controlling the bias term in Lemma 5 below. The proof follows a similar recipe
as that of Lemma 4.

Lemma 5. Under Assumption 2, we have that for every λ> 0,

E[(Σ̂n +λ)−1Σ(Σ̂n +λ)−1]4
(
1+ R2

λn

)2

λ−1(Σ+λ)−1Σ . (8)

Proof. Similarly to the proof of Lemma 4, we start by writing:

E[(Σ̂n +λ)−1Σ(Σ̂n +λ)−1] = n2E[(nΣ̂n +λn)−1Xn+1X >
n+1(nΣ̂n +λn)−1] .

Next, the Sherman–Morrison identity (10) applied to S = nΣ̂n +λn and v = Xn+1 implies that

(nΣ̂n +λn)−1Xn+1X >
n+1(nΣ̂n +λn)−1

= (1+〈(nΣ̂n +λn)−1Xn+1, Xn+1〉)2(nΣ̂n +λn +Xn+1X >
n+1)−1Xn+1X >

n+1(nΣ̂n +λn +Xn+1X >
n+1)−1

4
(
1+ R2

λn

)2
(n +1)−2(Σ̂n+1 +λ′)−1Xn+1X >

n+1(Σ̂n+1 +λ′)−1
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with λ′ = λn/(n + 1), where we used that 〈(Σ̂n + λ)−1Xn+1, Xn+1〉 6 R2/λ. It follows that, by
exchangeability of (X1, . . . , Xn+1),

E[(Σ̂n +λ)−1Σ(Σ̂n +λ)−1] = n2E[(nΣ̂n +λn)−1Xn+1X >
n+1(nΣ̂n +λn)−1]

4
(
1+ R2

λn

)2 n2

(n +1)2 E
[

(Σ̂n+1 +λ′)−1Xn+1X >
n+1(Σ̂n+1 +λ′)−1

]
=

(
1+ R2

λn

)2 n2

(n +1)2

1

n +1

n+1∑
j=1

E
[

(Σ̂n+1 +λ′)−1X j X >
j (Σ̂n+1 +λ′)−1

]
=

(
1+ R2

λn

)2 n2

(n +1)2 E
[
(Σ̂n+1 +λ′)−1Σ̂n+1(Σ̂n+1 +λ′)−1]

4
(
1+ R2

λn

)2 n2

(n +1)2λ
′−1E

[
(Σ̂n+1 +λ′)−1Σ̂n+1

]
4

(
1+ R2

λn

)2 n2

(n +1)2λ
′−1(Σ+λ′)−1Σ

where the last inequality follows from operator concavity of x 7→ x(x +λ′)−1 over R+ (a conse-
quence of Lemma 8). Inequality (8) is then obtained after substituting λ′ =λn/(n +1). �

Before deriving the excess risk bound, we express the bias term in a more relatable form.

Lemma 6. For every λ> 0,

λ‖(Σ+λ)−1/2Σ1/2θ∗‖2 = inf
θ∈Rd

{
L(θ)+λ‖θ‖2}−L(θ∗) .

Proof. Letting θλ = (Σ+λ)−1Σθ∗, direct computations show that:

inf
θ∈Rd

{
L(θ)+λ‖θ‖2}−L(θ∗) = ‖θλ−θ∗‖2

Σ+λ‖θλ‖2

=λ2‖Σ1/2(Σ+λ)−1θ∗‖2 +λ‖(Σ+λ)−1Σθ∗‖2

= 〈(
λ2(Σ+λ)−2Σ+λ(Σ+λ)−2Σ2)θ∗,θ∗

〉
= 〈

λ(Σ+λ)−1Σθ∗,θ∗
〉

=λ‖(Σ+λ)−1/2Σ1/2θ∗‖2 . �

Finally, plugging Lemmas 4, 5 and 6 (the first for the variance term, the last two for the bias
term) into the decomposition of Lemma 3, we obtain the following excess risk bound.

Theorem 7. Under Assumptions 1 and 2, we have for every λ> 0,

E[E (θ̂λ)]6
(
1+ R2

λn

)2

inf
θ∈Rd

{
L(θ)+λ‖θ‖2 −L(θ∗)

}+(
1+ R2

λn

)
σ2 Tr[(Σ+λ)−1Σ]

n
. (9)

3. Discussion

Comments on the bound (9).

For λ> cR2/n, the bound (9) is at most

C ·
(

inf
θ∈Rd

{
L(θ)+λ‖θ‖2 −L(θ∗)

}+ σ2 Tr[(Σ+λ)−1Σ]

n

)
,

where c,C are constants. In addition, the first term above is at most λ‖θ∗‖2 (take θ = θ∗ instead
of infθ). A bound in finite dimension can be deduced by letting λ ³ R2/n and bounding dλ :=
Tr[(Σ+λ)−1Σ]6 d , which yields a O((σ2d +R2‖θ∗‖2)/n) bound.
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Both the variance and the bias term in (9) are distribution-dependent; they depend, respec-
tively, on the spectrum of Σ (through the effective dimension dλ = Tr[(Σ+λ)−1Σ]) and on the
approximation properties of Euclidean balls of Rd .

As shown in the lower bound of Lemma 4, the upper bound on the variance term from the
decomposition of Lemma 3 is sharp up to universal constants in the regime n & R2/λ. We note
that the variance term from Lemma 4 is itself only an upper bound on the actual variance (after
bounding (Σ̂n + λ)−1Σ̂n 4 I ), though it is generally of the correct order (an exception is the
“interpolation” regime [5], where λ is very small or equal to 0 and n ¿ d). For instance, under
the “nonparametric” regime d À n and under a polynomial decay of eigenvalues of Σ, namely
if Tr(Σ1/b)6 B for some b > 1 and B > 0, then dλ 6 2Bλ−1/b and this gives the optimal variance
under this assumption [7].

The bound on the bias term is somewhat less accurate (in particular, there is no matching
lower bound in Lemma 5), though still of correct order in some relevant regimes. Ideally, one may
wish to replace Σ̂n by Σ (at least for n large enough) in the bias term of Lemma 3, leading to a
term of

λ2〈(Σ+λ)−1Σ(Σ+λ)−1θ∗,θ∗〉 = L(θλ)−L(θ∗) ,

where θλ = argminθ∈Rd {L(θ)+λ‖θ‖2} = (Σ+λ)−1Σθ∗. Instead, the bound (9) gives a term L(θλ)−
L(θ∗)+λ‖θλ‖2, with an additional λ‖θλ‖2 component. Roughly speaking, this extra term dom-
inates L(θλ)− L(θ∗) when θ∗ is highly aligned with the leading eigenvectors of Σ. Similarly to
the variance term, a simple way to assess this bound is to consider the stylized nonparametric
regime, with d large or infinite, and polynomial decay (this time, of coefficients of θ∗ in the basis
of eigenvectors of Σ). Specifically, assume as in [7] that ‖Σ(1−r )/2θ∗‖6 ρ for some r > 0 and ρ > 0;
the parameter r > 0 controls the rate of decay of components of θ∗. One can bound the bias term
as C (ρ)λmin(r,1), while it is known (e.g., from [7]) that the actual bias of ridge can be bounded as
C̃ (ρ)λmin(r,2) under these assumptions1. The bound is therefore of the correct order for 0 < r 6 1,
but suboptimal in the regime r > 1.

Additional comments and references.

A possible approach to analyzing ridge regression is based on viewing it as empirical risk min-
imization and using tools from empirical process theory together with localization and fixed-
point arguments [4, 12, 17, 23], see for instance [18, Example 2 p. 86], [24] and [38] for analyses in
this spirit.

A direct approach is based on matrix concentration [1, 22, 27, 30, 36]. Results in this direction
were first derived in [10] and then refined in a series of works [7, 31, 32, 40]. In particular, optimal
bounds depending on the effective dimension dλ were first derived in [7], see also [6, 15, 34]. In
fact, two-sided matrix concentration is not necessary to control the error, and one-sided lower
bounds on the sample covariance matrix suffice, see [9, 21, 25, 28, 43] for results of this type. In a
different direction, a risk analysis of ridge regression (assuming that X is a sub-Gaussian random
vector, see [19] for matrix concentration results in this case) covering more regimes of choices of
θ∗,Σ,λ,n can be found in [37].

The elementary analysis of ridge regression presented here does not explicitly rely on matrix
concentration (or lower tail) results. The main arguments, namely exchangeability, matrix per-
turbation and matrix convexity, were also used in [26], but for different estimators and for con-
ditional density estimation rather than regression. For ridge regression, an analysis related to the
one presented in this note, based on average stability arguments, is proposed in [38]. Additional

1Different estimators can give better bias terms, see e.g. [6] and references therein.
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relevant works include [13, 20], that use average stability to analyze empirical minimization in
exp-concave statistical learning (with bounds depending on the dimension d). It is worth noting
that, while exchangeability/leave-one-out/average stability arguments typically lead to simple
and direct proofs, a shortcoming of these approaches is that they generally give in-expectation
rather than deviation bounds.

Finally, a precise in-expectation finite-sample analysis of estimators based on stochastic
gradient descent (SGD) can be found in [11] (extending results in [3]), see also [16, 29, 42]
(and references therein) for more information on SGD for least squares. The arguments of [11]
are direct and do not rely on matrix concentration either. This analysis is however specific to
iterative methods such as stochastic gradient descent, and it is unclear whether it applies to ridge
regression.

Appendix A. Operator convexity and Sherman–Morrison’s identity

In this appendix, we provide for the sake of completeness statements and short proofs of facts
used in the proofs of Lemmas 4 and 5.

We start with (operator) convexity of the matrix inverse.

Lemma 8 ([8, Lemma 2.7]). Let S be a symmetric, positive semi-definite matrix. Then, the map

A 7→ Tr(A−1S) ,

defined on the cone of positive-definite matrices, is convex.

Proof. By continuity of the map A 7→ Tr(A−1S) on its domain, it suffices to prove that it is
midpoint-convex. Hence, it suffices to show that, for any positive-definite matrices A,B ,(

A+B

2

)−1

4
A−1 +B−1

2
.

Now, letting C = A−1/2B A−1/2, since(
A+B

2

)−1

= A−1/2
(

I +C

2

)−1

A−1/2

and
A−1 +B−1

2
= A−1/2

(
I +C−1

2

)
A−1/2 ,

it suffices to show that (I +C )−1/2 4 (I +C−1)/2. Up to conjugating with a rotation, one may
assume that C is diagonal. In this case, the desired inequality follows from the convexity of the
(scalar) inverse on R∗+, applied to each entry of the diagonal. �

We also use the following identity involving the inverse of rank-one perturbations of matrices,
which follows from the Sherman–Morrison identity.

Lemma 9. Let S be a positive-definite d ×d matrix, and v ∈ Rd . Then, one has

S−1v = (
1+〈S−1v, v〉)(S + v v>)−1v . (10)

Proof. We recall the Sherman–Morrison identity:

(S + v v>)−1 = S−1 − S−1v v>S−1

1+〈S−1v, v〉 ,

which can be checked by multiplying both sides by S + v v>, and deduce that

(S + v v>)−1v = S−1v − 〈S−1v, v〉
1+〈S−1v, v〉S−1v = S−1v

1+〈S−1v, v〉 . �
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