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Abstract. We prove that there exist two families in M2,M3 of non-Galois covers of the projective line whose
Jacobians trace out Shimura subvarieties of A2,A3. They provide the first two explicit examples of Shimura
subvarieties obtained by means of Jacobians carrying non-trivial endomorphisms not directly induced by
the automorphisms of the curves. We also obtain a new example of a positive dimensional family of special
Pryms in A δ
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1. Introduction

Let Mg be the coarse moduli space of smooth projective genus g curves and Ag be that of
principally polarized g -dimensional abelian varieties. The Torelli map t : Mg → Ag sends the
class [C ] ∈ Mg to the class of the Jacobian variety JC endowed with the polarization induced by
the cup product. By the Torelli theorem, t is injective. Moreover, it is an immersion outside the
hyperelliptic locus (see [25]). For this reason, it is natural to investigate the Zariski closure of the
image t (Mg ), usually referred to as the Torelli locus.

The study of the Torelli locus has been addressed from different perspectives in the literature:
one among them concerns Shimura (often called “special”) subvarieties S ⊆Ag which are gener-
ically contained in it, i.e. S ⊆ t (Mg ) and S ∩ t (Mg ) 6= ;. Shimura varieties are by definition Hodge
loci for the natural variation of Hodge structure on Ag . They are totally geodesic subvarieties of
Ag , i.e. they are images of totally geodesic submanifolds of the Siegel spaceSg ([23]). We focus on
special subvarieties of PEL type. Given Jo ∈Sg , set F := EndQ(A J0 ) = { f ∈ End(Q)2g : J0 f = f J0}.
We have:

Definition 1. The PEL type special subvariety S(F ) is defined as the image in Ag of the connected
component containing J0 of the set {J ∈Sg : F ⊆ EndQ(A J )}.

As the genus g grows, one expects the Torelli embedding to be more and more curved with
respect to the locally symmetric geometry induced by the Siegel space on Ag . In terms of special
varieties, this expectation is formulated as follows.
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Conjecture (Coleman–Oort). For g large enough, there do not exist positive dimensional special
subvarieties of Ag generically contained in the Torelli locus.

Up to genus 7, there are examples of positive dimensional (PEL) special varieties generically
contained in the Torelli locus (see [6, 8–10, 13, 16, 17, 20–22]). They were found by considering
families Z of Galois covers C → C /G and requiring that dimZ = dim(Sym2 H 0(C ,ωC ))G (see
condition (∗) of [9, Theorem 3.9] and of [13, Theorem 3.7]).

In [5], the authors formulated an analogue of the Coleman–Oort conjecture for the Prym loci,
namely they asked if there exist positive dimensional special subvarieties generically contained
in P (Rg ,0) and P (Rg ,2). Further generalizations are discussed in [11], [12], and [14]. As usual,
Rg ,r denotes the moduli space parametrizing double covers π : C ′ → C of genus g curves C
ramified in r ≥ 0 points and P is the corresponding Prym map. This type of problem naturally
arose since the second fundamental form of the Prym map has very similar behaviour to that
of the Torelli map. Many examples of positive dimensional families of (PEL) special Pryms were
found under a certain (again sufficient) numerical condition (condition B of [5], [11], [12], [14],
see Definition 15).

We stress that all these examples of special varieties have been obtained considering families
of Jacobians and Pryms whose automorphisms are induced by those of the underlying curves.

Very little is known about the existence of families of curves whose Jacobians are acted on by
a large ring of endomorphisms not induced by automorphisms of the curves. The first examples
are due to Tautz–Top–Verberkmoes, Mestre, and Brumer. Then Ellenberg generalized these works
(see [7] and the references therein). In particular, for every odd prime number p ≥ 7, he found a
3-dimensional family of curves of genus (p−1)/2 whose endomorphism algebra contains the real
cyclotomic fieldQ(ξp +ξ−1

p ), with ξp
p = 1.

This is our starting point. Indeed, in this note, we provide the first two explicit examples of
special subvarieties of Ag which are generically contained in the Torelli locus and whose Jaco-
bians have extra automorphisms. Our examples occur when g = 2,3 and have dimensions 2, 3,
respectively. Actually, when g = 2,3, we have t (Mg ) = Ag , thus all (infinitely many) special sub-
varieties of Ag are generically contained in the Torelli locus. Furthermore, we know that all of
them are of PEL type, i.e. they are given by the existence of extra automorphisms. But this is only
an abstract approach. Our contribution consists of explicitly writing down two families of curves
whose Jacobians trace out the first two concrete examples.

We exploit the families already studied by Albano and Pirola in [1] to disprove a conjecture of
Xiao on the relative irregularity of a fibration. In details, they are families of cyclic étale covers
of hyperelliptic genus g curves π : C → H := C /〈σ〉 of prime odd degree p. By construction, the
curves C are dihedral covers of P1 and the lift of the hyperelliptic involution of H to C gives an

intermediate quotient C
2:1−−→C0 of genus g (C0) = gC0 = 1

2 (g −1)(p−1). Moreover, the Prym variety
P (C , H) is isomorphic to JC0 × JC0. The curves C0 map p : 1 to P1, but the cover is non-Galois.
Finally, these curves are special in moduli. Indeed the automorphism σ induces a non-trivial
automorphism of JC0 (not preserving the polarization on JC0). It follows that End0(JC0) contains
Fp :=Q(ξp +ξ−1

p ). For details on such covers, we refer to [27].
This construction gives a map

ψ : RH g (p) →MgC0

from the moduli space RH g (p) parametrizing covers π : C → H , to that of curves of genus gC0 .
Our results are the following:

Theorem 2. For g = 2 and p = 5, resp. p = 7, the closure of the image of t◦ψ is the special subvariety
S(F5) ⊂A2, resp. S(F7) ⊂A3, containing it. It has dimension 2, resp. 3.

Corollary 3. The special subvarieties S(F5) ⊂ A2 and S(F7) ⊂ A3 do not arise from Galois covers
C →C /G satisfying the condition (∗).



Irene Spelta 1119

Notice that they are the first two explicit examples of this type, namely they are the first
examples of special subvarieties traced out without using the condition (∗).

There are also interesting consequences on the image in the Prym locus of the families
analysed in Theorem 2. Let A δ

g be the moduli space of g -dimensional abelian varieties with
polarization of type δ. We have the following:

Theorem 4. The Prym varieties of the two families of Theorem 2 yield Shimura subvarieties of A δ
4 ,

resp. A δ
6 , of dimension 2, resp. 3.

Finally, we show that the family with g = 2 and p = 5 does not satisfy the aforementioned
condition B. Therefore, it is not one of the examples found in [14]. In particular, we have the
following

Corollary 5. The condition B of [5], [11], [12], [14] is sufficient, but not necessary, to construct
positive dimensional families of special Pryms.

Acknowledgements
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right time and P. Frediani for her many valuable comments. Moreover, she would like to thank
B. Moonen for a brilliant observation that refined the exposition. Finally, she is indebted to the
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2. Hyperelliptic covers and endomorphisms of Jacobians

In this section, we overview known results concerning cyclic covers of hyperelliptic curves
and their associated Prym varieties. Moreover, we describe the endomorphism algebras of the
Jacobians of the curves occurring in this construction.

Let H be a smooth hyperelliptic genus g curve and π : C → H be an unramified cyclic cover
of odd prime order p. By the general theory of cyclic étale covers, π corresponds to a pair
(H ,L), where L ∈ Pic0(H) satisfies Lp = OH . Let RH g (p) be the coarse moduli space of pairs
(H ,L). We will call such elements hyperelliptic covers. By the Riemann–Hurwitz formula we get
g (C ) = gC = p(g −1)+1. Let us denote by σ a fixed generator of the cyclic group Z/p acting on C .
We borrow from [27] in what follows.

Proposition 6. Let (H ,L) be an element of RH g (p). The hyperelliptic involution of H lifts to an
involution τ on C and the cover C → P1 is Galois with Galois group G = Dp generated by σ and τ
(here Dp stands for the dihedral group of order 2p).

It is well-known that if C → H is an unramified abelian cover of a hyperelliptic curve, than
the hyperelliptic involution lifts to an involution τ on C . In our situation, σ and τ generate the
automorphism group G ∼= Dp of C . This means that we have the following diagram:

C H

C0 :=C /τ P1 ∼=C /Dp .

2:1

p:1

2:1

p:1

(1)

The cover C0
p:1−−→ P1 is non-Galois: over every branch point of H → P1 the map C0

p:1−−→ P1

has 1+ (p − 1)/2 points. One of these points is étale while the others have order 2. The Galois
closure of such a map is C →C0 → P1. By the Riemann–Hurwitz formula, we have g (C0) = gC0 =
(g −1)(p −1)/2.
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Every cover (H ,L) ∈RH g (p) determines an abelian variety P (H ,L) defined as the connected
component containing the origin of the kernel of the Norm map Nm : JC → J H . It has dimension
(g −1)(p −1) and it carries a polarization Ξ, induced by that of JC , of type δ = (1, . . . ,1, p, . . . , p),
with 1 repeated (p −2)(g −1) times and p repeated (g −1) times. Usually, it is referred to as the
Prym variety of the cover C → H . In the case of hyperelliptic covers, we have the following:

Theorem 7 ([27, §6, Lemma, Theorem 1]). There is an isomorphism of polarized abelian varieties

P (H ,L) ∼= JC0 × JC0. (2)

In particular, JC is isogenous to J H × JC0 × JC0.
Furthermore, the endomorphism σ+σ−1 of JC gives a non-trivial endomorphism of JC0 for

p > 3 and σ
p+1

2 + (σ−1)
p+1

2 is an automorphism of JC0 which does not preserve the polarization
on JC0.

Definition 8. Let F be a totally real number field, i.e. F is generated over Q by a root of a
polynomial with integral coefficients, whose roots are all real. A curve X has real multiplication
by F if g (X ) = [F :Q] and if F ,→ End0(J X ).

Corollary 9. When g = (p −1)/2 and p > 3 the curve C0 has real multiplication by Q(ξp + ξ−1
p ),

where ξp
p = 1,ξp 6= 1.

Using Proposition 6, we define the morphism

ψ : RH g (p) →MgC0

which sends the isomorphism class of a cover C → H to the isomorphism class of the associated
quotient curve C0. This is well-defined since any two lifts of the hyperelliptic involution are
conjugated in Aut(C ). As in [1, Remark 2.8], composing with t , we get a map T : RH g (p) →
A(g−1)(p−1) sending (H ,L) to JC0 × JC0 with the product polarization.

On the other hand we can consider the Prym map

P : RH g (p) →A δ
(g−1)(p−1), (H ,L) 7→ (P (H ,L),Ξ). (3)

By Theorem 7, P (H ,L) ∼= JC0 × JC0 and by Torelli Theorem t is injective. Since an abelian variety
has at most a countable number of polarizations, we can observe that the fibres of P have the
same dimension of those of ψ. They were described by the following

Proposition 10 (Albano–Pirola, [1]). The map ψ has finite fibres if and only if p ≥ 7 or p = 5 and
g ≥ 3 or p = 3 and g ≥ 5.

Remark 11. In [1], the authors used Proposition 10 to look for positive dimensional fibres of ψ.
They showed that there are three cases for (g , p) where an irreducible component of the fibre
ψ−1(C0) gives families of curves C (as in diagram (1)) disproving Xiao’s conjecture on the relative
irregularity of a fibration. Actually, the first Xiao fibration, namely the first fibration which violates
Xiao’s conjecture, was constructed by Pirola in [26]. This family is very interesting. Indeed, in [13]
it is shown that it yields a Shimura 3fold in A4 and in [10] that, through its Prym map, it is fibred
in infinitely many totally geodesic curves, countably many of which are Shimura. The families
of [26] and of [1] were also obtained in [15] where the authors study Xiao fibrations considering
Galois covers C → H under less restrictive assumptions (i.e. any degree and any value for r ).

Although we no longer deal with Xiao’s conjecture, the families described in [1] turn out to be
suitable for our purposes. Indeed up to now we have shown that, when p > 3, the construction of
diagram (1) produces families of curves C0 of genus (g −1)(p−1)/2 withQ(ξp +ξ−1

p ) ,→ End0(JC0).
When the fibres of ψ are finite, these families have dimension 2g − 1, i.e. the dimension of

RH g (p). In particular, when g = 2 and p ≥ 7 we recover the 3-dimensional families of curves
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whose Jacobians are acted on by a large ring of endomorphisms found in case 1 of the main
Theorem of [7]. Instead, when the fibres of ψ are positive dimensional, we consider the family
of Albano and Pirola with data g = 2, p = 5 because it has non-trivial endomorphism algebra.
As observed in [1, Proposition 2.7], this family is 2-dimensional. Indeed, we have dimRH 2(5) =
dimM2 = 3. Since, by Theorem 7, JC0 has a non-trivial endomorphism, the curve C0 is not general
in moduli. Therefore the image of ψ, namely the family we are interested in, has dimension at
most 2.

In the next section, we prove that there are two cases where the Jacobians of the curves C0 of
diagram (1) yield special subvarieties of AgC0

generically contained in the Torelli locus. Moreover,
thanks to Theorem 7, we obtain interesting consequences on Prym loci too.

3. Shimura Subvarieties

LetΛ be a rank 2g lattice and Q :Λ×Λ→Z an alternating form of type (1,1, . . . ,1). Let K be a field
withQ⊆ K ⊆C and setΛK :=Λ⊗ZK . Denote by A J the quotientΛR/Λ provided with the complex
structure J and the polarization Q. It yields an element in Ag . As usual, we will interpret Ag as
the orbit space of the action of the symplectic group Sp(Λ,Q) on the Siegel space Sg . There is a
natural variation of rational Hodge structure on Ag : it corresponds to the decomposition of ΛC
into ±i eigenspaces for J .

Definition 12. A Shimura (special) subvariety of S ⊆ Ag is by definition a Hodge locus of the
natural variation of Hodge structure on Ag described above.

As already said, we will focus on special subvarieties of PEL type; the name comes from the fact
that they can be described in terms of abelian varieties with a polarization, given endomorphisms
and a level structure. From Definition 1: fix J0 ∈Sg and set F := EndQ(A J0 ). Then the PEL type
special subvariety S(F ) is the image in Ag of the connected component containing J0 of the
set {J ∈Sg : F ⊆ EndQ(A J )}. To be more precise, one should have to write S J0 (F ). To lighten the
notation, we avoid the subscript: from our context it will be clear which PEL we want to study.

In view of construction (1) and of Corollary 9, it is natural to investigate the subvarieties of
AgC0

which are described by the Jacobians JC0. Our goal is to compare them with the PEL type
special subvarieties S(Fp ) with Fp =Q(ξp +ξ−1

p ), p ≥ 5, in order to verify when they coincide.

Proof of Theorem 2. Let us start with g = 2, p = 5 (precisely with one of the families studied
in [1]). The genus 2 curves C0 have real multiplication by F5 = Q(ξ5 +ξ−1

5 ). Indeed F5 is a totally
real field with e := [F5 :Q] = 2 = gC0 . Let S(F5) be the special subvariety of A2 of PEL type defined
by F5 as in Definition 1. It arises as the quotient of a product of gC0 copies of the Siegel space
SgC0 /e =S1, as shown in [3, Chapter 9, §2]. Therefore

dimS(F5) = gC0 (gC0 +e)

2e
= 2.

Now let X be the closure of the locus of JC0 for C0 varying in the family of Albano and Pirola
with g = 2 and p = 5. Clearly X is an irreducible subvariety of S(F5) (the irreducibility follows
from that of RH g (p) claimed in [1, Proposition 2.7]). Moreover dim X = dimS(F5) = 2 thanks
to [1, Proposition 4.2]. Thus X must coincide with the PEL subvariety of A2 identified by F5. In
particular, it is special.

Now take g = 2, p = 7. In this case we have

F7 =Q(ξ7 +ξ−1
7 ), e = gC0 = 3.

The same computation as in the previous situation gives dimS(F7) = 3. By Proposition 10, ψ
has finite fibres when p = 7. Thus JC0 varies in a 3-dimensional family and so we get the PEL
subvariety of A3 identified by F7. �



1122 Irene Spelta

Proof of Corollary 3. We need to show that the special subvarieties S(F5) and S(F7) are not
obtained using families of Galois covers of P1 satisfying the sufficient condition (∗). In other
words, we need to check that our family (1), resp. (2), is different from those obtained in [9]
and in [13]. Genus and dimension tell us that they may coincide only with family (26), resp.
family (27), of [9]. Family (26) is the bielliptic locus in genus 2 and family (27) is strictly contained
in the bielliptic locus in genus 3. The generic curve of these two families carries a completely
decomposable Jacobian. Using Mumford’s list of non-trivial endomorphism rings of abelian
varieties ([24]) and comparing the endomorphism algebras of families (26), (27) with the ones
of our families (1) and (2), we conclude. �

Remark 13. [4, Theorem 1.1] states that families (26) and (1) are the unique irreducible 2-
dimensional subvarieties of A2 whose generic point has non-trivial endomorphisms, namely
Z( End0(JC ).

Remark 14. For other values of g and p, the image ofψ still produces subvarieties of t (MgC0
). In

these cases, such subvarieties are strictly contained in the special subvarieties of PEL type arising
from the corresponding totally real field Fp = Q(ξp + ξ−1

p ). The same occurs for all the families
constructed in [7, Main Theorem] (except for the one corresponding to our family (2)). This agrees
with the results discussed in [18] for g > 4 and in [2] for g = 4. Together these two works state that
if g ≥ 4 and S ⊆ Ag is a special subvariety of PEL type obtained from a totally real field of degree
g , then S is not generically contained in the Torelli locus. Therefore, letting g and p vary, we
should not expect the existence of other families as (1) and (2) yielding special varieties of PEL
type generically contained in higher genus Torelli locus. Notice that our examples prove that the
bound g ≥ 4 is sharp.

Let us now look at the loci described by the Prym varieties of the two families studied in
Theorem 2, namely at the families of P (C , H) in P (RH g (p)) ⊂A δ

(g−1)(p−1).

Proof of Theorem 4. Just using the isomorphism (2), the families (1) and (2) of Theorem 2
yield two special subvarieties of A δ

4 , resp. A δ
6 (generically contained in P (RH 2(5)), resp.

P (RH 2(7))). These varieties have dimension 2, 3 respectively. �

Let us now interpret families (1) and (2) as Prym data (Dp ,θ,σ) (we borrow the notation
from [5], [11], [12]): Dp is the Galois group acting on C with quotient P1, σ gives the intermediate
quotient C → H = C /〈σ〉 and θ is the monodromy map. Setting V := H 0(C ,ωC ) and letting σ act
on V , we can decompose

V =V+⊕V− where V+ ∼= H 0(C ,ωC )〈σ〉 = H 0(H ,ωH ) and V− ∼=
p−1⊕
i=1

H 0(H ,ωH ⊗Li ).

By [19, Proposition 4.1], the codifferential of the Prym map (3) at a point (H ,L) ∈RH g (p) can be
identified with the composition

Sym2 V−
m−→ H 0(C ,ω⊗2

C ) → H 0(H ,ω⊗2
H ),

where m is the multiplication map while the second map is the projection to the σ−invariant
part.

Actually, we are interested in the restriction of m to Sym2 V 〈σ〉− . Indeed 〈σ〉 ⊆ Aut(JC ) acts on JC
and thus on P (C , H). Therefore the image of P is contained in the locus of (g −1)(p −1)-abelian
varieties with polarization of type δ and with an order p automorphism. Hence the codifferential
of P is given by

m :

(
Sym2

p−1⊕
i=1

H 0(H ,ωH ⊗Li )

)〈σ〉
→ H 0(H ,ω⊗2

H ). (4)
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Theorems 3.2 of [5], [11], [12] use the codifferential of the Prym map to give a sufficient criterion

for a family of Galois covers C
2:1−−→C /〈σ〉→ P1 to yield special subvarieties of A δ

g−1+ r
2

generically

contained in the Prym loci P (Rg ,r ). An analogous statement is provided in case of higher degree
Galois covers C →C /〈σ〉 in [14, Theorem 4.1]. Indeed, all these authors start with a Prym datum
(G ,θ,σ). By the Riemann existence Theorem, it identifies a family of Galois covers C → C ′ :=
C /〈σ〉→C /G ∼=P1 with Galois group G and monodromy θ. Then, considering the corresponding
family of Pryms P (C ,C ′) ∈A δ

gC−gC ′ , they give the following:

Definition 15. A family of Galois covers (G ,θ,σ) is said to satisfy condition B if the codifferential
of the Prym map at the generic point of the family is an isomorphism.

Thus the following is shown.

Theorem 16 ([5, 11, 12, 14]). If condition B holds, then the closure in A δ
gC−gC ′ of the locus of the

Prym varieties P (C ,C ′) of the family (G ,θ,σ) yields a special subvariety generically contained in
the Prym locus.

Hence the authors use this criterion to explicitly construct examples of such special varieties
([5, Theorem 1.3], [11, Theorem 1.1], [12, Theorem 1.1], [14, Table p. 21]).

Since our families (1) and (2) fit in the setting of [5, 11, 12, 14] and yield special varieties, it
seems natural to check if they satisfy or not the aforementioned condition B. Indeed, as already
observed, it is only known to be a sufficient criterion. We have the following:

Proposition 17. The multiplication map (4) of family (1) is not an isomorphism while that of
family (2) is.

Proof. The proof is very easy and follows directly from the fact that the fibres of P have the
same dimension of that of ψ. In case of family (1), i.e. if g = 2, p = 5, ψ has fibres of dimension 1
(see [1, Proposition 4.2]). Therefore

dP ∗ = m : (H 0(H ,ωH ⊗L)⊗H 0(H ,ωH ⊗L4))⊕ (H 0(H ,ωH ⊗L2)⊗H 0(H ,ωH ⊗L3)) → H 0(H ,ω2
H )

cannot be surjective. In case of family (2) we have that dψ is injective and so dP is too (Proposi-
tion 10). Therefore m is surjective. Furthermore dimSym2(V−)〈σ〉 = 3 = dim H 0(H ,ω⊗2

H ), since

Sym2(V−)〈σ〉 = H 0(H ,ωH ⊗L)⊗H 0(H ,ωH ⊗L6)⊕H 0(H ,ωH ⊗L2)⊗H 0(H ,ωH ⊗L5)

⊕H 0(H ,ωH ⊗L3)⊗H 0(H ,ωH ⊗L4)

and h0(H ,ωH ⊗Li ) = 1 for i = 1,2, . . . ,6. Hence we conclude. �

Proof of Corollary 5. It follows from what is stated in Proposition 17 for family (1). �
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