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Abstract. Let p > 3 be a prime, and let ( ·
p ) be the Legendre symbol. Let b ∈ Z and ε ∈ {±1}. We mainly prove

that ∣∣∣∣{Np (a,b) : 1 < a < p and

(
a

p

)
= ε

}∣∣∣∣= 3− ( −1
p )

2
,

where Np (a,b) is the number of positive integers x < p/2 with {x2 +b}p > {ax2 +b}p , and {m}p with m ∈Z is
the least nonnegative residue of m modulo p.
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1. Introduction

The theory of quadratic residues modulo primes plays an important role in fundamental number
theory.

Let p be an odd prime and let a ∈Zwith p - a. By Gauss’ Lemma (cf. [4, p. 52]),(
a

p

)
= (−1)|{16k6 p−1

2 : {ka}p> p
2 }|,

where
( ·

p

)
denotes the Legendre symbol, and we write {x}p for the least nonnegative residue of

an integer x modulo p.

∗Corresponding author.

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.371
http://maths.nju.edu.cn/~zwsun
mailto:qh_hou@tju.edu.cn
mailto:haopan79@zoho.com
mailto:zwsun@nju.edu.cn
https://comptes-rendus.academie-sciences.fr/mathematique/


1066 Qing-Hu Hou, Hao Pan and Zhi-Wei Sun

Let n be any positive odd integer, and let a ∈Z with gcd(a(1−a),n) = 1. In 2020, Z.-W. Sun [6]
proved the following new result:

(−1)|{16k6 n−1
2 : {ka}n>k}| =

(
2a(1−a)

n

)
,

where
( ·

n

)
is the Jacobi symbol.

Let p be an odd prime and let a,b ∈Zwith a(1−a) 6≡ 0 (mod p). By [5, Lemma 2.7], we have

|{x ∈ {0, . . . , p −1} : {ax +b}p > x}| = p −1

2
.

In 2019 Z.-W. Sun [5] employed Galois theory to prove that

(−1)|{16i< j6 p−1
2 : {i 2}p>{ j 2}p }| =

{
1 if p ≡ 3 (mod 8),

(−1)(h(−p)+1)/2 if p ≡ 7 (mod 8),

where h(−p) is the class number of the imaginary quadratic fieldQ(
p−p).

Motivated by the above work, for an odd prime p and integers a and b, we introduce the
notation

Np (a,b) :=
∣∣∣∣{16 x 6

p −1

2
: {x2 +b}p > {ax2 +b}p

}∣∣∣∣ .

Example 1. We have N7(4,0) = 2 since

{12}7 < {4×12}7, {22}7 > {4×22}7 and {32}7 > {4×32}7.

Let p be a prime with p ≡ 1 (mod4). Then q2 ≡−1 (modp) for some integer q , hence for a, x ∈Z
we have {(qx)2}p > {a(qx)2}p if and only if {x2}p < {ax2}p . Thus, for each a = 2, . . . , p −1 there are
exactly (p −1)/4 positive integers x < p/2 such that {x2}p > {ax2}p . Therefore Np (a,0) = (p −1)/4
for all a = 2, . . . , p −1.

In this paper we establish the following novel theorem which was conjectured by the first and
third authors [3] in 2018.

Theorem 2. Let p > 3 be a prime, and let b be any integer. Set

S =
{

Np (a,b) : 1 < a < p and

(
a

p

)
= 1

}
and

T =
{

Np (a,b) : 1 < a < p and

(
a

p

)
=−1

}
.

Then |S| = |T | = 1 if p ≡ 1 (mod 4), and |S| = |T | = 2 if p ≡ 3 (mod 4). Moreover, the set S does not
depend on the value of b.

Example 3. Let’s adopt the notation in Theorem 2. For p = 5, we have S = {1} for any b ∈ Z, and
the set T depends on b as illustrated by the following table:

b 0 1 2 3 4
T {1} {0} {1} {2} {1}

.

For p = 7, we have S = {1,2} for any b ∈Z, and the set T depends on b as illustrated by the following
table:

b 0 1 2 3 4 5 6
T {0,1} {1,2} {2,3} {1,2} {2,3} {1,2} {0,1}

.
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2. Proof of Theorem 2

Lemma 4. For any prime p ≡ 3 (mod 4), we have

p−1∑
z=1

z

(
z

p

)
=−ph(−p),

where h(−p) is the class number of the imaginary quadratic fieldQ(
p−p).

Remark 5. This is a known result of Dirichlet (cf. [1, Corollary 5.3.13]).

Lemma 6. For any prime p ≡ 3 (mod 4) with p > 3, there are x, y, z ∈ {1, . . . , p −1} such that(
x

p

)
=

(
x +1

p

)
= 1, −

(
y

p

)
=

(
y +1

p

)
= 1, and

(
z

p

)
=−

(
z +1

p

)
= 1.

Proof. By a known result (see, e.g., [2, pp. 64–65]), we have∣∣∣∣{x ∈ {1, . . . , p −2} :

(
x

p

)
=

(
x +1

p

)
= 1

}∣∣∣∣= p −3

4
> 0.

Hence∣∣∣∣{y ∈ {1, . . . , p −2} : −
(

y

p

)
=

(
y +1

p

)
= 1

}∣∣∣∣= ∣∣∣∣{y ∈ {1, . . . , p −2} :

(
y +1

p

)
= 1

}∣∣∣∣− p −3

4

= p −1

2
−1− p −3

4
= p −3

4
> 0

and ∣∣∣∣{z ∈ {1, . . . , p −2} :

(
z

p

)
=−

(
z +1

p

)
= 1

}∣∣∣∣= ∣∣∣∣{z ∈ {1, . . . , p −2} :

(
z

p

)
= 1

}∣∣∣∣− p −3

4

= p −1

2
− p −3

4
= p +1

4
> 0.

Now the desired result immediately follows. �

Proof of Theorem 2. Let a ∈ {2, . . . , p −1}. For any x ∈Z, it is easy to see that{
ax2 +b

p

}
+

{
(1−a)x2

p

}
−

{
x2 +b

p

}
=

{
0 if {x2 +b}p > {ax2 +b}p ,

1 if {x2 +b}p < {ax2 +b}p ,

where {α} denotes the fractional part of a real number α. Thus

Np (a,b) =
(p−1)/2∑

x=1

(
1+

{
x2 +b

p

}
−

{
ax2 +b

p

}
−

{
(1−a)x2

p

})
= p −1

2
+

(p−1)/2∑
x=1

{
x2 +b

p

}
−

(p−1)/2∑
x=1

{
ax2 +b

p

}
−

(p−1)/2∑
x=1

{
(1−a)x2

p

}
= p −1

2
+

p−1∑
x=1

( x
p )=1

{
x +b

p

}
−

p−1∑
y=1

( y
p )=( a

p )

{
y +b

p

}
−

p−1∑
z=1

( z
p )=( 1−a

p )

z

p
.

Suppose that ( a
p ) = εwith ε ∈ {±1}. Then

Np (a,b) = p −1

2
+

p−1∑
x=1

( x
p )=1

{
x +b

p

}
−

p−1∑
y=1

( y
p )=ε

{
y +b

p

}
−

p−1∑
z=1

( z
p )=δε

z

p
,

where δ= ( a(1−a)
p

)
.
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If ε= 1, then

Np (a,b) = p −1

2
− 1

p

p−1∑
z=1

( z
p )=δ

z

does not depend on b.
If p ≡ 1 (mod 4), then

(−1
p

)= 1 and hence

p−1∑
z=1

( z
p )=1

z =
p−1∑
z=1

( p−z
p )=1

(p − z) = p
p −1

2
−

p−1∑
z=1

( z
p )=1

z,

thus
p−1∑
z=1

( z
p )=1

z = p
p −1

4

and
p−1∑
z=1

( z
p )=−1

z =
p−1∑
z=1

z −p
p −1

4
= p

p −1

4
.

So, if p ≡ 1 (mod 4), then |S| = |T | = 1, and moreover

S =
{

p −1

2
− p −1

4

}
=

{
p −1

4

}
.

Now assume that p ≡ 3 (mod 4). We want to show that |S| = |T | = 2. By Lemma 4,

p−1∑
z=1

z

(
z

p

)
=−ph(−p) 6= 0.

Thus
p−1∑
z=1

( z
p )=1

z =
p−1∑
z=1

z
1+ ( z

p )

2
= p

p −1

4
− p

2
h(−p)

and hence
p−1∑
z=1

( z
p )=−1

z =
p−1∑
z=1

z −
p−1∑
z=1

( z
p )=1

z = p
p −1

4
+ p

2
h(−p).

By Lemma 6, for some a ∈ {2, . . . , p − 2} we have
( a−1

p

) = ( a
p

) = 1 and hence
( a(1−a)

p

) = −1. For
a′ = p +1−a, we have (

a′

p

)
=−1 and

(
a′(1−a′)

p

)
=

(
(1−a)a

p

)
=−1.

By Lemma 6, for some a∗,b∗ ∈ {2, . . . , p −2} we have

−
(

a∗−1

p

)
=

(
a∗
p

)
= 1 and

(
b∗−1

p

)
=−

(
b∗
p

)
= 1.

Note that (
a∗(1−a∗)

p

)
= 1 =

(
b∗(1−b∗)

p

)
.

Now we clearly have |S| = |T | = 2. Moreover,

S =
{

p −1

2
−

(
p −1

4
± h(−p)

2

)}
=

{
p −1±2h(−p)

4

}
.

The proof of Theorem 2 is now complete. �
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