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Abstract. Let G = NoA, where N is a graded Lie group and A =R+ acts on N via homogeneous dilations. The
quasi-regular representation π = indG

A (1) of G can be realised to act on L2(N ). It is shown that for a class of
analysing vectors the associated wavelet transform defines an isometry from L2(N ) into L2(G) and that the
integral kernel of the corresponding orthogonal projector has polynomial off-diagonal decay. The obtained
reproducing formula is instrumental for obtaining decomposition theorems for function spaces on nilpotent
groups.
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1. Introduction

Let N be a connected, simply connected nilpotent Lie group and let A = R+ act on N via
automorphic dilations. The semi-direct product G = N o A acts unitarily on L2(N ) via the quasi-
regular representation π = indG

A(1) of G . For g ∈ L2(N ), the associated wavelet transform Vg :
L2(N ) → L∞(G) is defined as

Vg f (x, t ) = 〈 f ,π(x, t )g 〉, (x, t ) ∈G .

A vector g ∈ L2(N ) is said to be admissible if Vg is an isometry from L2(N ) into L2(G).
Given an admissible vector g ∈ L2(N ), the orthogonal projector P from L2(G) onto the closed

subspace Vg (L2(N )) ⊂ L2(G) is given by right convolution P (F ) = F∗Vg g . In particular, an element
F ∈Vg (L2(N )), i.e., F =Vg f for some f ∈ L2(N ), satisfies the reproducing formula

Vg f =Vg f ∗Vg g . (1)

The existence of admissible vectors for irreducible, square-integrable representations π is auto-
matic by the orthogonality relations [10], but a non-trivial problem for reducible representations.
For N = Rd and general dilation groups A ≤ GL(d ,R), the admissibility of quasi-regular repre-
sentations is well-studied, see, e.g. [2, 20, 34] and the references therein. For non-commutative
groups N , the admissibility problem is considered in, e.g. [7, 9, 19, 37].
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This note is concerned with admissible vectors that are also integrable: A vector g ∈ L2(N ) is
said to be integrable if ∆−1/2

G Vg g ∈ L1(G), where ∆G : G →R+ denotes the modular function on G .
The significance of integrably admissible vectors is that F :=∆−1/2

G Vg g forms a projection in L1(G)

by (1), that is, F = F ∗F = F∗, with F∗ :=∆−1
G F (·−1).

The construction of projections in L1(G) arising from matrix coefficients is an ongoing re-
search topic, and such projections provide (if they exist) a powerful tool for studying problems in
non-commutative harmonic analysis. Among others, they play a vital role in the theory of atomic
decompositions in Banach spaces [12, 27].

For the affine group G =RoR+, the construction of projections in L1(G) goes back to [11]. The
papers [8, 28, 32] consider groups G = Rd o A and provide criteria for the explicit construction
of projections in L1(G) based on the dual action of A on Rd ; see also [21, 23]. The techniques
of [28, 32] were used in [40] for the Heisenberg group N = H1 acted upon by automorphic
dilations. For a stratified group N with canonical dilations, the existence of smooth admissible
vectors was investigated in [25], although not linked to integrability.

The main concern of this note is the integrability of π = indNoA
A when N is a (possibly, non-

stratified) graded Lie group. The main result obtained is the following:

Theorem 1. Let G = N o A, where N is a graded Lie group and A =R+ acts on N via automorphic
dilations. The quasi-regular representation π = indG

A(1) admits integrably admissible vectors, i.e.,
there exist vectors g ∈ L2(N ) satisfying ∆−1/2

G Vg g ∈ L1(G) and∫
G
|〈 f ,π(x, t )g 〉|2 dµG (x, t ) = ‖ f ‖2

2, for all f ∈ L2(N ).

The integrably admissible vector g can be chosen to be Schwartz with all moments vanishing, in
which case Vg g ∈ L1

w (G) for any polynomially bounded weight w : G → [1,∞).

Admissible vectors that are Schwartz with all vanishing moments are known to exist already
for stratified Lie groups [25, Corollary 1]. Theorem 1 provides a modest extension of this result
to general graded Lie groups, and complements it with integrability properties of the associated
matrix coefficients. More explicit (point-wise) localisation estimates for the matrix coefficients
on homogeneous groups are also obtained; see Section 3 below for details.

The proof method for Theorem 1 resembles the construction of Littlewood–Paley functions
and Calderón-type reproducing formulae. Most techniques can already be found in some an-
tecedent form in [17] as pointed out throughout the text. Particular use is made of the (non-
stratified) Taylor inequality and Hulanicki’s theorem for Rockland operators. The use of a Rock-
land operator instead of a sub-Laplacian is essential for the proof method as the latter are no
longer always homogeneous for non-stratified groups. The exploitation of homogeneity is the
reason that the strategy fails for non-graded homogeneous groups (see Remark 8).

The motivation for Theorem 1 stems from the study of function spaces, and is twofold:
(i) The question whether there exist vectors yielding a reproducing kernel with suitable off-

diagonal decay on homogeneous groups was posed in [27, Remark 6.6(a)], where it was men-
tioned that this is a representation-theoretic problem rather than one of function spaces. The
use of such vectors for function space theory, however, is due to the fact that the techniques [27]
yield frames and atomic decompositions for Besov–Triebel–Lizorkin spaces. The same holds true
for the recent sampling theorems in [38]. The admissible vectors provided by Theorem 1 satisfy
the integrability conditions assumed in [27, 38] (see Section 3.3), and Theorem 1 solves the prob-
lem mentioned in [27, Remark 6.6(a)] for graded Lie groups.

(ii) The differentiability properties of functions in terms of Banach spaces are well-studied
on stratified Lie groups for several classes of spaces, including Lipschitz spaces [16, 33], Sobolev
spaces [15, 39], Besov spaces [6, 22, 39] and Triebel–Lizorkin spaces [17, 30]. More recently,
there has been an interest in such spaces on possibly non-stratified graded Lie groups, see,
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e.g. [1,3,5,14]. This was a motivation to obtain Theorem 1 for graded groups, as it allows to apply
the techniques [27,38] discussed in (i) to these new classes of spaces. Moreover, even for stratified
groups, the integrability properties provided by Theorem 1 allow to apply the techniques [38] and
bridge a gap between what has been established on the locality of the sampling expansions for
stratified groups in [6, 22, 25, 27] and for the classical setting N = Rd in [18, 26]; see [26, 38] for
more details on the discrepancy between [27] and [18, 26, 38].

The details on the applications of Theorem 1 to various functional spaces are beyond the scope
of the present paper, and will be deferred to subsequent work.

Notation

The open and closed positive half-lines in R are denoted by R+ = (0,∞) and R+
0 = [0,∞),

respectively. For functions f1, f2 : X → R+
0 , it is written f1 . f2 if there exists a constant C > 0

such that f1(x) ≤C f2(x) for all x ∈ X . The space of smooth functions on a Lie group G is denoted
by C∞(G) and the space of test functions by C∞

c (G).

2. Preliminaries on homogeneous Lie groups

This section provides background on homogeneous groups. Standard references for the theory
are the books [13, 17].

2.1. Dilations

Let n be a real d-dimensional Lie algebra. A family of dilations on n is a one-parameter family
{D t }t>0 of automorphisms D t : n → n of the form D t := exp(A ln t ), where A : n → n is a
diagonalisable linear map with positive eigenvalues v1, . . . , vd . If a Lie algebra n is endowed with
a family of dilations, then it is nilpotent.

A homogeneous group is a connected, simply connected nilpotent Lie group N whose Lie
algebra n admits a family of dilations. The number Q := v1+·· ·+vd is the homogeneous dimension
of N . The exponential map expN : n → N is a diffeomorphism, providing a global coordinate
system on N . Dilations {D t }t>0 can be transported to a one-parameter group of automorphisms
of N , which will be denoted by {δt }t>0. The associated action of t ∈R+ on x ∈ N will often simply
be written as t x = δt (x).

A graded group is a connected, simply connected nilpotent Lie group N whose Lie algebra
n admits an N-gradation n = ⊕∞

j=1n j , where n j , j = 1,2, . . . , are vector subspaces of n, almost
all equal to {0}, and satisfying [n j ,n j ′ ] ⊂ n j+ j ′ for j , j ′ ∈ N. If, in addition, n1 generates n, the
group N is stratified. Canonical dilations D t : n → n, t > 0, can be defined through a gradation
as D t (X ) = t j X for X ∈ n j , j ∈N.

Henceforth, a homogeneous group N will be fixed with dilations D t := exp(A ln t ). Haar
measure will be denoted by µN . The eigenvalues v1, . . . , vd of A will be listed in increasing order
and it will be assumed (without loss of generality) that v1 ≥ 1. In addition, a basis X1, . . . , Xd of n
such that AX j = v j X j for j = 1, . . . ,d will be fixed throughout.

2.2. Homogeneity

A function f : N → C is called ν-homogeneous (ν ∈ C) if f ◦δt = tν f for t > 0. For all measurable
functions f1, f2 : N →C,∫

N
f1(x)( f2 ◦δt )(x) dµN (x) = t−Q

∫
N

( f1 ◦δ1/t )(x) f2(x) dµN (x)
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provided the integral is convergent. The map f 7→ f ◦δt is naturally extended to distributions.
A linear operator T : C∞

c (N ) → (C∞
c (N ))′ is said to be homogeneous of degreeν ∈C if T ( f ◦δt ) =

tν(T f )◦δt for all f ∈C∞
c (N ) and t > 0.

A homogeneous quasi-norm on N is a continuous function | · | : N → [0,∞) that is symmetric,
1-homogeneous and definite. If | · | is a homogeneous quasi-norm on N , there is a constant C > 0
such that |x y | ≤C (|x|+ |y |) for all x, y ∈ N .

2.3. Derivatives and polynomials

A basis element X j ∈ n acts as a left-invariant vector field on n by

X j f (x) = d

ds

∣∣∣
s=0

f (x expN (sX j ))

for f ∈ C∞(N ) and x ∈ N . The first-order left-invariant differential operator X j is homogeneous
of degree v j . For a multi-index α ∈ Nd

0 , higher-order differential operators are defined by Xα :=
Xα1

1 Xα2
2 · · ·Xαd

d . The algebra of all left-invariant differential operators on N is denoted by D(N ).
A function P : N → C is a polynomial if P ◦expN is a polynomial on n. Denoting by ξ1, . . . ,ξd a

dual basis of X1, . . . , Xd , the system η j = ξ j ◦exp−1
N , j = 1, . . . ,d , forms a global coordinate system

on N . Each η j : N → C forms a polynomial on N , and any polynomial P on N can be written
uniquely as

P = ∑
α∈Nd

0

cαη
α, (2)

where all but finitely many cα ∈ C vanish and ηα := η
α1
1 η

α2
2 · · ·ηαd

d for a multi-index α ∈ Nd
0 . The

homogeneous degree ofα ∈Nd
0 is defined as [α] := v1α+·· ·+vdαd and the homogeneous degree

of a polynomial P written as (2) is d(P ) := max{[α] :α ∈Nd
0 with cα 6= 0}.

For any k ≥ 0, the set of polynomials P on N such that d(P ) ≤ k is denoted by Pk .

2.4. Schwartz space

A function f : N →C belongs to the Schwartz space S (N ) if f ◦expN is a Schwartz function on n.
A family of semi-norms on S (N ) is given by

‖ f ‖S ,K = sup
|α|≤K ,x∈N

(1+|x|)K |Xα f (x)|, K ∈N0.

For simplicity, the parameter K is sometimes suppressed from the notation ‖·‖S ,K and it is
simply written ‖·‖S . The closed subspace of S (N ) of functions with all moments vanishing is
defined by

S0(N ) =
{

f ∈S (N ) :
∫

N
xα f (x)dµN (x) = 0, ∀α ∈Nd

0

}
.

For arbitrary f ∈S (N ), it will be written f̌ (x) := f (x−1) and ft (x) := t−Q f (t−1x) for t > 0.
The dual space S ′(N ) of S (N ) is the space of tempered distributions on N . If f ∈S ′(N ) and

ϕ ∈ S (N ), the conjugate-linear evaluation is denoted by 〈 f ,ϕ〉. If well-defined, the evaluation
is also written as 〈 f ,ϕ〉 = ∫

N f (x)ϕ(x) dµN (x) and extends the L2-inner product. Convolution is
defined by f ∗ϕ(x) := 〈 f ,ϕ̌(x−1 · )〉 and ϕ∗ f (x) := 〈 f ,ϕ̌(·x−1)〉 for x ∈ N .

3. Matrix coefficients of quasi-regular representations

This section is devoted to point-wise estimates and integability properties of the matrix coeffi-
cients of a quasi-regular representation.
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3.1. Quasi-regular representation

Let N be a homogeneous Lie group and let A =R+ be the multiplicative group. Then A acts on N
via automorphic dilations A 3 t 7→ δt ∈ Aut(N ). The semi-direct product G = N o A is defined via
the operations

(x, t )(y,u) = (xδt (y), tu), (x, t )−1 = (δt−1 (x−1), t−1).

Identity element in G is eG = (eN ,1). The group G is an exponential Lie group, that is, the
exponential map expG : g→G is a diffeomorphism, see, e.g. [19, Proposition 5.27].

The quasi-regular representation π= indG
A(1) of G acts unitarily on L2(N ) by

π(x, t ) f = t−Q/2 f (t−1(x−1· )), (x, t ) ∈ N × A,

for f ∈ L2(N ). Note that π(x, t ) = Lx D t , where Lx f = f (x−1· ) and D t f = t−Q/2 f (t−1( · )).
A detailed account on the representation theory of quasi-regular representations of exponen-

tial groups can be found in [7, 35, 37], but these results will not be used in this paper.

3.2. Point-wise estimates

For f1, f2 ∈ L2(N ), denote the associated matrix coefficient by

V f2 f1(x, t ) = 〈 f1,π(x, t ) f2〉, (x, t ) ∈ N o A.

The following result provides point-wise estimates for a class of matrix coefficients.

Proposition 2. Let f1, f2 ∈S0(N ) and K , M ∈N be arbitrary.

(i) For all (x, t ) ∈ N o A with t ≤ 1,

|V f2 f1(x, t )|. tQ/2+M (1+|x|)−K ‖ f1‖S ‖ f2‖S . (3)

(ii) For all (x, t ) ∈ N o A with t ≥ 1,

|V f2 f1(x, t )|. t−(Q/2+M)(1+|x|)−K ‖ f1‖S ‖ f2‖S . (4)

The implicit constants in (3) and (4) are group constants that depend further only on M ,K .

Proof. Throughout the proof, a Schwartz semi-norm ‖·‖S ,N is simply denoted by ‖·‖N .
Let K , M ∈ N and let P = Px,M ∈ PM denote the Taylor polynomial of f ∈ S (N ) at x ∈ N of

homogeneous degree M . By Taylor’s inequality [13, Theorem 3.1.51], there exist constants c,C > 0
such that for all x, y ∈ N ,

| f (x y)−P (y)| ≤C
∑

|α|≤M ′+1
[α]>M

|y |[α] sup
|z|≤cM ′+1|y |

|(Xα f )(xz)|,

where M ′ := max{|α| :α ∈Nd
0 with [α] ≤ M }. For |α| ≤ M ′+1 and x, y ∈ N ,

sup
|z|≤cM ′+1|y |

|(Xα f )(xz)| ≤ ‖ f ‖K+M ′+1 sup
|z|≤cM ′+1|y |

(1+|xz|)−K

. ‖ f ‖K+M ′+1 sup
|z|≤cM ′+1|y |

(1+|x|)−K (1+|z|)K

. ‖ f ‖K+M ′+1(1+|x|)−K (1+|y |)K ,

where the second line follows from the Peetre-type inequality [17, Lemma 1.10]. Thus,

| f (x y)−P (y)|. ‖ f ‖K+M ′+1(1+|x|)−K
∑

|α|≤M ′+1
[α]>M

|y |[α](1+|y |)K (5)

for all x, y ∈ N .
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(i) Let (x, t ) ∈ N o A with t ≤ 1. Then, using that f2 ∈S0(N ),

|V f2 f1(x, t )| =
∣∣∣∣∫

N
f1(x y)D t f̌2(y−1) dµN (y)

∣∣∣∣≤ ∫
N
| f1(x y)−P (y)|∣∣D t f̌2(y−1)

∣∣ dµN (y).

Applying (5) thus gives

|V f2 f1(x, t )|. ‖ f1‖K+M ′+1(1+|x|)−K t−Q/2
∑

|α|≤M ′+1
[α]>M

∫
N
|y |[α]| f̌2(t−1 y−1)|(1+|y |)K dµN (y)

= ‖ f1‖K+M ′+1(1+|x|)−K tQ/2
∑

|α|≤M ′+1
[α]>M

∫
N
|t y |[α]| f̌2(y−1)|(1+|t y |)K dµN (y)

. ‖ f1‖K+M ′+1(1+|x|)−K tQ/2+M
∫

N
| f2(y)|(1+|y |)K+Q(M ′+1) dµN (y), (6)

where the last inequality uses [α] ≤Q|α| ≤Q(M ′+1). The integral in (6) can be estimated by∫
N
| f2(y)|(1+|y |)K+Q(M ′+1) dµN (y) ≤ ‖ f2‖K+Q(M ′+1)+Q+1

∫
N

(1+|y |)−Q−1 dµN (y)

. ‖ f2‖K+Q(M ′+1)+Q+1, (7)

where convergence of the integral follows by using polar coordinates [17, Proposition 1.15]; see
also [17, Corollary 1.17]. A combination of (7) and (6) yields the desired claim (3).

(ii) Note that |V f2 f1(x, t )| = |V f1 f2((x, t )−1)| for (x, t ) ∈ N o A. Hence, if t ≥ 1, then it follows by
part (i) with M0 := M +K that

|V f2 f1(x, t )|. t−(Q/2+M0)(1+ t−1|x|)−K ‖ f1‖K+M ′
0+1‖ f2‖K+Q(M ′

0+1)+Q+1

≤ t−Q/2−M t−K t K (1+|x|)−K ‖ f1‖K+M ′
0+1‖ f2‖K+Q(M ′

0+1)+Q+1,

showing (4). This completes the proof. �

The estimates provided by Proposition 2 recover the well-known polynomial localisation for
wavelet transforms when N =R, see, e.g. [29, Section 11-12]. A similar use of the Taylor inequality
for (compactly supported) atoms can be found in [17, Theorem 2.9].

3.3. Analysing vectors

Left Haar measure on G is given by µG (x, t ) = t−(Q+1)dµN (x)dt and the modular function is given
by ∆G (x, t ) = t−Q . The measure µG is used to define the Lebesgue space Lp (G) = Lp (G ,µG ) for
p ∈ [1,∞], and ‖·‖p will denote the p-norm.

A measurable function w : G → [1,∞) is said to be a weight if it is submultiplicative, i.e.,
w((x, t )(y,u)).w(x, t )w(y,u) for (x, t ), (y,u) ∈G . A weight w is called polynomially bounded if

w(x, t ). (1+|x|)k (t m + t−m′
), (x, t ) ∈G , (8)

for some k,m,m′ ≥ 0. Given such a weight w , the weighted Lebesgue space L1
w (G) consists of all

F ∈ L1(G) satisfying ‖F‖L1
w

:= ‖F w‖1 <∞.
In [12, 27, 38], the space of w-analysing vectors of π, defined by

Aw :=
{

g ∈ L2(N ) : Vg g ∈ L1
w (G)

}
,

plays a prominent role.
The following result provides a simple criterion for analysing vectors:

Lemma 3. Suppose g ∈ S0(N ). Then g ∈ Aw for any polynomially bounded weight function
w : G → [1,∞). In particular, the representation π= indG

A(1) is integrable.
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Proof. Let k,m,m′ ≥ 0 be such that w(x, t ). (1+|x|)k (t m +t−m′
) for all (x, t ) ∈G . Then, choosing

K , M , M ′ ∈N sufficiently large, it follows by Proposition 2 that

‖Vg g‖L1
w
.

∫ ∞

0

∫
N

Vg g (x, t )(1+|x|)k (t m + t−m′
) dµN (x)

dt

tQ+1

.
∫ 1

0
tQ/2+M ′−m′

t−(Q+1)dt +
∫ ∞

1
t−(Q/2+M)+m t−(Q+1)dt <∞.

This shows that g ∈Aw , and thus π is w-integrable. �

4. Admissible vectors

A vector g ∈ L2(N ) is said to be admissible for the quasi-regular representation (π,L2(N )) if the
map

Vg : L2(N ) → L∞(G), f 7→ 〈 f ,π( · )g 〉
is an isometry into L2(G).

4.1. Reproducing formulae

The following observation relates admissibility to a Calderón-type reproducing formula.

Lemma 4. Let g ∈S (N ) with
∫

N g (x) dµN (x) = 0. Then g is admissible if, and only if,

f =
∫ ∞

0
f ∗ ǧ t ∗ g t

dt

t
≡ lim

ε→0
ρ→∞

∫ ρ

ε
f ∗ ǧ t ∗ g t

dt

t
, f ∈S (N ), (9)

with convergence in S ′(N ).

Proof. Under the assumptions on g , it follows by [17, Theorem 1.65] that

Hε,ρ(z) :=
∫ ρ

ε
ǧ t ∗ g t (z)

dt

t
, z ∈ N ,

converges in S ′(N ) to a distribution H := lim ε→0
ρ→∞

Hε,ρ which is smooth on N \{eN } and homoge-

neous of degree −Q. Let f ∈S (N ). Then∥∥Vg f
∥∥2

2 = lim
ε→0
ρ→∞

∫ ρ

ε

∫
N
| f ∗D t ǧ (x)|2 dµG (x, t )

= lim
ε→0
ρ→∞

∫ ρ

ε

∫
N

∫
N

∫
N

f (y)ǧ t (y−1x)ǧ t (z−1x) f (z) dµN (z)dµN (y)dµN (x)
dt

t

= lim
ε→0
ρ→∞

∫ ρ

ε

∫
N

∫
N

f (y)ǧ t ∗ g t (y−1z) f (z) dµN (y)dµN (z)
dt

t

= lim
ε→0
ρ→∞

∫
N

f ∗Hε,ρ(z) f (z) dµN (z)

=
∫

N
f ∗H(z) f (z) dµN (z),

where the last equality used that f ∗Hε,ρ → f ∗H in S ′(N ) as ε→ 0 and ρ→∞.
The map f 7→ f ∗H is bounded on L2(N ) by [17, Theorem 6.19]. Hence Vg : S (N ) → L2(G) is

well-defined, and it follows that∫
G
|〈 f ,π(x, t )g 〉|2 dµG (x, t ) = 〈 f ∗H , f 〉, f ∈ L2(N ). (10)

Thus g is admissible if, and only if, 〈 f ∗H , f 〉 = 〈 f , f 〉 for all f ∈ L2(N ). Polarisation yields that this
is equivalent to (9), which completes the proof. �
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The calculations in the proof of Lemma 4 are classical, see, e.g. [17, Theorem 7.7].

4.2. Rockland operators

This section provides background on spectral multipliers for Rockland operators, see, e.g. [13,
Chapter 4] for a detailed account. The stated results will be used in Section 4.3 below for the
construction of admissible vectors.

Let L ∈ D(N ) be positive and formally self-adjoint. Then L is essentially self-adjoint on
L2(N ), and L will also denote its self-adjoint extension. Let EL be the spectral measure of L .
For m ∈ L∞(R+

0 ), the operator

m(L ) :=
∫
R+

0

m(λ) dEL (λ)

is a left-invariant bounded linear operator on L2(N ). By the Schwartz kernel theorem, the action
of m(L ) on S (N ) is given by

m(L ) f = f ∗Km(L ), f ∈S (N ),

where Km(L ) ∈S ′(N ) is the associated convolution kernel.
A Rockland operator is a homogeneous differential operator L ∈D(N ) of positive degree that

is hypoelliptic, i.e. for every distribution f ∈ (C∞
c (N ))′ and every open set U ⊆ N , the condition

(L f )|U ∈ C∞(U ) implies that f |U ∈ C∞(U ). Positive Rockland operators are well-known to exist
on any graded Lie group.

The following theorem is the key result used to construct admissible Schwartz functions.

Theorem 5 (Hulanicki [31]). Let N be a graded Lie group. Let L ∈ D(N ) be a positive Rockland
operator and let | · | : N → [0,∞) be a fixed homogeneous quasi-norm on N .

For any M1 ∈N, M2 ≥ 0, there exist C =C (M1, M2) > 0 and k = k(M1, M2),k ′ = k ′(M1, M2) ∈N0

such that, for any m ∈C k (R+
0 ), the kernel Km(L ) of m(L ) satisfies∑

[α]≤M1

∫
G
|XαKm(L )(x)|(1+|x|)M2 dµN (x) ≤C sup

λ>0
`=0,...,k
`′=0,...,k ′

(1+λ)`
′ |∂`λm(λ)|.

Corollary 6. Let L ∈D(N ) be a positive Rockland operator.

(i) If m ∈S (R+
0 ), then Km(L ) ∈S (N ).

(ii) If m ∈S (R+
0 ) vanishes near the origin, then Km(L ) ∈S0(N ).

4.3. Existence of admissible vectors

The following result yields a class of Schwartz vectors that are admissible.

Proposition 7. Let N be a graded Lie group and let L ∈ D(N ) be a positive Rockland operator of
degree ν. Let Km(L ) be the convolution kernel of a multiplier m ∈S (R+

0 ) satisfying∫ ∞

0
|m(t )|2 dt

t
= ν. (11)

Then g := Km(L ) ∈S (N ) is an admissible vector for π= indNoA
A (1).

Proof. Let m ∈S (R+
0 ) be as in the statement, so that∫ ∞

0
|m(λtν)|2 dt

t
= 1

ν

∫ ∞

0
|m(t )|2 dt

t
= 1, for all λ> 0. (12)
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By Corollary 6, g := Km(L ) ∈ S (N ), and it suffices to show the reproducing formula (9). Define
Hε,ρ := ∫ ρ

ε ǧ t ∗ g t t−1d t for 0 < ε< ρ <∞. Let f1, f2 ∈S (N ). Then

〈 f1 ∗Hε,ρ , f2〉 =
∫ ρ

ε
〈 f1 ∗ ǧ t ∗ g t , f2〉 dt

t
=

∫ ρ

ε
〈 f1 ∗ (ǧ ∗ g )t , f2〉 dt

t
. (13)

The spectral theorem implies that ǧ ∗g = Km(L )∗Km(L ) = K|m|2(L ). In addition, the homogeneity
of L yields that (ǧ ∗ g )t = K|m|2(tνL ) for all t > 0, see, e.g. [13, Corollary 4.1.16]. Combining this
with (13) gives

〈 f1 ∗Hε,ρ , f2〉 =
∫ ρ

ε

〈|m|2(tνL ) f1, f2
〉 dt

t
=

∫ ρ

ε

∫ ∞

0
|m(tνλ)|2 d〈EL (λ) f1, f2〉dt

t

=
∫ ∞

0

∫ ρ

ε
|m(tνλ)|2 dt

t
d〈EL (λ) f1, f2〉.

Hence, by the identity (12),

lim
ε→0
ρ→∞

〈 f1 ∗Hε,ρ , f2〉 =
∫ ∞

0

∫ ∞

0
|m(tνλ)|2 dt

t
d〈EL (λ) f1, f2〉 = 〈 f1, f2〉.

An application of Lemma 4 therefore yields that g is admissible. �

Spectral multipliers for sub-Laplacians on stratified groups were used for constructing admis-
sible vectors in [25]. See also [24] for similar discrete Littlewood–Paley decompositions.

Remark 8. The use of a homogeneous operator is essential in the proof of Proposition 7 to
guarantee that the spectral dilates m(t · ), t > 0, of a multiplier m ∈ S (R+

0 ) yield a convolution
kernel Km(tL ) that is compatible with automorphic dilations {δt }t>0. For non-homogeneous
operators, other techniques seem required, see, e.g. [4, 36].

4.4. Proof of Theorem 1

Theorem 1 follows from combining Lemma 3, Corollary 6 and Proposition 7.
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