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1. Introduction

Optimal design models describe the optimal distribution of a two phase elastic mixture with
respect to some criterion. The energy considered has different properties distribution, such as
stiffness or electric resistivity, in different regions of the domain under consideration. Minimizing
such energies allows to improve the mechanical or electrical performance by optimizing the
distribution of these properties.
Γ-convergence and relaxation are techniques that are useful in the analysis of such models.

Such is the case for instance of the works [5, 10] in the context of a dimension reduction process
for thin films. Then, among other works, we can cite the work of [6] also dealing with a dimension
reduction process involving an additional energy term of perimeter penalization. An adaptation
of the last work has been studied in [12] for the Orlicz–Sobolev setting. In [14], the authors obtain
the relaxation of an optimal design model involving fractured media which induces an analysis
in the space of special bounded variation functions. In [3], in the context of linear growth and still
with a perimeter penalization, the authors derive a lower semicontinuity result and a measure
representation result for the relaxation of optimal design functionals.

In this work, we consider optimal design models described by functionals of the form

J (χ,u) =
(∫

Ω
χW1(∇u)p + (1−χ)W2(∇u)p dx

) 1
p

,
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where χ(x) ∈ {0,1} denotes the characteristic function of the first phase, ∇u the gradient of the
deformation and W p

i , i = 1,2 models the energy density of the i th phase, then, we proceed with
an asymptotic analysis when the exponent p of the energy densities goes to infinity.

We obtain a limit energy of supremal kind that models, for example, dielectric breakdown
for double phase composites (see [11] and the references therein) or some simplified models of
polycrystal plasticity (see [4]). In the last two references, analogous asymptotic analyses using Γ-
convergence techniques for functionals involving single phase elastic density can be found. Also
in [1, 2], where the authors obtain limit models under some differential constraints, involving
supremal functions and A -quasiconvex envelopes. We mention also [7] where the authors
obtained an Lp approximation and a lower semicontinuity result for supremal functionals.

Let 1 < p0 <∞. Consider the sequence of functionals (Ip )p>p0 , where p denotes a sequence
pn →+∞, defined on L∞(Ω; [0,1])×Lp0 (Ω;Rm) by

Ip (χ,u) =


(∫
ΩχW1(∇u)p + (1−χ)W2(∇u)p dx

) 1
p

if (χ,u) ∈ L∞(Ω; {0,1})×W 1,p (Ω;Rm),

+∞ otherwise,

where Wi :Mm×N → R are continuous functions verifying linear growth and coercivity hypothe-
ses: there exist αi ,βi > 0 such that

βi |A| ≤Wi (A) ≤αi (1+|A|). (1)

The functional Ip represents the elastic energy of the solid occupying the domain Ω and
undergoing the deformation u, while χ represents the characteristic function of the first phase
of stiffness or electric resistivity. Noticing that any function χ ∈ L∞(Ω; [0,1]) is a weak ?-limit in
L∞(Ω; [0,1]) of a sequence χn ∈ L∞(Ω; {0,1}).

Let V : [0,1]×Mm×N −→R be defined by

V (q, A) = qW1(A)+ (1−q)W2(A)

and I be defined on L∞(Ω; [0,1])×Lp0 (Ω;Rm) by

I (χ,u) =
{

esssup V ?(χ,∇u) if u ∈W 1,∞(Ω;Rm),

+∞ otherwise,

where

V ?(q, A) := lim
p→+∞ inf

θ,ϕ

{(∫
Q

(
V (θ(x), A+∇ϕ(x))

)p dx
) 1

p
,

ϕ ∈W 1,p
# (Q;Rm), θ ∈ L∞(Ω; {0,1}),

∫
Ω
θ(x)dx = q

}
.

The goal of this article is to prove the following Theorem.

Theorem 1. Let 1 < p0 <∞. The sequence of functionals (Ip )p>p0 Γ-converges to I as p goes to +∞
with respect to the L∞(Ω; [0,1]) weak ?×W 1,p0 (Ω;Rm) weak topology.

The minimization problem corresponding to the limit model obtained, describes, for example,
the effective behavior of the compatible two-phase mixtures for dielectric breakdown.

In the following section we will present some brief preliminaries on the notions of Γ-
convergence and cross-quasiconvexity. Then, the next section will be devoted to the proof of the
Γ-convergence result.
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2. Preliminaries

2.1. Γ-convergence

Let (Gn)n be a sequence of functionals defined on a topological space X with values in R∪ {+∞}.
The Γ-lower limit and Γ-upper limit of (Gn)n are given by

Γ-liminfGn(x) := sup
U∈N (x)

liminf
n→∞ inf

y∈U
Gn(y) and Γ-limsupGn(x) := sup

U∈N (x)
limsup

n→∞
inf
y∈U

Gn(y),

where N (x) denotes the set of all neighborhoods of x in X . If there exist G : X → R∪ {+∞}
such that Γ-liminfGn = Γ-limsupGn = G , then we say that (Gn)n Γ-converges to G and we write
G := Γ-limGn . When X is first countable we have the equivalent definition in terms of sequences,
that is, (Gn)n is said to Γ-converge to the limit functional G with respect to the topology of X if
and only if the following two conditions are satisfied for every x ∈ X :{

∀ xn → x, liminfn→∞Gn(xn) ≥G(x),

∃ xn → x, limsupn→∞Gn(xn) ≤G(x).

The main properties ofΓ-convergence are first that, up to a subsequence, theΓ-limit always exists
and second that if a sequence of almost minimizers stays in a compact subset of X , then the limits
of any converging subsequence minimize the Γ-limit. In particular we have that, if G is the Γ-limit
of Gn and for every n, xn is a minimizer of Gn with xn → x in X , then x is a minimizer of G . Also,
the limit minimization problem has always a solution due to the lower semicontinuity of the Γ-
limit with respect to the considered topology (see [8, 9]).

2.2. Cross-quasiconvexity

In the limit model, due to the use of Γ-convergence techniques, the energy functional will
be lower semicontinuous with respect to the considered topology. Thus, we define the cross-
quasiconvex envelope as in [5, 10], for V : [0,1]×Mm×N →R, with

V (q, A) = qW1(A)+ (1−q)W2(A),

by

V ?
p (q, A) := inf

θ,ϕ

{(∫
Q

(
V (θ(x), A+∇ϕ(x))

)p dx
) 1

p
, ϕ ∈W 1,p

# (Q;Rm), θ ∈ L∞(Ω; {0,1}),
∫
Ω
θ(x)dx = q

}
,

where

W 1,p
# (Q;Rm) =

{
ϕ ∈W 1,p

loc (RN ;Rm) :ϕ is Q periodic
}

,

with Q being the unit cube in RN . We have the following results that will be useful for the
computation of the Γ-limit.

Lemma 2. The sequence (V ?
p )p is an increasing sequence.

Proof. Let 1 < r < p <∞. Let q ∈ [0,1], A ∈Mm×N , ϕ ∈W 1,p
# (Q;Rm) and θ ∈ L∞(Ω; {0,1}) verifying∫

Ωθ(x)dx = q . Since W 1,p
# (Q;Rm) ⊂ W 1,r

# (Q;Rm), we have that ϕ ∈ W 1,r
# (Q;Rm) and thus, using

Hölder inequality, we have(∫
Q

(
V (θ(x), A+∇ϕ(x))

)r dx

) 1
r

≤
(∫

Q

(
V (θ(x), A+∇ϕ(x))

)p dx

) 1
p

,
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since |Q| = 1. Thus, since W 1,p
# (Q;Rm) ⊂W 1,r

# (Q;Rm), we obtain

V ?
r (q, A) = inf

θ,ϕ

{(∫
Q

(
V (θ(x), A+∇ϕ(x))

)r dx
) 1

r
,ϕ ∈W 1,r

# (Q;Rm), θ ∈ L∞(Ω; {0,1}),
∫
Ω
θ(x)dx = q

}
≤ inf
θ,ϕ

{(∫
Q

(
V (θ(x), A+∇ϕ(x))

)p dx
) 1

p
, ϕ ∈W 1,p

# (Q;Rm), θ ∈ L∞(Ω; {0,1}),
∫
Ω
θ(x)dx = q

}
=V ?

p (q, A),

which gives the result. �

Next, we define V ? : [0,1]×Mm×N →R by

V ?(q, A) := lim
p→+∞V ?

p (q, A) = sup
p>1

V ?
p (q, A).

The following Lemmas that will be used respectively, for the computation of the lower bound and
the upper bound, are a consequence of the dimension reduction studied in [5, 10]. Their proofs
follow the same steps as in [5,10] with simpler arguments since we have no dimension reduction
process within it. See also [13].

Lemma 3. Let 1 < p <∞. Suppose un * u in W 1,p (Ω;Rm) and χn
∗
*χ in L∞(Ω; [0,1]), then

liminf
n→∞ ‖V ?

p (χn ,∇un)‖p ≥ ‖V ?
p (χ,∇u)‖p .

Lemma 4. Let 1 < p < ∞. For every u ∈ W 1,p (Ω;Rm) and χ ∈ L∞(Ω; [0,1]), there exist un ∈
W 1,p (Ω;Rm) and χn ∈ L∞(Ω; {0,1}) such that un

∗
* u in W 1,p (Ω;Rm) and χn

∗
* χ in L∞(Ω; [0,1]),

with

limsup
n→∞

‖V ?
p (χn ,∇un)‖p ≤ ‖V ?

p (χ,∇u)‖p .

3. Proof of Theorem 1

Proof.

Step 1. The lower bound. Let (χ,u) ∈ L∞(Ω; [0,1]) × Lp0 (Ω;Rm) and (χp ,up ) ∈ L∞(Ω; {0,1}) ×
Lp0 (Ω;Rm) such that χp

∗
*χ in L∞(Ω; [0,1]) and up * u in W 1,p0 (Ω;Rm). We will prove that

liminf
p→∞ Ip (χp ,up ) ≥ I (χ,u).

We can suppose that M = liminfp→∞ Ip (χp ,up ) < ∞, which implies that χp ∈ L∞(Ω; {0,1}) and
up ∈W 1,p (Ω;Rm). Using (1) we have

Ip (χp ,up ) =
(∫
Ω
|χpW1(∇up )+ (1−χp )W2(∇up )|p dx

) 1
p

≥
(∫
Ω
|χpβ1|∇up |+ (1−χp )β2|∇up‖p dx

) 1
p

≥
(∫
Ω
βp |∇up |p dx

) 1
p

, (2)

where β= min(β1,β2) > 0. Thus, there exist p1 ≥ p0 such that (∇up ) is bounded in Lp (Ω;Mm×N )
for every p ≥ p1. Next, using Hölder’s inequality, we have that for every p1 ≤ r < p(∫

Ω
|∇up |r dx

) 1
r

≤ |Ω|
p−r
pr ‖∇u‖p ≤ |Ω|

p−r
pr

M +1

β

Thus, for every p1 ≤ r < p, we have

‖∇up‖r ≤ max(|Ω| 1
r ,1)

M +1

β
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and thus (∇up )p>r is uniformly bounded in Lr (Ω;Mm×N ) which gives, using Poincaré’s inequality,
that (up )p>r is uniformly bounded in W 1,r (Ω;Rm) and thus, up to a subsequence, it converges
weakly in W 1,r (Ω;Rm) to u ∈ W 1,r (Ω;Rm) for every r ≥ p1. Next, we prove that u ∈ W 1,∞(Ω;Rm).
Indeed, we have, for every x0 ∈Ω and t > 0 such that the open ball Bt (x0) ⊂Ω,

1

|Bt (x0)|
∫

Bt (x0)
|∇u|dx ≤ |Bt (x0)|− 1

r ‖∇u‖r

≤ |Bt (x0)|− 1
r liminf

p→∞ ‖∇up‖r ≤ |Bt (x0)|− 1
r max

(|Ω| 1
r ,1

) M +1

β
.

Letting r →∞, we obtain
1

|Bt (x0)|
∫

Bt (x0)
|∇u|dx ≤ M +1

β
.

Then, letting t → 0+, we obtain for every Lebesgue point x0 ∈Ω

|∇u(x0)| ≤ M +1

β
.

Thus, since Ω is bounded, we obtain for a.e. x0 ∈Ω
|u(x0)| ≤C (Ω)

M +1

β

and thus u ∈ W 1,∞(Ω;Rm). On the other hand, following the same steps as in (2), we have, since
χp = 0 or (1−χp ) = 0 a.e. inΩ, for every r ≥ p1 and every p > r

Ip (χp ,up ) =
(∫
Ω
χpW1(∇up )p + (1−χp )W2(∇up )p dx

) 1
p

=
(∫
Ω
|V (χp ,∇up )|p dx

) 1
p

= ‖V (χp ,∇up )‖p

≥ |Ω|
r−p
pr ‖V (χp ,∇up )‖r

≥ |Ω|
r−p
pr ‖V ?

r (χp ,∇up )‖r .

Next, since up * u in W 1,r (Ω;Rm) and χp
∗
*χ in L∞(Ω; [0,1]), we obtain using Lemma 3

liminf
p→∞ Ip (χp ,up ) ≥ |Ω| −1

r ‖V ?
r (χ,∇u)‖r .

Thus, we have for every p1 ≤ q ≤ r ,

liminf
p→∞ Ip (χp ,up ) ≥ |Ω| −1

r |Ω|
q−r
qr ‖V ?

r (χ,∇u)‖q = |Ω| −1
q ‖V ?

r (χ,∇u)‖q .

Making r →∞ we obtain

liminf
p→∞ Ip (χp ,up ) ≥ |Ω| −1

q ‖V ?(χ,∇u)‖q ,

then, making q →∞ we obtain

liminf
p→∞ Ip (χp ,up ) ≥ ‖V ?(χ,∇u)‖∞ = esssup V ?(χ,∇u).

Step 2. The upper bound. We need to prove that converse inequality stating that

Γ-limsup Ip (χ,u) ≤ I (χ,u)

for every (χ,u) ∈ L∞(Ω; [0,1]) × Lp0 (Ω;Rm). If u ∉ W 1,∞(Ω;Rm) then there is nothing to prove.
Then, let (χ,u) ∈ L∞(Ω; [0,1]) × W 1,∞(Ω;Rm) and since Ω is bounded we have that (χ,u) ∈
L∞(Ω; [0,1])×W 1,p (Ω;Rm) for every p ≥ 1. Notice that using Lemma 3 and Lemma 4, the lower
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semicontinuous envelope of Ip with respect to the L∞(Ω; [0,1]) weak ?× W 1,p (Ω;Rm) weak
topology is given by

Ī p
p (χ,u) :=

(∫
Ω

V ?
p (χ,∇u)p dx

) 1
p

.

Let Ī p0
p be the lower semicontinuous envelope of Ip with respect to the L∞(Ω; [0,1]) weak ?×

W 1,p0 (Ω;Rm) weak topology. Since the dual of Lp0 (Ω;Rm) is a subset of the dual of Lp (Ω;Rm), we
have

Ī p0
p (χ,u) ≤ Ī p

p (χ,u). (3)

Indeed, by the definition of Ī p
p and using Lemma 4, there exist (χn) ⊂ L∞(Ω; {0,1}), (un) ⊂

W 1,p (Ω;Rm) such that χn
∗
*χ in L∞(Ω; [0,1]) and un * u in W 1,p (Ω;Rm) with

limsup
n→∞

Ip (χn ,un) ≤ Ī p
p (χ,u).

Since un * u in W 1,p (Ω;Rm) implies that un * u in W 1,p0 (Ω;Rm), we obtain (3). Finally, since
(V ?

p ) is an increasing sequence, we have

Γ-limsup Ip (χ,u) = Γ-limsup Ī p0
p (χ,u)

≤ Γ-limsup Ī p
p (χ,u)

= lim
p→+∞ Ī p

p (χ,u)

≤ lim
p→+∞ |Ω| 1

p esssupV ?
p (χ,∇u)

= esssupV ?(χ,∇u)

and thus the result. �

We have the following Corollaries that are useful in the context of optimal design.

Corollary 5. The functional I is lower semicontinuous with respect to the L∞(Ω; [0,1]) weak
?×W 1,p (Ω;Rm) weak topology for every 1 < p <∞.

Proof. This lower semicontinuity result is a direct consequence of the last Theorem since the
Γ-limit is always lower semicontinuous with respect to the considered topology. �

Corollary 6. Let 1 < p0 < ∞ and (χp ,up )p>p0 a diagonal minimizing sequence for Ip , i.e. :
(χp ,up ) ∈ L∞(Ω; {0,1})×W 1,p (Ω;Rm) such that

Ip (χp ,up ) = inf
u∈W 1,p (Ω;Rm )
χ∈L∞(Ω;{0,1})

Ip (χ,u)+ε
( 1

p

)
,

with ε(x) → 0 when x → 0. Then, (χp ,up )p>p0 is uniformly bounded in L∞(Ω; [0,1])×W 1,p0 (Ω;Rm)
and its limit points for the weak topology of L∞(Ω; [0,1]) × W 1,p0 (Ω;Rm) minimizes I on
L∞(Ω; [0,1])×W 1,∞(Ω;Rm).

Proof. The proof is a consequence of Theorem 1 and the compactness part in its proof. �
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