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Abstract. We study the stochastic viscous nonlinear wave equations (SvNLW) on T2, forced by a fractional
derivative of the space-time white noise ξ. In particular, we consider SvNLW with the singular additive

forcing D
1
2 ξ such that solutions are expected to be merely distributions. By introducing an appropriate

renormalization, we prove local well-posedness of SvNLW. By establishing an energy bound via a Yudovich-
type argument, we also prove pathwise global well-posedness of the defocusing cubic SvNLW. Lastly, in the
defocusing case, we prove almost sure global well-posedness of SvNLW with respect to certain Gaussian
random initial data.
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1. Introduction

1.1. Stochastic viscous nonlinear wave equations

In [22], Kuan and Čanić proposed the following wave equation on R2 augmented by the viscous
effect:

∂2
t u −∆u +2µD∂t u = Fext(u), (1)

where µ > 0 is a constant, D = |∇| = p−∆, and Fext(u) denotes an external forcing, which may
in general depend on the unknown u. The equation (1) appears in the study of fluid-structure
interaction in the three-dimensional space where the Dirichlet–Neumann operator models the
coupling between a viscous, incompressible fluid and an elastic structure. Here, the viscosity
term 2µD∂t u in (1) represents the effect of the Cauchy stress tensor of Newtonian fluid in the
vertical direction (namely, in z-direction). See [22] for the derivation of (1).
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The general solution to the homogeneous linear viscous wave equation:

∂2
t u −∆u +2µD∂t u = 0 (2)

is given by

u(t ) = e(−µ|∇|+
p

(µ2−1)|∇|2)t f1 +e(−µ|∇|−
p

(µ2−1)|∇|2)t f2.

When µ ≥ 1, we have −µ|ξ| +
√

(µ2 −1)|ξ|2 ∼ −µ−1|ξ| and thus the equation (1) is purely of
parabolic type. In this case, we can study well-posedness of (1), simply by using the Schauder
estimate for the Poisson kernel (see Lemma 10 below). On the other hand, when 0 < µ < 1, the
solution to (2) with initial data (u,∂t u)|t=0 = (u0,u1) is given by

u = e−µDt
(

cos
(√

1−µ2Dt
)
+ µ√

1−µ2
sin

(√
1−µ2Dt

))
u0 +e−µDt sin(

√
1−µ2Dt )√

1−µ2D
u1, (3)

and thus we see that the equation exhibits an interesting mixture of the wave dispersion and the
parabolic regularization by the fluid viscosity. For this reason, we will restrict our attention to
0 < µ < 1. Note that, when 0 < µ < 1, a precise value of µ (and

√
1−µ2) in (3) does not play any

important role in terms of the well-posedness theory, and thus without loss of generality, we set
µ= 1

2 in the remaining part of the paper. See also Footnote 3 below.
In [22], Kuan and Čanić studied well-posedness and ill-posedness of the following viscous

nonlinear wave equation (vNLW) on R2:

∂2
t u −∆u +D∂t u +uk = 0

in both the deterministic and probabilistic settings (in particular with random initial data). See
also [24,27]. In a recent preprint [23], Kuan and Čanić also studied the following stochastic viscous
wave equation with a multiplicative noise on Rd , d = 1,2:

∂2
t u −∆u +D∂t u = f (u)ξ,

where f is a Lipschitz function and ξ denotes the (Gaussian) space-time white noise on R+×R2.
In this paper, we consider the following stochastic vNLW (SvNLW) with an additive stochastic

forcing on the two-dimensional torus T2 = (R/Z)2:

∂2
t u −∆u +D∂t u +uk = Dαξ (4)

where α ≥ 0 and ξ denotes the (Gaussian) space-time white noise on R+ ×T2. By a standard
argument (see, for example, Lemma 8 below), we see that the stochastic convolutionΨ, satisfying

∂2
tΨ−∆Ψ+D∂tΨ= Dαξ

(say, with the zero initial data), is almost surely a continuous function on R+×T2, when α < 1
2 .

It is worthwhile to note that a combination of the wave dispersion and the dissipation by the
fluid viscosity yields 3

2 -smoothing on the noise (rather than the usual one degree of smoothing
for stochastic heat equations [12, 29] and stochastic wave equations [18, 31]). For this reason, we
set α= 1

2 in this paper and study the following Cauchy problem for SvNLW on T2:{
∂2

t u + (1−∆)u +D∂t u +uk =p
2D

1
2 ξ

(u,∂t u)|t=0 = (u0,u1).
(5)

In this case, the corresponding stochastic convolution is merely a distribution and thus we need
to introduce a proper renormalization to give a precise meaning to the equation.

Remark 1. In (5), we replaced −∆ by 1−∆. This modifications simplifies part of the argument
(so that we do not need to make a separate analysis at the zeroth frequency). Furthermore,
this modification, along with the extra factor

p
2, is necessary for the almost sure global well-

posedness result (Theorem 4). Note that Theorems 2 and 3 apply to (4) withα= 1
2 with essentially

identical proofs.



Ruoyuan Liu and Tadahiro Oh 1229

1.2. Renormalized SvNLW

In this subsection, we briefly go over the renormalization procedure for (5), following the discus-
sion in [18,19,31]. LetΨ be the solution to the following linear stochastic viscous wave equation:{

∂2
tΨ+ (1−∆)Ψ+D∂tΨ=p

2D
1
2 ξ

(Ψ,∂tΨ)|t=0 = (0,0).
(6)

By writing in the Duhamel formulation (= mild formulation), the stochastic convolution Ψ can
be expressed as

Ψ(t ) =p
2
∫ t

0
S(t − t ′)D

1
2 dW (t ′), (7)

where the linear propagator S(t ) is defined by

S(t ) = e−
D
2 t sin(t�D�)

�D� with �D� =
√

1− 3
4∆ (8)

and W denotes a cylindrical Wiener process on L2(T2):1

W (t ) = ∑
n∈Z2

Bn(t )en .

Here, en(x) = e2πi n·x and {Bn}n∈Z2 is defined by Bn(t ) = 〈ξ,1[0,t ] ·en〉t ,x , where 〈 · , · 〉t ,x denotes the
duality pairing on R+×T2. As a result, we see that {Bn}n∈Z2 is a family of mutually independent
complex-valued2 Brownian motions conditioned so that B−n = Bn , n ∈Z2.

Given N ∈ N, we define the truncated stochastic convolution ΨN = PNΨ, where PN denotes
the frequency cutoff onto the spatial frequencies {|n| ≤ N }. Then, for each fixed t ≥ 0 and x ∈T2,
a direct computation shows that ΨN (t , x) is a mean-zero real-valued Gaussian random variable
with variance

σN (t )
def= E

[
ΨN (t , x)2]= 2

∑
n∈Z2

|n|≤N

∫ t

0
e−(t−t ′)|n|

[
sin((t − t ′)�n�)

�n�
]2

|n|dt ′

= ∑
n∈Z2

|n|≤N

1

〈n〉2 − e−t |n|

�n�2

(
1− |n|2

4〈n〉2 cos(2�n�t )+ |n|�n�
2〈n〉2 sin(2�n�t )

)

∼ ∑
n∈Z2

|n|≤N

1

〈n〉2 ∼ log N −→∞,

(9)

as N →∞, where

〈n〉 = (1+|n|2)
1
2 and �n� =

√
1+ 3

4 |n|2 .

From this computation, we see that {ΨN (t )}N∈N is almost surely unbounded in W 0,p (T2) for any
1 ≤ p ≤∞.

Let us now consider the truncated SvNLW with the regularized noise:{
∂2

t uN + (1−∆)uN +D∂t uN +uk
N =p

2D
1
2 PNξ

(uN ,∂t uN )|t=0 = (u0,u1).
(10)

1Hereafter, we drop the harmless factor 2π.
2In particular, B0 is a standard real-valued Brownian motion. Note that we have, for any n ∈Z2,

Var(Bn (t )) = E[〈ξ,1[0,t ] ·en〉t ,x 〈ξ,1[0,t ] ·en〉t ,x
]= ∥1[0,t ] ·en∥2

L2
t ,x

= t .
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Proceeding with the first order expansion ([5, 12, 28]):

uN =ΨN + vN , (11)

we see that the residual term vN satisfies the following equation:

∂2
t vN + (1−∆)vN +D∂t vN +

k∑
ℓ=0

(
k

ℓ

)
Ψℓ

N vk−ℓ
N = 0. (12)

Note that the powerΨℓ
N does not converge to any limit as N →∞. This is where we introduce the

Wick renormalization:

:Ψℓ
N (t , x):

def= Hℓ(ΨN (t , x);σN (t )), (13)

where Hℓ(x,σ) is the Hermite polynomial of degree ℓ with variance parameter σ. See Subsec-
tion 2.1. This yields the renormalized version of (12):

∂2
t vN + (1−∆)vN +D∂t vN +

k∑
ℓ=0

(
k

ℓ

)
:Ψℓ

N :vk−ℓ
N = 0. (14)

In Lemma 8, we show that the Wick power :Ψℓ
N : converges to a limit :Ψℓ: in C ([0,T ];W −ε,∞(T2))

for any ε> 0 and T > 0, almost surely. Then, by taking N →∞, we obtain the limiting equation:

∂2
t v + (1−∆)v +D∂t v +

k∑
ℓ=0

(
k

ℓ

)
:Ψℓ:vk−ℓ = 0. (15)

At the level of uN , in view of (11), we define the renormalized nonlinearity :uk
N : by

:uk
N : = :(ΨN + vN )k : =

k∑
ℓ=0

(
k

ℓ

)
:Ψℓ

N :vk−ℓ
N . (16)

Then, if vN solves (14), then uN =ΨN +vN satisfies the following truncated renormalized SvNLW:

∂2
t uN + (1−∆)uN +D∂t uN + :uk

N : =p
2D

1
2 PNξ. (17)

Similarly, if v solves (15), then u =Ψ+ v satisfies the following renormalized SvNLW:

∂2
t u + (1−∆)u +D∂t u + :uk : =p

2D
1
2 ξ, (18)

where the renormalized nonlinearity :uk : is defined as in (16) (by dropping the subscript N ).

1.3. Main results

Our main goal is to study well-posedness of the renormalized SvNLW (18). More precisely, we
study the following Duhamel formulation of (15) endowed with initial data (v,∂t v)|t=0 = (u0,u1):

v(t ) =V (t )(u0,u1)−
k∑
ℓ=0

(
k

ℓ

)∫ t

0
S(t − t ′):Ψℓ:vk−ℓ(t ′)dt ′, (19)

where the linear propagator V (t ) is defined by

V (t )(u0,u1) = e−
D
2 t

(
cos(t�D�)+ D

2�D� sin(t�D�)

)
u0 +e−

D
2 t sin(t�D�)

�D� u1. (20)

Then, given the almost sure regularity of the Wick powers :Ψℓ:, standard deterministic analysis
yields the following local well-posedness result.
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Theorem 2. Let k ≥ 2 be an integer and s ≥ 1. Then, the renormalized SvNLW (18) is locally well-
posed in H s (T2) = H s (T2)×H s−1(T2) in the sense that the following statement holds true almost
surely; given (u0,u1) ∈ H s (T2), there exists a unique local-in-time solution v to (15) with initial
data (v,∂t v)|t=0 = (u0,u1), where { :Ψℓ: }k

ℓ=1 denotes the stochastic convolution Ψ defined in (7)
and its Wick powers :Ψℓ:, ℓ= 2, . . . ,k, defined in Lemma 8 below.

Furthermore, there exists an almost surely positive stopping time T = T (ω) such that the
solution uN =ΨN + vN to the truncated renormalized SvNLW (17) (and its time derivative ∂t uN )
converges to the solution u =Ψ+ v to (18) (constructed above) in C ([0,T ]; H−ε(T2)) (and to ∂t u in
C ([0,T ]; H−1−ε(T2)),r especti vel y), ε> 0, almost surely, as N →∞. Here, vN denotes the solution
to (14) with (vN ,∂t vN )|t=0 = (u0,u1).

See Proposition 11 below for the local well-posedness statement at the level of the residual
term v = u −Ψ, satisfying (19). We point out that the regularity of initial data can be lowered but
we do not pursue this issue here. See Remark 12.

Next, we turn our attention to the global well-posedness problem. In the cubic case (k = 3), we
have the following pathwise global well-posedness result.

Theorem 3. Let k = 3 and s ≥ 1. Then, the renormalized cubic SvNLW (18) is globally well-posed in
H s (T2) in the sense that the following statement holds true almost surely; given (u0,u1) ∈H s (T2),
there exists a unique global-in-time solution v to (15) with initial data (v,∂t v)|t=0 = (u0,u1), where
Ψ, :Ψ2:, and :Ψ3: are the stochastic convolution Ψ defined in (7) and its Wick powers defined in
Lemma 8 below.

In proving Theorem 3, we study (15) with k = 3:

∂2
t v + (1−∆)v +D∂t v + v3 +3v2Ψ+3v :Ψ2:+ :Ψ3: = 0. (21)

From the proof of Theorem 2, we see that it suffices to control the H 1-norm of v⃗(t )
def=

(v(t ),∂t v(t )). For this purpose, we study the evolution of the energy (with k = 3)

E(v⃗) = 1

2

∫
T2

(
v2 +|∇v |2)dx + 1

2

∫
T2

(∂t v)2dx + 1

k +1

∫
T2

vk+1dx (22)

for the standard nonlinear wave equation (NLW):

∂2
t u + (1−∆)u +uk = 0. (23)

As in the case of the stochastic NLW studied in [19], the energy E(v⃗) is not conserved under (21)
due to the singular perturbative term 3v2Ψ+ 3v :Ψ2: + :Ψ3: . For our problem, the dissipation
by the viscous term comes in rescue and allows us to establish a double exponential growth
bound on E(v⃗) via a Yudovich-type argument [7, 45]. See Section 4 for details. In [10], Burq
and Tzvetkov used an analogous Yudovich-type argument and proved probabilistic global well-
posedness of the defocusing cubic NLW, (23) with k = 3, on the three-dimensional torus T3 with
randomized initial data in L2(T3). A key difference between Theorem 3 and [10] is that, thanks to
the dissipative smoothing effect, we can handle data (namely, the stochastic convolution and its
Wick powers) of slightly negative regularity.

Lastly, we consider global well-posedness of (18) with random initial data. More precisely,
consider a pair (uω

0 ,uω
1 ) of random functions defined by

uω
0 = ∑

n∈Z2

gn(ω)

〈n〉 en and uω
1 = ∑

n∈Z2

hn(ω)en . (24)

Here, {gn ,hn}n∈Z2 is a family of independent standard complex-valued Gaussian random vari-
ables such that gn = g−n and hn = h−n , n ∈Z2. We assume that {gn ,hn}n∈Z2 is independent from
the space-time white noise ξ in (18). A standard computation shows that (uω

0 ,uω
1 ) ∈ H s (T2) \

H 0(T2) for any s < 0, almost surely. In particular, (uω
0 ,uω

1 ) in (24) is much rougher than the
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H 1-initial data considered in Theorems 2 and 3. Our goal is to prove almost sure global well-
posedness of (18) with respect to the Gaussian random initial data (uω

0 ,uω
1 ) in (24).

For this purpose, let us first define the stochastic convolution Φ with the Gaussian random
initial data (uω

0 ,uω
1 ) in (24): {

∂2
tΦ+ (1−∆)Φ+D∂tΦ=p

2D
1
2 ξ

(Φ,∂tΦ)|t=0 = (uω
0 ,uω

1 ).
(25)

By writing (25) in the Duhamel formulation, we have

Φ(t ) =V (t )(uω
0 ,uω

1 )+p
2
∫ t

0
S(t − t ′)D

1
2 dW (t ′), (26)

where V (t ) is as in (20). A direct computation with (9) and (24) shows thatΦN (t , x) = PNΦ(t , x) is
a mean-zero real-valued Gaussian random variable with variance

αN
def= E

[
ΦN (t , x)2]= E[(PN V (t )(uω

0 ,uω
1 )(x)

)2]+E[(PNΨ(t , x)
)2]

= ∑
n∈Z2

|n|≤N

1

〈n〉2 ∼ log N (27)

for any t ≥ 0, x ∈ T2, and N ≥ 1. Note that, unlike σN (t ) in (9), the variance αN is time
independent. This is due to the fact that the distribution of (ΦN (t ),∂tΦN (t )) is invariant under
the linear dynamics (25). As in (13), we then define the Wick power by

:ΦℓN (t , x):
def= Hℓ(ΦN (t , x);αN ) (28)

for k ∈ N. As before, it follows that the Wick power :ΦℓN : converges to a limit :Φℓ: in
C ([0,T ];W −ε,∞(T2)) for any ε > 0 and T > 0, almost surely; see Lemma 8. Then, by proceeding
as in Subsection 1.2, namely, by (i) first considering the truncated equation (10) with the random
initial data (uω

0 ,uω
1 ) in (24), (ii) using the first order expansion uN = ΦN + vN and introducing

Wick renormalizations, and (iii) taking a limit N →∞, we arrive at the following (renormalized)
reformulation of (18) in this setting:{

∂2
t v + (1−∆)v +D∂t v +∑k

ℓ=0

(k
ℓ

)
:Φℓ:vk−ℓ = 0

(v,∂t v)|t=0 = (0,0).
(29)

We now state an almost sure global well-posedness result of (18) with the random initial data
(uω

0 ,uω
1 ) in (24).

Theorem 4. Let k ∈ 2N+1. Then, the renormalized SvNLW (18) is almost surely globally well-posed
with the random initial data (uω

0 ,uω
1 ) defined in (24) in the sense that the following statement holds

true almost surely; there exists a unique global-in-time solution v to (29) with the zero initial data,
where { :Φℓ: }k

ℓ=1 denotes the stochastic convolution Φ defined in (26) and its Wick powers :Φℓ:,
ℓ= 2, . . . ,k, defined in Lemma 8 below.

The proof of Theorem 4 is based on Bourgain’s invariant measure argument [4, 5]. By viewing
the SvNLW dynamics (18) as the “superposition” of the (renormalized) NLW dynamics (23) and
the Ornstein–Uhlenbeck dynamics (for ∂t u):

∂t (∂t u) =−D∂t u +p
2D

1
2 ξ,

we expect the Gibbs measure (for the standard NLW (23)), formally given by

“dρ⃗(u,∂t u) = Z−1e−E(u,∂t u)dud(∂t u)”, (30)

to be invariant under the SvNLW dynamics (18).
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Let µ⃗1 be the induced probability measure under the map:ω ∈Ω 7−→ (uω
0 ,uω

1 ), where (uω
0 ,uω

1 ) is
as in (24). Then, we can write µ⃗1 as µ⃗1 =µ1⊗µ0, where µs denote a Gaussian measure on periodic
distributions, formally defined by

dµs = Z−1
s e−

1
2 ∥u∥2

H s du = Z−1
s

∏
n∈Z2

e−
1
2 〈n〉2s |û(n)|2 dû(n). (31)

Note that µ1 corresponds to the massive Gaussian free field, while µ0 corresponds to the white
noise. Then, by renormalizing the potential part of the energy E(u⃗) in (22), we can indeed con-
struct the Gibbs measure ρ⃗ as a probability measure such that ρ⃗ and µ⃗1 are mutually absolutely
continuous. By exploiting the formal invariance of the Gibbs measure ρ⃗ under (18), Bourgain’s
invariant measure argument yields almost sure global well-posedness of (18) with respect to the
Gibbs measure ρ⃗; see Theorem 14 below. By invoking the mutual absolute continuity of ρ⃗ and µ⃗1,
we then conclude Theorem 4. See Subsection 5.1 for details.

As a corollary to Theorem 4 and the Cameron–Martin theorem [11], we obtain the following
almost sure global well-posedness of (18) with deterministic H 1-initial data (v0, v1) perturbed
by the random functions (uω

0 ,uω
1 ) in (24). Let us introduce some notations. Fix v⃗0 = (v0, v1) ∈

H 1(T2). With u⃗ω
0 = (uω

0 ,uω
1 ), define the stochastic convolution Φ[v⃗0 + u⃗ω

0 ] with the shifted initial
data v⃗0 + u⃗ω

0 :

Φ[v⃗0 + u⃗ω
0 ](t ) =V (t )(v⃗0 + u⃗ω

0 )+p
2
∫ t

0
S(t − t ′)D

1
2 dW (t ′)

=V (t )v⃗0 +Φ(t ),
(32)

whereΦ is as in (26). Given N ∈N, setΦN [v⃗0 + u⃗ω
0 ] = PNΦ[v⃗0 + u⃗ω

0 ]. In view of

Hℓ(x + y ;σ) =
ℓ∑

j=0

(
ℓ

j

)
xℓ− j H j (y ;σ)

and (28), we define the Wick power :(ΦN [v⃗0 + u⃗ω
0 ])ℓ: by

:(ΦN [v⃗0 + u⃗ω
0 ])ℓ(t , x):

def= Hℓ(ΦN [v⃗0 + u⃗ω
0 ](t , x);αN )

=
ℓ∑

j=0

(
ℓ

j

)
(V (t )v⃗0) j :Φℓ− j

N (t , x):.
(33)

where αN is as in (27) and :Φℓ− j
N : = :(ΦN [u⃗ω

0 ])ℓ− j : is as in (28). Thanks to the H 1-regularity of

V (t )v⃗0 and the almost sure convergence of :Φℓ− j
N :, we see that the Wick power :(ΦN [v⃗0 + u⃗ω

0 ])ℓ:
converges to a limit :(Φ[v⃗0 + u⃗ω

0 ])ℓ: in C ([0,T ];W −ε,∞(T2)) for any ε> 0 and T > 0, almost surely;
see Subsection 5.2.

Proceeding as in Subsection 1.2 with the first order expansion uN = ΦN [v⃗0 + u⃗ω
0 ] + vN and

taking N → ∞, we can reformulate the renormalized SvNLW (18) with the shifted initial data
(u,∂t u)|t=0 = v⃗0 + u⃗ω

0 as{
∂2

t v + (1−∆)v +D∂t v +∑k
ℓ=0

(k
ℓ

)
:(Φ[v⃗0 + u⃗ω

0 ])ℓ:vk−ℓ = 0

(v,∂t v)|t=0 = (0,0).
(34)

Corollary 5. Let k ∈ 2N+1 and fix (v0, v1) ∈H 1(T2). Then, the renormalized SvNLW (18) is almost
surely globally well-posed with respect to the shifted initial data (v0, v1)+ (uω

0 ,uω
1 ), where (uω

0 ,uω
1 )

is as in (24), in the sense that there exists almost surely a unique global-in-time solution v to (34)
with the zero initial data.

In Subsection 5.2, we sketch the argument. See [36] for a further discussion on probabilistic
well-posedness and other aspects (such as the large deviation principle) for random initial data
of the form “a smooth deterministic function + a rough random perturbation”.

We conclude this introduction by stating several remarks.
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Remark 6.

(i) The pathwise global well-posedness result (Theorem 3) relies on a dispersive PDE argu-
ment. As such, the coefficient

p
2 on the noise D

1
2 ξ in the equation (18) plays no role and

thus Theorem 3 also applies to the cubic SvNLW (18) (with k = 3) with a general coeffi-
cient on the noise. On the other hand, Theorem 4 relies on the invariant measure argu-
ment and thus the coefficient on the noise in (18) must be

p
2.3

At this point, we do not know how to extend the pathwise global well-posedness
(Theorem 3) to the (super-)quintic case. Even with a smoother noise, one would need
to use a trick introduced in [26, 35] to handle the higher homogeneity. See [27]. It may
also be of interest to investigate if a parabolic PDE approach such as those in [29, 44] can
be applied to handle the (super-)quintic case.

(ii) As mentioned in Remark 1, Theorems 2 and 3 apply to (4) with α = 1
2 with essentially

identical proofs. When α < 1
2 , the equation (4) is no longer singular (namely, a solution

is a function and there is no need for a renormalization). See [27] for pathwise global
well-posedness results for higher values of k ∈ 2N+1, when α< 1

2 .
(iii) When k = 2, the equation (18) is no longer defocusing. Even in this case, however, the

Gibbs measure can be constructed; see [6,39] and thus an analogue of almost sure global
well-posedness (Theorem 4) holds when k = 2. In the non-defocusing case with k ≥ 3,
namely, either (i) even k ≥ 4 or (ii) with the nonlinearity −:uk : , k ∈ 2N+1, (i.e. with the
negative sign) in (18), it is known that the Gibbs measure is not constructible [9, 39] and
hence Bourgain’s invariant measure argument is not applicable in this case.

(iv) For the physical reason, it is of interest to investigate the well-posedness issue of (18)
on R2. In this case, due to the unboundedness of the domain, the integrability becomes
an issue. In view of the pathwise global well-posedness (Theorem 3), we expect that the
dispersive techniques as in [43] may be applied to treat the cubic case. As for the higher
order nonlinearity, it may be possible to adapt the parabolic approach as in [29]. We plan
to address this issue in a forthcoming work.

(v) As for the model (5) without renormalization, we expect a triviality result to hold. Roughly
speaking, extreme oscillations make solutions uN to (10) with regularized noises tend to
a solution to the linear stochastic viscous wave equation (6) (or the trivial solution) as the
regularization is removed. Such a triviality result (in the absence of renormalization) is
known for stochastic NLW and stochastic nonlinear heat equations; see [1, 21, 32, 37].

Remark 7. From its derivation, the viscous wave equation is most relevant physically in two
spatial dimensions; see [22, 24]. At the same time, it is of interest to study the equation in other
spatial dimensions.

(i) Let us first consider the following equation on Td :

∂2
t u + (1−∆)u +D∂t u +uk = Dαξ. (35)

When α < 3−d
2 , it follows from the 3

2 -smoothing of the viscous wave operator that the
stochastic convolutionΨ defined by

Ψ(t ) =
∫ t

0
S(t − t ′)DαdW (t ′) (36)

is a function and hence there is no need for renormalization to study (35). See a recent
preprint [27].

3For general 0 < µ< 1, Theorem 4 also holds for the following equation: ∂2
t u + (1−∆)u +2µD∂t u + :uk : = 2

p
µD

1
2 ξ,

where the coefficient on the noise is 2
p
µ.
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Whenα= 3−d
2 , the stochastic convolutionΨ in (36) has regularity slightly below 0 and

we need to apply the Wick renormalization to study the equation. When d = 1, the local
well-posedness for general k ≥ 2 and the pathwise global well-posedness in the cubic
case (k = 3) as in Theorems 2 and 3, respectively, hold true with the same proofs. When
d = 3 (corresponding to the space-time white noise forcing), in view of the embedding
H 1(T3) ⊂ L6(T3), a slight modification of the proofs of Theorems 2 and 3 shows that (a)
for k = 2,3, (the renormalized version of) SvNLW (35) (with α = 0) on T3 is locally well-
posed in H s (T3), s ≥ 1, and (b) (the renormalized version of) the cubic SvNLW (35) (with
k = 3 and α= 0) onT3 is globally well-posed in H s (T3), s ≥ 1. Due to the more restrictive
range of Sobolev’s inequality on T3, however, the proof of Theorem 2 does not apply to
SvNLW (35) (with α= 0) on T3 for k ≥ 4. In this case, one needs to make use of the (wave)
Strichartz estimates to prove local well-posedness. In higher dimensions, one also needs
to use the Strichartz estimates (except for d = 4 and k = 2, which can be handled by
Sobolev’s embedding). We, however, do not pursue this issue in this paper.

Whenα> 3−d
2 , the stochastic convolutionΨ in (36) has even lower regularity, possibly

requiring a further renormalization; see Part (ii) below. For values of α close to 3−d
2 , the

proof of local well-posedness (Theorem 2) is applicable but the value ofα depends on the
degree k of the nonlinearity. For higher values ofα, one needs to use a more sophisticated
approach such as the paracontrolled approach [8, 17, 33, 34] together with the Strichartz
estimates. As for the global well-posedness, the proof of Theorem 3 crucially exploits the
logarithmic divergence of the stochastic convolution and thus it is not applicable to the
case α> 3−d

2 .
(ii) Next, we consider the following equation on Td :

∂2
t u + (1−∆)u +D∂t u +uk =p

2D
1
2 ξ (37)

with k ∈ 2N+1, where one may prove almost sure global well-posedness via Bourgain’s
invariant measure argument. When d = 1, the stochastic convolution Φ defined in (26)
has spatial regularity 1

2 −ε and thus there is no need to introduce renormalization. In this
case, local well-posedness easily follows from Sobolev’s inequality (without the first order
expansion), and Bourgain’s invariant measure argument [4] yields the one-dimensional
analogue of Theorem 4.

When d = 3, we first recall that the Gibbs measure ρ⃗ in (30) and the Gaussian measure
µ⃗1 = µ1 ⊗µ0 (= the distribution of the random initial data (uω

0 ,uω
1 ) in (24)) are mutually

singular; see [2]. Hence, we need to study the Gibbsian initial data in this case. Noting that
the Gibbs measure ρ⃗ corresponds to theΦ4

3-measure (on u) ⊗ the spatial white noise (on
∂t u), we see that the Wick renormalization is not sufficient and that we need to introduce
another renormalization to remove the logarithmic divergence; see [20, 30] in the case of
the parabolicΦ4

3-model. The well-posedness theory in this case certainly requires a more
sophisticated approach such as the paracontrolled approach [17], which is beyond the
scope of this paper.

2. Preliminary lemmas

2.1. Tools from stochastic analysis

For readers’ convenience, we first recall the Hermite polynomials Hk (x;σ), defined through the
following generating function:

F (t , x;σ) = e t x− 1
2σt 2 =

∞∑
k=0

t k

k !
Hk (x;σ),
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which is used in constructing the renormalized powers (13), (28), and (33).
The following lemma establishes the regularity of the stochastic convolution Z and its Wick

powers :Z k : , where Z =Ψ in (7) or Z =Φ in (26).

Lemma 8. Let Z = Ψ or Φ. Given k ∈ N and N ∈ N, let :Z k
N : = :(PN Z )k : denote the trun-

cated Wick power defined in (13) or (28), respectively. Then, given any T,ε > 0 and finite
p ≥ 1, { :Z k

N : }N∈N is a Cauchy sequence in Lp (Ω;C ([0,T ];W −ε,∞(T2))), converging to some limit
:Z k : in Lp (Ω;C ([0,T ];W −ε,∞(T2))). Moreover, :Z k

N : converges almost surely to the same limit in
C ([0,T ];W −ε,∞(T2)). Furthermore, we have the following tails estimates.

(i) Given any finite q ≥ 1, we have

P
(
∥:Z k :∥L

q
T W −ε,∞

x
>λ

)
≤C exp

(
−c

λ
2
k

T
2

qk

)
(38)

for any T ≥ 1 and λ> 0.
(ii) When q =∞, we have

P
(
∥:Z k :∥L∞([ j , j+1];W −ε,∞

x ) >λ
)
≤C exp

(
−c

λ
2
k

j +1

)
(39)

for any j ∈Z≥0 and λ> 0.
(iii) When q =∞ and k = 1, we have

P
(
∥Z∥L∞([0,T ];W −ε,∞

x ) >λ
)
≤C T exp

(
−c

λ2ε

T

)
(40)

for any T ≥ 1 and λ> 0.

Part (iii) of this lemma in particular plays an important role in the proof of Theorem 3. See
Section 4.

Proof. In view of (9) and (27), the proof of this lemma is essentially identical to that of Lemma 2.3
in [19] for the stochastic (damped) wave equation. Hence, we will be very brief here. As for the
convergence part of the statement, see [18, Proposition 2.1] and [17, Lemma 3.1].

(i). As for the exponential tail estimate (38), by repeating the argument in the proof of [18,
Proposition 2.1], we have

E
[|〈∇〉−ε:Z k (t , x):|2]≲ ∑

n1,...,nk∈Z2

1

〈n1〉2 · · · 〈nk〉2〈n1 +·· ·+nk〉2ε ≤Cε (41)

for any ε > 0, uniformly in x ∈ T2 and t ≥ 0. Then, given finite q ≥ 1, Sobolev’s inequality (with
some r > 4ε−1), Minkowski’s integral inequality, and the Wiener chaos estimate ([18, Lemmas 2.3
and 2.4]) yield ∥∥∥∥:Z k :∥L

q
T W −ε,∞

x

∥∥∥
Lp (Ω)

≲
∥∥∥∥:Z k :∥

L
q
T W

− ε
2 ,r

x

∥∥∥
Lp (Ω)

≲ p
k
2 T

1
q (42)

for any p ≥ max(q,r ). Then, the bound (38) follows from (42) and Chebyshev’s inequality (as
in [3, Lemma 3]).4

(ii). As for the second bound (39), we first write

P
(
∥:Z k :∥L∞([ j , j+1];W −ε,∞

x ) >λ
)

≤ P
(
∥:Z k ( j ):∥W −ε,∞

x
> λ

2

)
+P

(
sup

t∈[ j , j+1]
∥:Z k (t ):− :Z k ( j ):∥W −ε,∞

x
> λ

2

)
(43)

4Lemma 2.2 in the arXiv version.
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for given j ∈ Z≥0 and λ > 0. Using (41), we can repeat the argument in Part (i) to bound the first
term on the right-hand side of (43). As for the second term on the right-hand side of (43), we first
recall from the proof of [18, Proposition 2.1] that∥∥∥|h|−ρ∥δh(:Z k (t ):)∥W −ε,∞

x

∥∥∥
Lp (Ω)

≲ p
k
2 ( j +1)

k
2

for any sufficiently large p ≫ 1, t ∈ [ j , j +1], and |h| ≤ 1, where δh f (t ) = f (t +h)− f (t ) and 0 < ρ <
ε. Then, the desired bound (39) follows from Chebyshev’s inequality and the Garsia–Rodemich–
Rumsey inequality ([14, Theorem A.1] and [19, Lemma 2.2]), which provides an exponential tail
bound for a Hölder norm (in time). See the proof of Lemma 2.3 in [19] for further details.

(iii). The third bound (40) follows in a similar manner once we make ε-dependence more
explicit. By Sobolev’s inequality, Minkowski’s integral inequality, and the Wiener chaos estimate
([18, Lemmas 2.3 and 2.4]), we have∥∥∥Z ( j )∥W −ε,∞

x

∥∥
Lp (Ω) ≲

∥∥∥Z ( j )∥
W

− ε
2 ,r

x

∥∥
Lp (Ω) ≲ p

1
2

∥∥∥∥∥〈∇〉− ε
2 Z ( j )

∥∥
L2(Ω)

∥∥∥
Lr

x

≲ p
1
2

∥∥∥( ∑
n∈Z2

1

〈n〉2+ε
) 1

2
∥∥∥

Lr
x

∼ p
1
2 ε−

1
2

for any p ≥ r > 4ε−1. Similarly, by the mean value theorem (with (7) or (26)), we have∥∥∥|h|−ρ∥δh Z (t )∥W −ε,∞
x

∥∥∥
Lp (Ω)

≲ p
1
2 |h| ε4 −ρ

( ∑
n∈Z2

1

〈n〉2+ε

) 1
2

≲ p
1
2 ε−

1
2

for any sufficiently large p ≫ 1, t , t +h ∈ [0,T ], and |h| ≤ 1, provided that 0 < ρ < ε
4 . Then, the rest

follows from proceeding as in Part (ii) and summing over the interval [ j , j +1]. □

2.2. Tools from deterministic analysis

We first recall the product estimates.

Lemma 9. Let 0 ≤ s ≤ 1.

(i) Suppose that 1 < p j , q j ,r <∞, 1
p j

+ 1
q j

= 1
r , j = 1,2. Then, we have

∥〈∇〉s ( f g )∥Lr (Td ) ≲
(
∥ f ∥Lp1 (Td )∥〈∇〉s g∥Lq1 (Td ) +∥〈∇〉s f ∥Lp2 (Td )∥g∥Lq2 (Td )

)
.

(ii) Suppose that 1 < p, q,r <∞ satisfy 1
p + 1

q ≤ 1
r + s

d . Then, we have∥∥〈∇〉−s ( f g )
∥∥

Lr (Td ) ≲
∥∥〈∇〉−s f

∥∥
Lp (Td )

∥∥〈∇〉s g
∥∥

Lq (Td ).

See [18] for the proof. Note that while Lemma 9(ii) was shown only for 1
p + 1

q = 1
r + s

d in [18],

the general case 1
p + 1

q ≤ 1
r + s

d follows from the inclusion Lr1 (Td ) ⊂ Lr2 (Td ) for r1 ≥ r2.
Next, we state a Schauder-type estimate for the Poisson kernel

P (t ) = e−
D
2 t .

Lemma 10. Let 1 ≤ p ≤ q ≤∞ and α≥ 0. Then, we have

∥DαP (t ) f ∥Lq (Td ) ≲ t−α−d( 1
p − 1

q )∥ f ∥Lp (Td ) (44)

for any 0 < t ≤ 1.
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Proof. We first prove (44) on Rd for any t > 0. Let Kt (x) denote the kernel for P (t ) given by

FRd (Kt )(ξ) = e−
|ξ|
2 t , where FRd denotes the Fourier transform on Rd . Recall that

Kt (x) = cd
t

(t 2 +|x|2)
d+1

2

. (45)

Noting DαP (t ) f = (DαKt )∗ f , we need to study the scaling property of DαKt . On the Fourier side,
we have

FRd (DαKt )(ξ) = |ξ|αe−
|ξ|
2 t = t−α(t |ξ|)αe−

|ξ|t
2 = t−αFRd (DαK1)(tξ).

Namely, we have

DαKt (x) = t−d−α(DαK1)(t−1x). (46)

For 1 ≤ r ≤∞ with 1
r = 1

q − 1
p +1, from (46) and (45), we have5

∥DαKt∥Lr (Rd ) = t−α−d(1− 1
r )∥DαK1∥Lr (Rd ) =Cr,αt−α−d( 1

p − 1
q ). (47)

Then, (44) follows from Young’s inequality and (47).

Next, we prove (44) on Td . Let Rt (x) denote the kernel for P (t ) on Td given by R̂t (n) = e−
|n|
2 t =

FRd (Kt )(n). Then, given any 1 ≤ r ≤ ∞, from the Poisson summation formula (with (45)) and
Hölder’s inequality, we have

∥DαRt∥Lr (Td ) =
∥∥∥∥ ∑

n∈Zd

FRd (DαKt )(n)e i n·x
∥∥∥∥

Lr (Td )
=

∥∥∥∥ ∑
n∈Zd

DαKt (x +n)

∥∥∥∥
Lr (Td )

≤
∥∥∥∥( ∑

n∈Zd

〈n〉−βr ′
) 1

r ′ ∥∥〈n〉βDαKt (x +n)
∥∥
ℓr

n

∥∥∥∥
Lr

x (Td )

≲
∥∥〈x〉βDαKt (x)

∥∥
Lr (Rd )

≲
∥∥DαKt (x)

∥∥
Lr (Rd ) +

∥∥| x
t |βDαKt (x)

∥∥
Lr (Rd ),

(48)

provided that β> d(1− 1
r ) and 0 < t ≤ 1. From (46), we have∥∥| x

t |βDαKt (x)
∥∥

Lr (Rd ) = t−α−d(1− 1
r )∥∥|x|βDαK1(x)

∥∥
Lr (Rd ) =C ′

r,αt−α−d(1− 1
r ) (49)

for some finite C ′
r,α > 0, provided that β< d(1− 1

r )+1. Hence, the desired bound (44) follows from
Young’s inequality and (48) with (47) and (49). □

3. Local well-posedness of the stochastic viscous NLW

In this section, we present the proof of Theorem 2. For this purpose, we consider the following
deterministic vNLW: {

∂2
t v + (1−∆)v +D∂t v +∑k

ℓ=0

(k
ℓ

)
Ξℓ vk−ℓ = 0

(v,∂t v)|t=0 = (v0, v1)
(50)

for given initial data (v0, v1) ∈H s (T2), s ≥ 1, and deterministic source terms (Ξ0, . . . ,Ξk ) with the
understanding that Ξ0 ≡ 1. Define X s (T2) by

X s (T2) =H s (T2)×
k−1∏
ℓ=0

C ([0,1];W − ℓ
k ,∞(T2))×C ([0,1];W −1+ε,∞(T2)) (51)

for some small ε> 0 and set

∥ΞΞΞ∥X s = ∥(v0, v1)∥H s +
k−1∑
ℓ=1

∥Ξℓ∥
C ([0,1];W − ℓ

k ,∞)
+∥Ξk∥C ([0,1];W −1+ε,∞)

5One may first use (45) to show (47) for even α≥ 0 and then interpolate the result to deduce (47) for general α≥ 0.
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for ΞΞΞ = (v0, v1,Ξ1,Ξ2, . . . ,Ξk ) ∈ X s (T2). Then, we have the following local well-posedness result
for (50).

Proposition 11. Let k ≥ 2 be an integer and s ≥ 1. Then, (50) is locally well-posed in X s (T2). More
precisely, given an enhanced data set:

ΞΞΞ= (v0, v1,Ξ1,Ξ2, . . . ,Ξk ) ∈X s (T2),

there exist 0 < T = T (∥ΞΞΞ∥X s ) ≤ 1 and a unique solution v⃗ = (v,∂t v) ∈ C ([0,T ];H 1(T2)) to (50),
depending continuously on the enhanced data setΞΞΞ.

Note that Proposition 11 is completely deterministic. Theorem 2 immediately follows
from Proposition 11 and Lemma 8 which states that the (random) enhanced data set ΞΞΞ =
(v0, v1,Ψ, :Ψ2:, . . . , :Ψk : ) almost surely belongs to X s (T2) and that the truncated (random) en-
hanced data setΞΞΞN = (v0, v1,ΨN , :Ψ2

N :, . . . , :Ψk
N : ) converges almost surely toΞΞΞ in X s (T2).

Proof. By writing (50) in the Duhamel formulation, we have

v(t ) = Γ(v)
def= V (t )(v0, v1)−

k∑
ℓ=0

(
k

ℓ

)∫ t

0
S(t − t ′)

(
Ξℓ vk−ℓ)(t ′)dt ′, (52)

where V (t ) and S(t ) are as in (20) and (8) respectively. Let Γ⃗(v) = (Γ(v),∂tΓ(v)).
Fix 0 < T ≤ 1. We first consider the case ℓ= 0. From (8) and Sobolev’s inequality, we have∥∥∥∥∫ t

0
S(t − t ′)vk (t ′)dt ′

∥∥∥∥
CT H 1

x

+
∥∥∥∥∂t

∫ t

0
S(t − t ′)vk (t ′)dt ′

∥∥∥∥
CT L2

x

≲
∥∥∥∥∫ t

0

∥∥sin((t − t ′)�D�)vk (t ′)
∥∥

L2
x

dt ′
∥∥∥∥

CT

≲ T
∥∥vk∥∥

CT L2
x
≲ T ∥v∥k

CT L2k
x

≲ T ∥v∥k
CT H 1

x
.

(53)

Next, let 1 ≤ ℓ≤ k−1. From Lemma 10, Lemma 9 (ii) and then (i) followed by Sobolev’s inequality,
we have ∥∥∥∥∫ t

0
S(t − t ′)

(
Ξℓ vk−ℓ)(t ′)dt ′

∥∥∥∥
CT H 1

x

+
∥∥∥∥∂t

∫ t

0
S(t − t ′)

(
Ξℓ vk−ℓ)(t ′)dt ′

∥∥∥∥
CT L2

x

≲ T
k−ℓ

k
∥∥Ξℓ vk−ℓ∥∥

CT H
− ℓ

k
x

≲ T
k−ℓ

k
∥∥〈∇〉− ℓ

k Ξℓ
∥∥

CT L2k
x

∥∥〈∇〉 ℓk vk−ℓ∥∥
CT L

2k
k+ℓ−1
x

≲ T
k−ℓ

k ∥ΞΞΞ∥X s
∥∥〈∇〉 ℓk v

∥∥
CT L

2k
ℓ

x

∥v∥k−ℓ−1

CT L
2k(k−ℓ−1)

k−1
x

≲ T
k−ℓ

k ∥ΞΞΞ∥X s∥v∥k−ℓ
CT H 1

x
.

(54)

Lastly, when ℓ= k, it follows from (8) and Lemma 10 that∥∥∥∥∫ t

0
S(t − t ′)Ξk (t ′)dt ′

∥∥∥∥
CT H 1

x

+
∥∥∥∥∂t

∫ t

0
S(t − t ′)Ξk (t ′)dt ′

∥∥∥∥
CT L2

x

≲ T ε∥Ξk∥CT H−1+ε
x

≤ T ε∥ΞΞΞ∥X s . (55)

Putting (52), (53), (54), and (55) together, we obtain

∥⃗Γ(v)∥CT H 1
x
≤C1∥(v0, v1)∥H 1 +C2T θ

(
1+∥ΞΞΞ∥X s

)(
1+∥v⃗∥CT H 1

x

)k

for some θ > 0. A similar computation yields a difference estimate on Γ⃗(v1)− Γ⃗(v2). Therefore,
by choosing T = T (∥ΞΞΞ∥X s ) > 0 sufficiently small, we conclude that Γ is a contraction in the ball
BR ⊂C ([0,T ];H 1(T2)) of radius R ∼ ∥(v0, v1)∥H 1 . □
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Remark 12.

(i) In view of (51) and an analogue of Lemma 8 (for a rougher noise), we see that the proof
of Proposition 11 yields local well-posedness of (18) with a rougher noise

p
2Dαξ for

α < 1
2 + 1

k such that the corresponding enhanced data set ΞΞΞ = (v0, v1,Ψ, :Ψ2:, . . . , :Ψk : )
belongs to X s (T2) almost surely. It may be possible to improve the local well-posedness
argument above by using the wave Strichartz estimates.

(ii) Suppose that (v0, v1) lies in H s (T2) for some s < 1. From (20) and Lemma 10, we have

∥V (t )(v0, v1)∥H 1
x
≲ t s−1∥(v0, v1)∥H s

for any 0 < t ≤ 1. Then, given 0 < T ≤ 1, we define the Y 1,s (T )-norm by

∥(v,∂t v)∥Y 1,s (T ) = sup
0≤t≤T

t 1−s∥(v,∂t v)(t )∥H 1
x

,

where a function is allowed to blow up at time t = 0. By slight modifications of (53), (54),
and (55), we obtain

∥⃗Γ(v)∥Y 1,s (T ) ≲ ∥(v0, v1)∥H s +T θ
(
1+∥ΞΞΞ∥X s

)(
1+∥v⃗∥Y 1,s (T )

)k

for some θ > 0, provided that s > k−1
k . A similar computation also yields a difference

estimate. This proves existence of the unique solution (v,∂t v) ∈ C ((0,T ];H 1(T2)) ∩
C ([0,T ];H s (T2)), where the latter regularity may be shown a posteriori.

4. Pathwise global well-posedness in the cubic case

In this section, we prove pathwise global well-posedness of (21) with (v,∂t v)|t=0 = (u0,u1) ∈
H 1(T2) and :Ψℓ: ∈ C ([0,T ];W −ε,∞(T2)), ε > 0, almost surely for ℓ = 1,2,3. As mentioned in
Section 1, our main goal is to control the growth of the energy E(v⃗) in (22) (with k = 3).

Given T > 0, we fix 0 ≤ t ≤ T and suppress t-dependence in the following. By (22) and (21), we
have

∂t E(v⃗) =
∫
T2

(∂t v)
{
∂2

t v + (1−∆)v + v3}dx

=−3
∫
T2

(∂t v)v2Ψdx −3
∫
T2

(∂t v)v :Ψ2:dx −
∫
T2

(∂t v):Ψ3:dx

−
∫
T2

(
D

1
2 ∂t v

)2dx

=: A1 + A2 + A3 −∥D
1
2 ∂t v∥2

L2 .

(56)

Given T ≫ 1, we set B(T ) = B(T ;Ψ) by

B(T ) = 1+∥:Ψ2:∥2

L∞
T W

− 1
2 ,∞

x

+∥:Ψ3:∥2

L∞
T W

− 1
2 ,∞

x

+ε∥Ψ∥2
L∞

T W −ε,∞
x

(57)

for some small ε > 0. By Cauchy–Schwarz’s inequality, Cauchy’s inequality, and Lemma 9(ii)
with (57), we have

|A2| ≤ 3∥〈∇〉 1
2 ∂t v∥L2∥〈∇〉− 1

2 v :Ψ2:∥L2

≤C∥∂t v∥2
L2 +δ∥D

1
2 ∂t v∥2

L2 +Cδ∥〈∇〉
1
2 v∥2

L2∥〈∇〉−
1
2 :Ψ2:∥2

L∞

≤CδB(T )E(v⃗)+δ∥D
1
2 ∂t v∥2

L2

(58)

for some small δ> 0. Similarly, we have

|A3| ≤ ∥〈∇〉 1
2 ∂t v∥L2∥〈∇〉− 1

2 :Ψ3:∥L2

≤C∥∂t v∥2
L2 +δ∥D

1
2 ∂t v∥2

L2 +Cδ∥〈∇〉−
1
2 :Ψ3:∥2

L∞

≤C E(v⃗)+CδB(T )+δ∥D
1
2 ∂t v∥2

L2 .

(59)
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It remains to estimate A1. First, note that from the embedding L
4

1+ε (T2) ⊂ L2+ε(T2) and
interpolation, we have

∥v∥W ε,2+ε ≲ ∥v∥
W ε, 4

1+ε
≲ ∥v∥εH 1∥v∥1−ε

L4 ≲ E
ε
2 (v⃗)E

1−ε
4 (v⃗) = E

1+ε
4 (v⃗) (60)

for sufficiently small 0 < ε≪ 1. For simplicity of notation, we set E(t ) = E(v⃗(t )). In the following,
we assume that E(t ) > 1.

For 0 < t1 ≤ t2 ≤ T , let

A1(t1, t2) =
∫ t2

t1

∫
T2
∂t v · v2 ·Ψdxdt .

Then, from Hölder’s inequality, Lemma 9 (i), Cauchy’s inequality, Sobolev’s inequality, and (60)
with (57), we have

|A (t1, t2)| =
∣∣∣∫ t2

t1

∫
T2
〈∇〉ε(∂t v · v2) · 〈∇〉−εΨdxdt

∣∣∣
≤C

∫ t2

t1

∥∂t v(t ′)∥W ε,2+ε∥v(t ′)∥2
L4 dt ′ · ∥Ψ∥L∞

T W −ε,∞
x

+C
∫ t2

t1

∥∂t v(t ′)∥L4∥v(t ′)∥W ε,2+ε∥v(t ′)∥L4 dt ′ · ∥Ψ∥L∞
T W −ε,∞

x

≤
∫ t2

t1

(
δ∥D

1
2 ∂t v(t ′)∥2

L2 +ε−1CδB(T )E(t ′)
)
dt ′

+ε−1CδB(T )
∫ t2

t1

∥v(t ′)∥2
W ε,2+εE(t ′)

1
2 dt ′

≤ δ
∫ t2

t1

∥D
1
2 ∂t v(t ′)∥2

L2 d t ′+ε−1CδB(T )
∫ t2

t1

E 1+ ε
2 (t ′)dt ′

(61)

for any sufficiently small ε> 0. Let us now consider the second term on the right-hand side of (61)
with p = 2ε−1:

A(p) = p
∫ t2

t1

E 1+ 1
p (t ′)dt ′.

By optimizing A(p) in p at p = logE(t ′) (for each fixed t ′) and noting that x
c

log x ≲ 1 for any x > 1,
it follows from (61) that

|A (t1, t2)| ≤ δ
∫ t2

t1

∥D
1
2 ∂t v(t ′)∥2

L2 dt ′+CδB(T )
∫ t2

t1

E(t ′) logE(t ′)dt ′. (62)

Combining (56), (58), (59), and (62), we then obtain the following Gronwall bound:

E(t2)−E(t1) ≤C ·B(T )
∫ t2

t1

E(t ′) logE(t ′)dt ′ (63)

for any 0 < t1 ≤ t2 ≤ T . By solving (63), we obtain

E(t )≲ eeC ·B(T )t
(64)

for any 0 < t ≤ T .
Lastly, note that from Lemma 8, we see that B(T ) <∞, almost surely. Furthermore, the choice

of T ≫ 1 was arbitrary. Therefore, we conclude that the H 1-norm of the solution (v,∂t v)(t ) to (21)
remains finite on any finite time interval [0,T ], almost surely, thus allowing us to iteratively apply
Proposition 11. This concludes the proof of Theorem 3.
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Remark 13.

(i) In order to justify the formal computation in this subsection, we need to proceed with
the smooth solution (vN ,∂t vN ) to the truncated equation (14) with the frequency trun-
cated initial data (PN u0,PN u1) (for example, to guarantee finiteness of the last term on
the right-hand side of (56)) and then take N →∞ in (64) by noting that the implicit con-
stant is independent of N ∈ N and by using Proposition 11 (namely, the continuous de-
pendence of a solution on an enhanced data set). This argument, however, is standard
and thus we omit details. See, for example, [35].

(ii) By refining the argument, it is possible to obtain a double exponential bound

∥(v,∂t v)(t )∥H 1 ≤CeeC (ω)tθ

for some θ > 0 and an almost surely finite random constant C (ω) > 0. We, however, do
not pursue this issue here. See, for example, Remark 3.7 in [19].

5. Almost sure global well-posedness

In this section, we first sketch the proof of almost sure global well-posedness with the Gaussian
random initial data (uω

0 ,uω
1 ) in (24) (Theorem 4), and then briefly discuss the proof of almost sure

global well-posedness with the shifted initial data (v0, v1)+ (uω
0 ,uω

1 ) (Corollary 5).

5.1. Invariant measure argument

As mentioned in Section 1, the main strategy for proving Theorem 4 is to (i) use the mutual
absolute continuity of µ⃗1 (the law of the random initial data (uω

0 ,uω
1 ) in (24)) and the Gibbs

measure ρ⃗ in (30) and (ii) then apply Bourgain’s invariant measure argument. In the following,
given a random variable X , let L (X ) denote the law of X .

For this purpose, we first review the construction of the Gibbs measure ρ⃗. Given N ∈ N,
consider the truncated Gibbs measure:

dρ⃗N (u,∂t u) = Z−1
N RN (u)dµ⃗1(u,∂t u) (65)

with the truncated renormalized density:

RN (u) = exp

(
− 1

k +1

∫
T2

:(PN u)k+1(x):dx

)
, (66)

where the Wick power :(PN u)k+1: is defined by

:(PN u)k+1(x):
def= Hk+1(PN u(x);αN )

with αN as in (27). Then, it is known that {RN }N∈N converges to some R(u) in Lp (µ⃗1) for any finite
p ≥ 1 and thus the truncated Gibbs measure ρ⃗N in (65) converges, say in total variation, to the
renormalized Gibbs measure ρ⃗ given by

dρ⃗(u,∂t u) = Z−1R(u)dµ⃗1(u,∂t u)

= Z−1 exp

(
− 1

k +1

∫
T2

:uk+1(x):dx

)
dµ⃗1(u,∂t u).

(67)

Furthermore, the resulting Gibbs measure ρ⃗ and µ⃗1 are mutually absolutely continuous. See [13,
15, 40, 42] for details.

Next, we turn our attention to the well-posedness part. Let us consider the following truncated
SvNLW:

∂2
t uN + (1−∆)uN +D∂t uN +PN

(
:(PN uN )k :

)=p
2D

1
2 ξ (68)
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and its formal limit:

∂2
t u + (1−∆)u +D∂t u + :uk : =p

2D
1
2 ξ. (69)

As we see below, the truncated Gibbs measure ρ⃗N in (65) is invariant under the truncated
dynamics (68). Then, Bourgain’s invariant measure argument [4, 5] yields the following almost
sure global well-posedness.

Theorem 14. Let k ∈ 2N+1. Then, the renormalized SvNLW (69) is almost surely globally well-
posed with respect to the renormalized Gibbs measure ρ⃗ in (67). Furthermore, the renormalized
Gibbs measure ρ⃗ is invariant under the dynamics.

More precisely, there exists a non-trivial stochastic process (u,∂t u) ∈ C (R+;H −ε(T2)) for
any ε > 0 such that, given any T > 0, the solution (uN ,∂t uN ) to the truncated SvNLW (68)
with L ((uN (0),∂t uN (0)) = ρ⃗N converges in probability to some stochastic process (u,∂t u) in
C ([0,T ];H −ε(T2)). Moreover, we have L (u(t ),∂t u(t )) = ρ⃗ for any t ≥ 0.

The proof of Theorem 14 follows exactly the same steps as in the proof of the almost sure global
well-posedness to the stochastic damped NLW studied in [19]:

∂2
t u +∂t u + (1−∆)u + :uk : =p

2ξ

and thus we only sketch the key steps in the following.
Let us first describe the precise meaning of the renormalizations in (68) and (69). Write the

solution uN to (68) with L
(
(uN ,∂t uN )|t=0

)= µ⃗1 as

uN = vN +Φ= (vN +ΦN )+P⊥
NΦ,

where P⊥
N = Id−PN and Φ denotes the stochastic convolution defined in (26) (recall that6

L ((Φ(t ),∂tΦ(t ))) = µ⃗1 for any t ≥ 0). Then, we see that (68) decouples into the linear dynamics
for the high frequency part P⊥

N uN = P⊥
NΦ:

∂2
t P⊥

NΦ+ (1−∆)P⊥
NΦ+D∂t P⊥

NΦ=p
2P⊥

N D
1
2 ξ (70)

and the nonlinear dynamics for the low frequency part PN uN :

∂2
t PN uN + (1−∆)PN uN +D∂t PN uN +PN

(
:(PN uN )k :

)=p
2PN D

1
2 ξ. (71)

In terms of vN = PN uN −ΦN , we can write (71) as{
∂2

t vN + (1−∆)vN +D∂t vN +∑k
ℓ=0

(k
ℓ

)
PN

(
:ΦℓN :vk−ℓ

N

)= 0

(vN ,∂t vN )|t=0 = (0,0),
(72)

where the Wick power is defined by

:ΦℓN (t , x):
def= Hℓ(ΦN (t , x);αN ),

where αN is as in (27). By taking N →∞, we obtain the limiting equation:{
∂2

t v + (1−∆)v +D∂t v +∑k
ℓ=0

(k
ℓ

)
:Φℓ:vk−ℓ = 0

(v,∂t v)|t=0 = (0,0).
(73)

In view of Lemma 8, the local well-posedness result (Proposition 11) applies to (72) and (73),
uniformly in N ∈N. Furthermore, the solution vN converges to v on the (random) time interval
of local existence.

Once we check invariance of the truncated Gibbs measure ρ⃗N in (65) under the truncated
SvNLW dynamics (68), the rest of the proof of Theorem 14 follows from a standard application of

6A tedious but direct computation, as in (27), shows that E
[|∂̂tΦ(t ,n)|2]= 1 for any n ∈Z2.
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Bourgain’s invariant measure argument. See, for example, [8, 33, 34, 38] for details in the context
of stochastic nonlinear wave equations. See also [41].

Invariance of the truncated Gibbs measure ρ⃗N under the truncated SvNLW dynamics (68)
follows from exactly the same argument presented in Section 4 of [19]. For readers’ convenience,
however, we sketch the argument. Given N ∈ N, define the marginal probability measures µ⃗1,N

and µ⃗⊥
1,N on PN H −ε(T2) and P⊥

N H −ε(T2), respectively, as the induced probability measures
under the map TN for µ⃗1,N and T ⊥

N for µ⃗⊥
1,N , where

TN :ω ∈Ω 7−→ (PN uω
0 ,PN uω

1 ) and T ⊥
N :ω ∈Ω 7−→ (P⊥

N uω
0 ,P⊥

N uω
2 ),

where (uω
0 ,uω

1 ) is as in (24). Then, with µ⃗1 = µ⃗1,N ⊗ µ⃗⊥
1,N , it follows from (65) that

ρ⃗N = ν⃗N ⊗ µ⃗⊥
1,N , (74)

where ν⃗N is given by d⃗νN = Z−1
N RN (u)dµ⃗1,N with the density RN as in (66). The high frequency

dynamics (70) is linear and thus we can readily verify that the Gaussian measure µ⃗⊥
1,N is invariant

under the dynamics of (70). Hence, it remains to check invariance of ν⃗N under the low frequency
dynamics (71).

With (u1
N ,u2

N ) = (PN uN ,∂t PN uN ), we can write (71) in the following Ito formulation:

d

(
u1

N
u2

N

)
=−

{(
0 −1

1−∆ 0

)(
u1

N
u2

N

)
+

(
0

PN
(
:(u1

N )k :
))}

dt +
(

0

−Du2
N dt +p

2PN D
1
2 dW

)
. (75)

This shows that the generator L N of the Markov semigroup for (75) can be written as L N =
L N

1 + L N
2 , where L N

1 denotes the generator for the deterministic NLW with the truncated
nonlinearity:

d

(
u1

N
u2

N

)
=−

{(
0 −1

1−∆ 0

)(
u1

N
u2

N

)
+

(
0

PN
(
:(u1

N )k :
))}

dt (76)

and L N
2 denotes the generator for the Ornstein–Uhlenbeck process:

du2
N =−Du2

N dt +p
2PN D

1
2 dW. (77)

Invariance of ν⃗N under the dynamics of (76) follows easily from the Hamiltonian structure
of (76) with the Hamiltonian:

EN (u1
N ,u2

N ) = 1

2

∫
T2

(
(u1

N )2 +|∇u1
N |2)dx + 1

2

∫
T2

(u2
N )2dx − log

(
RN (u1

N )
)
,

where RN is as in (66), in particular, the conservation of the Hamiltonian EN (u1
N ,u2

N ) and Liou-
ville’s theorem (on a finite-dimensional phase space PN H −ε(T2)). Hence, we have (L N

1 )∗⃗νN = 0.
As for (77), recalling that the Ornstein–Uhlenbeck process preserves the standard Gaussian

measure (at each frequency on the Fourier side), we see that ν⃗N is also invariant under the
dynamics of (77), since, on the second component u2

N , the measure ν⃗N is nothing but the white
noise µ0 (projected onto the low frequencies {|n| ≤ N }). Hence, we have (L N

2 )∗⃗νN = 0. Therefore,
we conclude that

(L N )∗⃗νN = (L N
1 )∗⃗νN + (L N

2 )∗⃗νN = 0.

This shows invariance of ν⃗N under (75) and hence under (71). Finally, invariance of the truncated
Gibbs measure ρ⃗N in (65) under the truncated SvNLW dynamics (68) follows from (74) and the
invariance of µ⃗⊥

1,N and ν⃗N under (70) and (75), respectively.

Remark 15. As a consequence of Bourgain’s invariant measure argument, the solution (u,∂t u)
to (18) constructed in Theorem 4 satisfies the following logarithmic growth bound:

∥(u(t ),∂t u(t ))∥H −ε ≤C (ω)
(

log(1+ t )
) k

2

for any t ≥ 0. See [38] for details.
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5.2. Almost sure global well-posedness with the shifted initial data

We conclude this paper by briefly discussing the proof of Corollary 5, using the Cameron–
Martin theorem [11]. For this purpose, we first go over the definition of abstract Wiener spaces
introduced by Gross [16]. See also Kuo [25]. Let H be a real separable Hilbert space. It is
known that the Gauss measure µ with the density dµ = Z−1e−

1
2 ∥x∥2

H dx is only finitely additive if
dim H =∞.

Let P denotes the collection of all finite dimensional orthogonal projections of H . A seminorm
||| · ||| on H is said to be measurable if, for any ε> 0, there exists Pε ∈P such that µ(|||Px||| > ε) < ε
for all P ∈P with P ⊥ Pε. Let B be the completion of H with respect to this seminorm ||| · |||. Then,
Gross [16] showed that we can construct µ as a countably additive Gaussian measure on B . In this
case, we say that the triplet (B , H ,µ) is an abstract Wiener space. The original Hilbert space H is
referred to as a Cameron–Martin space or a reproducing kernel Hilbert space.

Let (B , H ,µ) be an abstract Wiener space. Then, the Cameron–Martin Theorem [11] states the
following.

Lemma 16. Given h ∈ B, define a shifted measureµh byµh( · ) :=µ( ·−h). Then, the shifted measure
µh and the original Gaussian measure are equivalent (namely, mutually absolutely continuous) if
and only if h ∈ H.

Let (uω
0 ,uω

1 ) be as in (24). Then, its distribution is given by µ⃗1 =µ1⊗µ0 defined in (31), with the
formal density:

d µ⃗1 = Z−1e
− 1

2 ∥(u,v)∥2
H 1 d(u, v).

In this context, the Cameron–Martin theorem states that the Gaussian measure µ⃗1 and the shifted
measure

µ⃗1,v⃗0 ( · ) := µ⃗1( · − v⃗0) (78)

are equivalent if and only if v⃗0 = (v0, v1) belongs to the Cameron–Martin space H 1(T2).
Now, fix v⃗0 = (v0, v1) ∈ H 1(T2). Let Φ[v⃗0 + u⃗ω

0 ] be the stochastic convolution defined in (32).
WithΦN [v⃗0+u⃗ω

0 ] = PNΦ[v⃗0+u⃗ω
0 ], we define the Wick power :(ΦN [v⃗0+u⃗ω

0 ])ℓ: as in (33). Then, from
Sobolev’s embedding (with large r ≫ 1 such that εr > 4), (32), (33), and Lemma 9(ii) followed by
Lemma 9(i) and Sobolev’s inequality, we have

∥:(ΦN [v⃗0 + u⃗ω
0 ])ℓ:∥CT W −ε,∞

x
≲ ∥:(V (t )v⃗0 +ΦN [u⃗ω

0 ])ℓ:∥
CT W

− ε
2 ,r

x

≲
ℓ∑

j=0
∥(V (t )v⃗0) j ∥

CT W
ε
2 ,p

x

∥:(ΦN [uω
0 ])ℓ− j :∥

CT W
− ε

2 ,∞
x

≲
ℓ∑

j=0
∥(V (t )v⃗0)∥

CT W
ε
2 , 4
ε

x

∥(V (t )v⃗0)∥ j−1

CT L

4p( j−1)
4−εp

x

∥:(ΦN [uω
0 ])ℓ− j :∥

CT W
− ε

2 ,∞
x

≲
ℓ∑

j=0
∥(V (t )v⃗0)∥ j

CT H 1
x
∥:(ΦN [uω

0 ])ℓ− j :∥
CT W

− ε
2 ,∞

x

<∞,

(79)

almost surely, thanks to the fact that v⃗0 ∈ H 1(T2) and Lemma 8. Here, we chose p ≥ 1 such that
ε
4 < 1

p < 1
r + ε

4 . We also point out that the implicit constants in (79) are independent of the cutoff
size N ∈N. A slight modification of (79), combined with Lemma 8, allows us to construct the Wick
power :(Φ[v⃗0 + u⃗ω

0 ])ℓ: by a limiting procedure.
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Given w⃗0 = (w0, w1) ∈H −ε(T2), consider the following Cauchy problem:{
∂2

t v + (1−∆)v +D∂t v +∑k
ℓ=0

(k
ℓ

)
:(Φ[w⃗0])ℓ:vk−ℓ = 0

(v,∂t v)|t=0 = (0,0).
(80)

In the following, we write the solution v⃗ = (v,∂t v) to (80) as v⃗[w⃗0] to signify the dependence on
w⃗0. Here, the Wick power :(Φ[w⃗0])ℓ:, if it exists, is defined by a limiting procedure as above with
the divergent constant αN in (27). For w⃗0 = u⃗ω

0 distributed by µ⃗1, the Wick power exists almost
surely. Furthermore, as discussed in Subsection 5.1, by Bourgain’s invariant measure argument,
the solution v[u⃗ω

0 ] to (80) exists globally in time, almost surely. In particular, by a close inspection
of the argument (see, for example, [38]), we can also show that

sup
t≥0

∥v⃗[u⃗ω
0 ](t )∥H 1−ε

C (t )
<∞, (81)

almost surely, for some deterministic increasing function C (t ).7

We now define a set A ⊂H −ε(T2) by

A =
{

w⃗0 ∈H −ε(T2) : sup
t≥0

∥v⃗[w⃗0](t )∥H 1−ε

C (t )
<∞

}
. (82)

From the construction, we see that the map w⃗0 7→ {:(Φ[w⃗0])ℓ:}k
ℓ=1 is measurable (but is not con-

tinuous). Furthermore, the solution map (Φ[w⃗0], :(Φ[w⃗0])2:, . . . , :(Φ[w⃗0])k :) 7→ v⃗[w⃗0] is continu-
ous; see, for example, Proposition 11. Hence, the map w0 7→ v⃗[w⃗0] is measurable and thus the set
A in (82) is a measurable set. Therefore, from Lemma 16 with (81) (namely µ⃗1(A ) = 1), we con-
clude that µ⃗1,v⃗0 (A ) = 1, where µ⃗1,v⃗0 is as in (78). Noting that µ⃗1,v⃗0 is the distribution of the shifted
initial data v⃗0 + u⃗ω

0 , we conclude that the H 1−ε-norm of the solution v⃗ to (34) remains finite for
finite times, almost surely. This proves Corollary 5.
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