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Abstract. We show that the Christoffel function (CF) factorizes (or can be disintegrated) as the product
of two Christoffel functions, one associated with the marginal and the another related to the conditional
distribution, in the spirit of “the CF of the disintegration is the disintegration of the CFs”. In the proof one
uses an apparently overlooked property (but interesting in its own) which states that any sum-of-squares
polynomial is the Christoffel function of some linear form (with a representing measure in the univariate
case). The same is true for the convex cone of polynomials that are positive on a basic semi-algebraic set.
This interpretation of the CF establishes another bridge between polynomials optimization and orthogonal
polynomials.

Résumé. Nous montrons que la fonction de Christoffel (CF) se factorise en le produit de deux fonctions de
Christoffel dont une est celle de la marginale et l’autre est liée à la probabilité conditionnelle. La démons-
tration utilise une propriété apparemment ignorée (mais intéressante en soi), qui stipule que tout polynôme
qui est somme de carrés est aussi la fonction de Christoffel d’une forme linéaire (représentée par une me-
sure dans le cas univarié). Il en va de même pour le cône convexe des polynômes positifs sur un ensemble
basique semi-algébrique. Cette interprétation de la fonction de Christoffel fournit un pont supplémentaire
entre l’optimisation polynomiale et les polynômes orthogonaux.
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1. Introduction

It is well-known that a probability measure µ on a Cartesian product X×Y ⊂ Rn ×Rp of Borel
spaces, disintegrates into µ̂(dy |x)φ(dx) with its marginal φ(dx) on X and its conditional probabil-
ity µ̂(dy |x) on Y, given x ∈ X. That is:

µ(A×B) =
∫

X∩A
µ̂(B |x)φ(dx) , ∀ A ∈B(Rn) ,B ∈B(Rp ) . (1)

The goal of this note is to provide a similar disintegration (or factorization) for the family of its
Christoffel functions (x,y) 7→Λ

µ
t (x,y), t ∈N.

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.380
mailto:lasserre@laas.fr
https://comptes-rendus.academie-sciences.fr/mathematique/


1072 Jean B. Lasserre

Contribution. Our contribution is twofold.

(i). Consider a probability measure µ on a compact subsetΩ := X×Y ⊂Rn ×R and letΛµ
t :Rn+1 →

R+ be its associated Christoffel function, i.e., withNn
t = {β ∈Nn : |β| ≤ t },

(x, y) 7→ Λ
µ
t (x, y) := ∑

(α, j )∈Nn+1
t

Pα, j (x, y)2 , ∀ (x, y) ∈Rn ×R ,

where (Pα, j )(α, j )∈Nn+1 ⊂R[x, y] is a family of orthonormal polynomials with respect to (w.r.t.) µ.
Our main result states thatΛµ

t disintegrates (or factorizes) into

Λ
µ
t (x, y) =Λφ

t (x) ·Λν̂x,t
t (y) , ∀ (x, y) ∈Rn+1 , ∀ t ∈N , (2)

where Λφ
t (resp. Λ

ν̂x,t
t ) is the Christoffel function of the marginal φ of µ on X (resp. of some

probability measure νx,t on R, given x ∈ X). Moreover, for every fixed x ∈ X, one can compute
explicitly the Hankel moment matrix of the measure νx,t by solving a single convex optimization
problem on positive definite matrices with logdet( · ) as objective function.

Notice how (2) mimics the disintegration (1). Indeed, as we should expect from the disintegra-
tion (2), it turns out that for each fixed x ∈ X, the family (Λ

νx,t
t )t∈N shares asymptotic properties of

the Christoffel functionΛµ̂
t (y) of the conditional probability µ̂(dy |x) on Y, given x ∈ X.

Actually, the same disintegration (2) holds if the conditioning is multivariate, i.e., on y ∈ Rp

given x ∈ Rn , with p > 1. The only difference is that now νx,t is a linear functional on R[y]t not
necessarily represented by a probability measure on Rp .

(ii). Interestingly, the technique of proof relies on a certain one-to-one mapping between interi-
ors of the convex cone of sum-of-squares polynomials and its dual cone of moment matrices. In
particular, and as a by-product, it implies the following simple but apparently unnoticed result
that every sum-of-squares polynomial is the reciprocal of a Christoffel function of some linear
functional (guaranteed to have a representing measure in the univariate case).

2. Notation, definitions and preliminary results

2.1. Notation and definitions

Let R[x] denote the ring of real polynomials in the variables x = (x1, . . . , xn) and R[x]t ⊂R[x] be its
subset of polynomials of total degree at most t . Let Nn

t := {α ∈ Nn : |α| ≤ t } (where |α| = ∑
i αi )

with cardinal sn(t ) = (n+t
n

)
. Let vt (x) = (xα)α∈Nn

t
be the vector of monomials up to degree t .

Let Σ[x]t ⊂R[x]2t be the convex cone of polynomials of total degree at most 2t which are sum-
of-squares (in short SOS). For a real symmetric matrix A = AT the notation A º 0 (resp. A Â 0)
stands for A is positive semidefinite (p.s.d.) (resp. positive definite (p.d.)). The support of a Borel
measure µ on Rn is the smallest closed set A such that µ(Rn \ A) = 0, and such a set A is unique.

Riesz functional. With a real sequence φ = (φα)α∈Nn is associated the Riesz linear functional
Lφ :R[x] →R defined by:

p

(
= ∑
α∈Nn

pα xα
)

7→ Lφ(p) := ∑
α∈Nn

pαφα , ∀ p ∈R[x] .

A sequence φ= (φα)α has a representing measure if and only if there exists a Borel measure φ on
Rn such that

∫
xαdφ=φα, for all α ∈Nn .
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Moment matrix. With a real sequence φ = (φα)α∈Nn is associated its moment matrix Mt (φ) of
order (or degree) t . It is a real symmetric matrix with rows and columns indexed by Nn

t , and with
entries

Mt (φ)(α,β) := Lφ(xα+β) =φα+β , α,β ∈Nn
t .

Importantly, Mt (φ) depends only on moments φα with |α| ≤ 2t . If φ has a representing measure
φ then we also write Mt (φ) and necessarily Mt (φ) is p.s.d. for all t , i.e., Mt (φ) º 0 for all t .

Christoffel function. Letφ= (φα)α∈Nn be such that Mt (φ) Â 0 for all t , and let (Pα)α∈Nn ⊂R[x] be
a family of polynomials, orthonormal with respect to φ, i.e.,

Lφ(PαPβ) = δα=β , ∀α,β ∈Nn .

Then the Christoffel function (CF)Λφt :Rn →R+ associated with φ, is defined by

x 7→Λ
φ
t (x) :=

[ ∑
α∈Nn

t

Pα(x)2

]−1

, ∀ x ∈Rn , (3)

and recalling that Mt (φ) is nonsingular, it turns out that

Λ
φ
t (x) = [

vt (x)T Mt (φ)−1 vt (x)
]−1

, ∀ x ∈Rn . (4)

An equivalent and variational definition is also

Λ
φ
t (x) = inf

p∈R[x]t

{
Lφ(p2) : p(x) = 1

}
, ∀ x ∈Rn . (5)

In [2] the authors describe a way to obtain a family of orthonormal polynomials w.r.t. φ from the
moment matrices Mt (φ) Â 0 via simple determinant calculations. We will use this construction
with a special ordering of the monomials that index the rows and columns of Mt (φ).

If φ has a representing measure φ we also write its CF as Λφ
t . The CF is usually defined for

measures φ on a compact set Ω rather than for linear functionals φ with Mt (φ) Â 0 for all t .
In this case one interesting and distinguishing feature of the CF is that as t increases, Λφ

t (x) ↓ 0

exponentially fast for every x outside the support of φ. In other words, Λφ
t identifies the support

of φ when t is sufficiently large, a nice property that can be exploited for outlier detection
in some data analysis applications; see for instance [6, 7]. In addition, at least in dimension
n = 2 or n = 3, one may visualize this property even for small t , as the resulting superlevel sets
Ωγ := {x :Λφ

t (x) ≥ γ }, γ ∈R, capture the shape ofΩ quite well; see e.g. [5].

2.2. A specific family of orthonormal polynomials

Let µ be a Borel measure on a compact subset of X×Y ⊂ Rn ×Rp , and let Mt (µ) be the moment
matrix of µ with rows and columns indexed by the monomials (xα yβ)(α,β)∈Nn+p

t
listed according

to some ordering noted “¹” between monomials, defined as follows. First in the list, we find all
monomials (xα)α∈Nn

t
(i.e. all monomials xα yβ with |β| = 0) listed e.g. according to the lexico-

graphic ordering. Then we find all monomials xα yβ with |β| = 1, then followed by monomials
xα yβ with |β| = 2, etc. Below is displayed M2(µ) in the bivariate case (n, p) = (1,1).

M2(µ) =



µ0,0 µ1,0 µ2,0 µ0,1 µ1,1 µ0,2

µ1,0 µ2,0 µ3,0 µ1,1 µ2,1 µ1,2

µ2,0 µ3,0 µ4,0 µ2,1 µ3,1 µ2,2

µ0,1 µ1,1 µ2,1 µ0,2 µ1,2 µ0,3

µ1,1 µ2,1 µ3,1 µ1,2 µ2,2 µ1,3

µ0,2 µ1,2 µ2,2 µ0,3 µ1,3 µ0,4

 . (6)
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Similarly, let vt (x, y) be the vector of monomials that form a basis of R[x,y]t listed with the same
above ordering “¹”; for instance with (n, p) = (1,1) and t = 2, v2(x, y) = (1, x, x2, y, x y, y2). Then
by (4), the Christoffel functionΛµ

t is given by

(x,y) 7→ Λ
µ
t (x,y) := vt (x,y)T Mt (µ)−1 vt (x,y) , ∀ (x,y) ∈Rn ×Rp . (7)

We next see that with ordering “¹” defined above, one may define a certain family of orthonormal
polynomials (Pα,β) ⊂R[x,y]t by following the recipe described in [2] and that we briefly summa-
rize: To compute Pα,β ∈R[x,y]t one proceeds in three steps:

• From Mt (µ) extract its submatrix S(α,β) with rows and columns indexed by (γ,η) ¹
(α,β).

• Delete the last row and replace it with the monomials (xγ yη) with (γ,η) ¹ (α,β).
• Define P̃α,β(x,y) := det(S(α,β)) and then normalize Pα,β = τ P̃α,β with τ > 0 such that
τ2

∫
(P̃α,β)2 dµ= 1.

Lemma 1. With the ordering “¹” and the above construction, the orthonormal polynomials
(Pα,0)α∈Nn

t
depend only on x, and are orthonormal w.r.t. the marginal φ of µ.

Proof. In the above construction the orthonormal polynomials (Pα,0)α∈Nn
t

are obtained from the
submatrices S(α,0) of Mt (µ), α ∈ Nn

t , which are exactly the submatrices of Mt (φ) since they are
formed with only monomials xα (as |β| = 0). Hence the conclusion follows. �

For illustration purpose, with M2(µ) as in (6),

P̃ 0,0(x, y) =µ0,0 ; P̃ 1,0(x, y) = det

([
µ0,0 µ1,0

1 x

])
; P̃ 2,0(x, y) = det

µ0,0 µ1,0 µ2,0

µ1,0 µ2,0 µ3,0

1 x x2

 ,

so that

P̃ 1,0(x, y) =µ0,0 x −µ1,0 ; P̃ 2,0(x, y) = (µ0,0µ2,0 −µ2
1,0)x2 − (µ0,0µ3,0 −µ1,0µ2,0) x + (µ1,0µ3,0 −µ2

2,0) ,

Corollary 2. Let µ be a Borel measure on X×Y with marginal φ on X, and assume that Mt (µ) Â 0
for all t . Let (Pα,β), (α,β) ∈Nn+p

t , be the family or orthonormal polynomials defined in Section 2.2,
and letΛµ

t be as in (7). Then:

Λ
µ
t (x,y)−1 =Λφ

t (x)−1 + ∑
(α,β)∈Nn+p

t ,|β|≥1

Pα,β(x,y)2 . (8)

Proof. By Lemma 1, the polynomials (Pα,0)α∈Nn
t

depend on x only and are orthonormal w.r.t. φ.
Therefore by (3): ∑

α∈Nn
t

Pα,0(x)2 =Λφ
t (x)−1 , ∀ x ∈Rn , t ∈N .

Then the result follows from

Λ
µ
t (x, y)−1 = ∑

(α,β)∈Nn+p
t

Pα,β(x,y)2 = ∑
α∈Nn

t ,β=0

Pα,0(x,y)2 + ∑
(α,β)∈Nn+p

t :|β|≥1

Pα,β(x,y)2

=Λφ
t (x)−1 + ∑

(α,β)∈Nn+p
t :|β|≥1

Pα,β(x,y)2 . �

2.3. Positive polynomials and Christoffel functions

Recall that p ∈ Σ[x]t (i.e., p is an SOS of degree at most 2t ) if and only if there exists a real
symmetric matrix Q º 0 such that p(x) = vt (x)T Q vt (x) for all x ∈ Rn . Notice that except when
t = 1, there are several possible choices for Q which is called a Gram matrix of p. As we next see,
one choice is particularly interesting. The dual cone Σ∗

t is the convex cone characterized by:

Σ∗
t = {φ ∈Nn

2t : Mt (φ) º 0} .
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Lemma 3.

(i) Every SOS polynomial in the interior of Σt is the reciprocal of the Christoffel function Λφt
of some linear functional Lφ, with φ ∈ int(Σ∗

t ). That is, p ∈ int(Σt ) if and only if

p(x) = vt (x)T Mt (φ)−1vt (x) , ∀ x ∈Rn ,

for some moment sequenceφ ∈ int(Σ∗
t ). Therefore p−1 is the Christoffel function associated

with some linear functional φ (with not necessarily a representing measure φ).
(ii) In addition, if p ∈ int(Σt ) is univariate then φ has a representing measure φ, and so p−1 is

the Christoffel functionΛφ
t of some measure φ on the real line.

Proof. The first part of the statement is a direct consequence from Nesterov [8, Theorem 17.3,
p. 412] which states that the respective interiors of Σt and its dualΣ∗

t are in one-to-one corre-
spondence, and − logdet(A) is a τ-self-concordant barrier function associated with the convex
cone Σt , with τ= (n+t

t

)
. The second statement follows from the characterization (4) ofΛφt . �

Surprisingly, the fact that every (strictly positive) SOS polynomial of degree at most 2t , is the
Christoffel function Λφt of some linear functional Lφ on R[x]2t with Mt (φ) Â 0, does not seem
to have been noticed before, even though Nesterov’s result [8, Theorem 17.3] is quite classical
in convex conic optimization. In addition, observe that Lemma 3 is the degree-t analogue of
the well-known fact that the Gram matrix of every positive quadratic form is the covariance of
a Gaussian measure (possibly after scaling). Finally, and said differently, the inverse of moment
matrices Mt (φ) associated with the Christoffel functionsΛφt are crucial to characterize the central
path1 in optimization over the convex cone (Σt )∗ of moment matrices.

We even have a similar result in a more general context. With g j ∈ R[x]d j , let g j = (g jα)α∈Nn
d j

denote its vector of coefficients, j = 0, . . . ,m. Given a real sequence φ= (φα)α∈Nn , define the new
sequences g j ·φ := (φ j ,α)α∈Nn , where for each j = 0, . . . ,m,

φ j ,α := ∑
β∈Nn

d j

g jβφα+β , ∀α ∈Nn .

Lemma 4. With g j ∈ R[x]d j (and g0 = 1), let s j := ddeg(g j )/2e, j = 0, . . . ,m, and for every
t ≥ max j s j , let Kt ⊂R[x] be the convex cone defined by:

Kt :=
{ m∑

j=0
σ j (x) g j (x) : σ j ∈Σt−s j

}
⊂R[x]2t . (9)

If p ∈ int(Kt ) then p ≥ 0 on S := {x : g j (x) ≥ 0, j = 1, . . . ,m } ⊂Rn and

p(x) =
m∑

j=0
Λ

g j ·φ
t−s j

(x)−1 g j (x), ∀ x ∈Rn (10)

for some linear functional φ= (φα)α∈Nn
2t

that satisfies Mt−s j (g j ·φ) Â 0 for all j = 0, . . . ,m.

Proof. The proof is in the same spirit and again relies on the one-to-one mapping between the
interior of the convex cone Kt and that of its dual

K∗
t = {

φ ∈Nn
2t : Mt−s j (g j ·φ) º 0, j = 0, . . . ,m

}
,

described in [8, Theorem 17.6(2), p. 416]. Translated in our notation, (17.9) in Nesterov [8,
Theorem 17.7, p. 417] reads,

p(x) =
m∑

j=0
vt−s j (x)T Mt−s j (g j ·φ)−1 vt−s j (x) , ∀ x ∈Rn , for some φ ∈ int(K∗

t ). �

1In convex optimization, the central path associated with a convex cone K, plays a central role in the analysis of the
computational complexity of interior points methods for optimizing over such a cone.
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Again the inverse of moment matrices Mt−s j (g j ·φ) associated with the Christoffel functions

Λ
g j ·φ
t−s j

are crucial to characterize the central path in optimization over the dual cone of Kt in (9).
For compact set S (with an additional Archimedean assumption), the cone Kt is very important
in the Moment-SOS hierarchy for polynomial optimization [4]. It is used to replace the intractable
positivity constraint “p ≥ 0” on S, with the more restrictive constraint “p ∈ Kt ” (and let t increase)
because the latter being semidefinite representable, is tractable.

3. Main result

Let µ be a Borel measure on a compact setΩ⊂ X×Y ⊂Rn×Rwhich disintegrates into its marginal
φ on X ⊂Rn and its conditional probability µ̂(dy |x) on Yx ⊂ Y for every x ∈ X. Throughout the rest
of the paper we assume thatΩ has nonempty interior so that Mt (µ) Â 0 for all t ∈N, where µ̂t (µ)
is constructed as in Section 2.2.

Theorem 5. Let Λµ
t be as in (7) with Mt (µ) constructed as indicated just above (7). Then for every

x ∈ X and t ∈N, there exists a probability measure νx,t on R such that

Λ
µ
t (x, y) =Λφ

t (x) ·Λνx,t
t (y) , ∀ x ∈ X , y ∈R . (11)

Proof. Let t ∈N and x ∈Rn be fixed. From (8) in Corollary 2 and as p = 1,

Λ
µ
t (x, y)−1

Λ
φ
t (x)−1

= 1+Λφ
t (x)

 ∑
(α, j )∈Nn+1

t ,1≤ j≤t

Pα, j (x, y)2


=: pt (y ; x) ∈R[y]2t .

Hence for each fixed x ∈ Rn , 1 ≤ pt (y ; x) ∈ R[y] is a strictly positive univariate SOS of degree 2t
with a non-zero coefficient for y2t ; hence pt ∈ int(Σt ). Therefore by Lemma 3(ii) there exists a
Borel measure νx,t on R such that pt (y ; x)−1 =Λνx,t

t (y), which yields (11). �

When x ∈ X, notice how well (11) mimics the disintegration (1) of µ into its marginal φ on X
and its conditional µ̂(dy |x) on Yx, given x ∈ X. However when x ∈ X, it remains to relate the family
of measures (νx,t )t∈N on Yx with the conditional probability µ̂(dy |x).

Computing the moment matrix of νx,t . To obtain the moment matrix of νx,t , for an arbitrary but
fixed x ∈Rn , is relatively easy. Let St be the space of (t +1)× (t +1) real symmetric matrices.

• Compute the polynomial y 7→ pt (y ;x) := Λµ
t (x, y)−1/Λφ

t (x)−1 which is an SOS in “y” of
degree 2t . This is easy once moments of µ are available. Indeed one computes Λµ

t (x, y)

(resp.Λφ
t (x)) via (4) with the moment matrix Mt (µ) and vt (x,y) (resp. Mt (φ) and vt (x)).

• Then following [8, p. 412], solve the convex optimization problem

Mt (νx,t ) = arg min
0≺Q∈St

{− log det(Q) : pt (y ;x) = vt (y)T Q vt (y) , ∀ y
}
. (12)

The optimization problem (12) is convex and can be solved by off-the-shelf solvers like
e.g. CVX [1].

Multivariate conditional. If p > 1 and Y ⊂Rp , then we still obtain the decomposition (11)

Λ
µ
t (x,y) =Λφ

t (x) ·Λνx,t
t (y) , ∀ x ∈ X , y ∈Rp , (13)

with exactly the same proof as that of Theorem 5. The difference with (11) is that νx,t in (13) is a
linear functional on R[y]t which is not guaranteed to have a representing measure νx,t on Rp .
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3.1. Discussion

Define the scalar sn(t ) := (n+t
t

)
for every integer t ,n. Under some conditions on the sets Ω and

X,Yx and if µ has a density w.r.t. Lebesgue measure on Ω that also satisfies some conditions,
then one may indeed relate the family (νx,t )t∈N with the conditional probability µ̂(dy |x) onY,
given x ∈ X. Under such conditions one may interpret the limit sn+1(t )Λµ

t (x, y) and sn(t )Λφ
t (x), as

t increases, in terms of the density of µ and an equilibrium measure intrinsically related to the
respective supportsΩ and X. For such conditions the interested reader is referred to [3,7] and the
many references therein. For instance:

Corollary 6. LetΩ= X×Y ⊂Rn+1 be compact withΩ= int(Ω), X = int(X), and assume that µ has
a density f w.r.t. Lebesgue on Rn+1, bounded away from 0 onΩ.

If x ∈ int(X) but (x, y) 6∈Ω, then as t increases, Λ
νx,t
t (y) ↓ 0 exponentially fast (as would do the

Christoffel functionΛµ̂
t (y) of the conditional probability µ̂(dy |x)).

Proof. By [6, 7], as (x, y) 6∈Ω, Λµ
t (x, y) ↓ 0 exponentially fast as t increases. On the other hand, as

x ∈ int(X) and the density ofφw.r.t. Lebesgue onRn is bounded away from zero,Λφ
t (x)−1 increases

with t not faster than O(t n). Therefore by (11),Λ
νx,t
t (y)−1 has to grow exponentially fast with t . The

same conclusion holds for µ̂(dy |x); indeed let y be outside the support Yx of µ̂(dy |x). The density
of µ̂(dy |x) which reads y 7→ f (x, y)/

∫
Y f (x, y)µ̂(dy |x) on Yx, is bounded away from zero. Therefore

Λ
µ̂
t (y) ↓ 0 exponentially fast as t increases. �

So Corollary 6 states that whenever x ∈ X and y 6∈ supp(µ̂(dy |x)), then asymptotically the
growth rate of Λ

νx,t
t (y)−1 is exponential as for the CF of the conditional probability µ̂(dy |x). To

obtain precise asymptotic results when (x, y) ∈Ω, additional conditions on µ are required. Below
is such a typical result.

Lemma 7 (Kroó and Lubinsky [3]). Let S ⊂Rn be compact and assume that there exists a measure
ψ0 supported on S such that uniformly on compact subsets of int(S), limt→∞ sn(t )Λψ0

t (x) = W0(x)
where W0 is continuous and positive on int(S).

If a measure ψ has continuous and positive density D w.r.t. ψ0 on int(S), then uniformly on
compact subsets of int(S), limt→∞ sn(t )Λψ

t (x) = D(x)W0(x).

Given a compact set X , let C (X ) denote the space of continuous functions on X . In our
context of µ on a compact setΩ⊂ X×Rwith marginal φ on X, we obtain the following result:

Theorem 8. Assume that there exists a measure µ0 onΩ with marginal φ0 on X and conditional
µ̂0(dy |x) on R, such that uniformly on compact subsets ofΩ (resp. X):

lim
t→∞ sn+1(t )Λµ0

t (x, y) =W0(x, y) ; lim
t→∞ sn(t )Λφ0

t (x) =W ′
0(x) .

In addition assume that the following Feller-type property holds:

x 7→
∫

h(x, y) µ̂0(dy |x) ∈C (X) whenever h ∈C (Ω).

Let µ be a measure on Ω with a continuous and positive density f w.r.t. µ0. Then, with νx,t being
the measure on R in Theorem 5:

lim
t→∞ tΛ

νx,t
t (y) = (n +1)

f (x, y)

g (x)

W0(x, y)

W ′
0(x)

, ∀ (x, y) ∈ int(Ω) , (14)

where g (x) := ∫
f (x, y) µ̂0(dy |x).

Observe that for all x ∈ int(X), f (x, y)/g (x) is the density of µ̂(dy |x) w.r.t. µ̂0(dy |x).

Proof. Disintegrating µ0 yields dµ0(x, y) = µ̂0(dy |x)φ0(dx). Therefore

dµ(x, y) = f (x, y)µ̂0(dy |x)

g (x)
g (x)φ0(dx) ; g (x) :=

∫
f (x, y) µ̂0(dy |x) ,
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and φ(dx) = g (x)φ0(dx). Moreover observe that for every x ∈ X,

µ̂(dy |x) = f (x, y)

g (x)
µ̂0(dy |x) .

That is, for every x ∈ X, y 7→ f (x, y)/g (x) is the density of µ̂(dy |x) w.r.t. µ̂0(dy |x), and by the Feller-
like property, g is continuous and positive on X. Next, by our hypotheses and from Theorem 5,

f (x, y)W0(x, y) = lim
t→∞ sn+1(t )Λµ

t (x, y) = lim
t→∞

[
sn(t ) (Λφ

t (x) · sn+1(t )

sn(t )
Λ
νx,t
t (y) )

]
= g (x)W ′

0(x) lim
t→∞

sn+1(t )

sn(t )
Λ
νx,t
t (y) ) = g (x)W ′

0(x)

n +1
lim

t→∞ tΛ
νx,t
t (y) ,

for all (x, y) ∈ int(Ω), which yields (14). �

So for instance with n = 1 = p, let dµ0(x, y) = 1[−1,1](x)1[a(x),b(x)](y)dx dy where x 7→ a(x)
and x 7→ b(x) are strictly positive and continuous on [−1,1], and b(x)− a(x) > 0 on X = [−1,1].
Then (14) reads

lim
t→∞ tΛ

νx,t
t (y) = f (x, y)∫ b(x)

a(x) f (x, y)dy

2W0(x, y)

W ′
0(x)

, ∀ (x, y) ∈ int(Ω) ,

and f (x, y)/
∫ b(x)

a(x) f (x, y)dy is the density of µ̂(dy |x) w.r.t. Lebesgue on the interval [a(x),b(x)], for
every x ∈ [−1,1].

As expected from the disintegration (11), convergence of tΛ
νx,t
t (y) as t increases, is towards the

density of the conditional µ̂(dy |x) times a weight function intrinsic to the supportΩ of µ, which
is typical of convergence results for Christoffel functions (whenever convergence takes place).

4. Conclusion

We have shown that in quite general setup, the Christoffel function disintegrates (or factorizes)
and mimics the disintegration of its associated measure on X×Y into its marginal on X and its
conditional on Y, given x ∈ X. The result uses a straightforward (but novel) interpretation of a
well-known intermediate result of convex optimization, which is of interest in its own. Namely
that every SOS polynomial is the reciprocal of the Christoffel function associated with some
linear functional (which always has a representing measure in the univariate case). A similar
interpretation is valid for the cone of polynomials that are positive on a basic semi-algebraic set.

We think that a better understanding of the linear functional νx,t (which has a representing
measure when p = 1) is needed. In particular, further investigation beyond the scope of the
present note, could consider a more detailed (and non-asymptotic) comparison of νx,t with the
conditional µ̂(dy |x) when x ∈ X, as well as understanding its meaning when p > 1, i.e., when
it may not have a representing measure. For instance we conjecture (but have been unable to
prove) that νx,t does not depend on t , and has a representing measure.
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