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1. Introduction

One of the major prominent periodic invertible and causal process in time series analysis is the
PARMA model (see [23]) which generalizes the ARMA model (see [6]). (X t , t ∈ Z), is said to be
PARMA model if it satisfies the difference equation

P∑
j=0

φi , j Xi+pm− j =
Q∑

k=0
θi , jεi+pm−k ,m ∈Z, (1)

where, for each season i (i = 1, . . . , p), where p is the period, P and Q are the AR and MA orders
respectively, and the coefficients satisfyφt+p, j =φt , j for j = 1, ..P and θt+p,k = θt ,k for k = 1, . . . , Q.
The sequence (εt )t ∈Z is zero-mean and uncorrelated with finite variance σ2

t , the variance is
periodic in t such that σ2

t+pm =σ2
t . Troutman [22] considered a periodic autoregressive process

which is defined in (1) with null moving average order and inspected divers properties of this
model by considering the associated stationary multivariate autoregressive process. Bentarzi
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and Hallin [4] investigated this idea. They consider the random variables in the periodic non
stationary process as the elements of a multivariate stationary process which is an interest of
periodic models, in addition to allowing the study of seasonal phenomena. It is that they can
be exploited in the context of the analysis of the stationary multidimensional time series, to cut
substantially the number of the parameters to estimate, especially for multivariate autoregressive
processes (see [8,19] and [17]). However, the zero mean purely fractional AFRIMA(0,d ,0) process
(X t , t ∈Z) represented by

(1−B)d X t = εt , (2)

is also an extension of the ARMA model, where B denotes the backward shift operator and
d can take any real number. Establishing a relationship between the fractional integration and
long memory, this model goes back to Hosking [11], showing that the long memory process is
invertible for d > − 1

2 and stationary for d < 1
2 . Odaki [18] noticed that this process is invertible

even when −1 < d ≤ − 1
2 , these conditions concerning the univariate case. Ching-fan [7] used

a VARFIMA model to define the invertibility condition of multivariate p-dimensional stationary
process in the sense of Hosking [11]. In this article, we frame the model (2) with periodically
time varying memory parameter d with period p by accommodating a long memory stationary
model for the p-variate process. It is an interesting topic due to the importance in one hand of
the ARFIMA models and on the other hand the periodic phenomenon (see [1, 2]). Furthermore,
the model of Hosking has found its potential in long-term forecasting, and so it has turn into one
of the basic famous parametric long memory models in the statistical literature. For this model,
the parametrical estimation of the memory parameter has been widely used as in Yajima [25]
determined the estimation of d and σ2 for the model defined in (2), using two methods, the least
squares estimates and the maximum likelihood estimate by calculating the spectral density of
the sequences εt and by the density function of the maximum likelihood estimator respectively
and assuming that this is a leading note in identification and estimation procedure of a general
ARFIMA (p,d , q). Gupta [9] proposed a regression method for estimating the d factor in this
general model and proved that this estimator have mean square consistency and compared its
performances with some known results such as Yajima [25] and others, concluding that this
method ables to estimate d and the ARMA parameters, Sowell [21] considered this general
model and derived the unconditional exact likelihood function, assuming that this method allows
the simultaneous estimation of all the parameters of the model by exact maximum likelihood.
Mayoral [15] used a minimum distance by a new method for estimating the parameters of
stationary and non-stationary ARFIMA(p,d0, q) process for d0 < 0,75. The quasi-maximum
likelihood approach for a non-stationary multivariate ARFIMA process is derived by Kamagate
and Hili [13]. Kamagate and Hili [12] determined the minimum Hellinger distance estimate
(MHDE) of a general ARFIMA model. Mbeke and Hili [16] extended this work to the multivariate
case. They constructed an estimate for a vector parameters, so these known results may be used
to infer the desired property of the model considered here. Although we deal only with the
characteristics of the purely fractionally differenced process defined in (2) with periodic long
memory parameter. Indeed, Amimour and Belaide [3] have proved recently that this model has a
local asymptotic normality property. The cause of selecting the MHD method is that its estimate
own exquisite robustness properties of the MHD estimators. It has been pioneered by Beran [5]
for independent and identically distributed observations, Hili [10] extended these results to the
case of dependent observations of non-linear time series.

The outline of our paper is as follows. Section 2 describes the model, provides some required
assumptions and carry out the indispensable propositions. Section 3 is devoted to state the main
results. To see how the MHD method applies, we conduct some simulations study in Section 4.
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2. Notation and basic assumptions

2.1. Definition and notation

We shall consider the periodic autoregressive fractionally integrated moving average processes
(X t , t ∈ Z) with period p, denoted here by PtvARFIMAp (0,dt ,0), which are proposed by [3]. The
model is given by

(1−B)dt X t = εt ⇐⇒ (1−B)di Xi+pm = εi+pm , (3)

where for all t ∈ Z, there exists i = {1, . . . , p}, m ∈ Z, such that t = i +pm, di is the long memory
parameter which varies over time, whose values lie in (0, 1

2 ), and (εt , t ∈ Z) is a zero mean white
noise with finite variance σ2

t , the variance is periodic in t such that σ2
t+pm =σ2

t .
When di > 0. The process (3) is invertible and has an infinite autoregressive representation as

follows:

εi+pm = (1−B)di Xi+pm =
∞∑

j=0
πi

j Xi+pm− j , (4)

where

πi
j =

Γ
(

j −di
)

Γ( j +1)Γ (−di )
.

Γ(.) is the gamma function.
When di < 1

2 , the process (3) is causal and has an infinite moving-average representation as
follows:

Xi+pm = (1−B)−di εi+pm =
∞∑

j=0
ψi

jεi+pm− j , (5)

where

ψi
j =

Γ
(

j +di
)

Γ
(

j +1
)
Γ (di )

.

The convergence of infinite sums, in (4) and (5), is to be understood in the quadratic mean
sense, for i = 1, . . . , p.

We consider the parameters vector d = (d1, . . . , dp ) a p-dimensional real vector d ∈ Θ, where
Θ is a compact subset of Rp . We assume that we have an realization of size n, (X1, . . . .., Xn) of the
solution of equation (3). Suppose, for simplicity of notation reasons, that the size n is a multiple
of p, i.e. n = pn′. Let i = 1, · · · , p and m = 0,1, · · · ,n′−1.

The related multivariate stationary process of the PtvARFIMAp (0,di ,0) model is given by
∞∑

j=0
π1

j 0

. . .
...

0 · · ·
∞∑

j=0
π

p
j




X1+pm− j

X2+pm− j

.

.
Xp+pm− j

=


ε1+pm

ε2+pm

.

.
εp+pm

= εm .

2.2. Main assumptions and propositions

In order to deal with MHD estimation based on [5, the Theorems 2 and 4] and [10, Lemma 3.1],
our starting point is to introduce further notations and assumptions that are necessary in the
sequel. For more detail, we refer the reader to [16].

Let d̂ n be the MHD estimate of d , which minimizes the Hellinger distance between fn and fd .
That is

d̂ n = arg min
d ∈Θ

H2
(

fn , fd
)

, (6)
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where H2( fn , fd ) is the Hellinger distance between fn and fd defined by

H2
(

fn , fd
)= (∫

Rp

∣∣∣∣ f
1
2

n (x)− f
1
2

d (x)

∣∣∣∣2

d x

) 1
2

, (7)

where fd (.) is the theoretical probability density of εm , with fd :Rp →R+.
fn(.) is the random function of ε̂m given by

fn(x) = 1

nhp
n

n
′−1∑

m=0
K

(
x − ε̂m

hn

)
, x ∈Rp ,

where 

n∑
j=0

π1
j 0

. . .
...

0 · · ·
n∑

j=0
π

p
j




X1+pm− j

X2+pm− j

.

.
Xp+pm− j

=


ε̂1+pm

ε̂2+pm

.

.
ε̂p+pm

= ε̂m , m = 0, · · · , n′−1, (8)

and K :Rp →R+ is the kernel density function and hn the bandwidth.
Let f̃ n(.) denote the kernel density estimation of fd of εm , such that

f̃ n(x) = 1

nhp
n

n
′−1∑

m=0
K

(
x −εm

hn

)
, x ∈Rp ,

In the whole of the article, we consider the following assumptions:

Assumption 1. The process given in (3) satisfies the sufficient condition of invertibility and
causality with 0 < di < 1

2 .

Assumption 2. E(|εm |t ) <+∞ for t ≥ 1.
For all (u; v) ∈R2p , we have∫

Rp
K 2(u)du <∞,

∫
Rp

ui K (u)du = 0 for 1 ≤ i ≤ p.∫
Rp

ui u j K (u)du = 0,
∫
Rp

u2
i K (u)du <∞ for 1 ≤ j ≤ p.

There exists c > 0 such that sup
u∈Rp

|K (u + v)−K (u)| ≤ c|v |.

Assumption 3. εm admits a density absolutely continuous with respect to the Lebesgue measure

on Rp . For all d ∈ Θ and x ∈ Rp , the functions x → fd (x) and x → f
1
2

d (x) are continuously
differentiable.

Assumption 4. For all x ∈Rp , the functions d → ∂
∂di

f
1
2

d (x), for 1 ≤ i ≤ p and d → ∂2

∂di ∂dk
f

1
2

d (x), for

1 ≤ j ,k ≤ p, are bounded, continuous and defined in L2(Rp ).

Assumption 5. hn = nα`(n), −1 <α< 0 with `(.) a slowly varying function,

l i m
n→∞hn = 0, l i m

n→∞nhn =∞, l i m
n→∞

`(an)

`(n)
= 1, a > 0.

For all

d ∈Θ, sup
x∈Rp

∣∣∣∣∣∂ j fd

∂x j
k

(x)

∣∣∣∣∣<∞, j = 0,1,2, . . . . and k = 1, . . . . . . , p.

Assumption 6. For d ,d
′ ∈ Θ, d 6= d

′
implies that {x ∈ Rp / fd (x) 6= fd ′ (x)} is a set of positive

Lebesgue measure.
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Assumption 7. There exists a constant M such that sup
x∈Rp

fn(x) ≤ M <∞.

Note also that

gd (x) = f
1
2

d (x), g ′
d (x) = ∂gd

∂d
(x),

g ′′
d (x) = ∂2gd

∂d∂d t (x).Ud (x) =
[∫
Rp

g ′
d (x)

[
g ′

d (x)
]t d x

]−1

g ′
d (x).

Here and in what follows t denotes the transpose, and
a.s→ the convergence with probability one.

Condition 8. The components of g ′
d and g ′′

d are in L2 and the norms of the components are
continuous functions at d.

Condition 9.
∫
Rp g ′′

d (x)gd (x)d x is a non-singular (p ×p)-matrix.

Proposition 10. Under the assumptions 1-3 we have for any p ≥ 2,

fn(x)− fd (x)
a.s→ 0, as n →∞. (9)

Proof of Proposition 10. Using the triangular inequality, we have:

sup
x∈Rp

∣∣ fn(x)− fd (x)
∣∣≤ sup

x∈Rp

∣∣ fn(x)− f̃ n(x)
∣∣+ sup

x∈Rp

∣∣ f̃ n(x)−E
(

f̃ n(x)
)∣∣+ sup

x∈Rp

∣∣E (
f̃ n(x)

)− fd (x)
∣∣ .

Now, we will study the almost sure convergence of every term.
For the first term

sup
x∈Rp

∣∣ fn(x)− f̃ n(x)
∣∣ a.s→ 0, (i)

sup
x∈Rp

∣∣ fn(x)− f̃ n(x)
∣∣= 1

nhp+1
n

n
′−1∑

m=0
K |εm − ε̂m | .

Denoted by εm − ε̂m = Zm , such that
∞∑

j=n+1
π1

j 0

. . .
...

0 · · ·
∞∑

j=n+1
π

p
j




X1+pm− j

X2+pm− j

.

.
Xp+pm− j

=


z1+pm

z2+pm

.

.
zp+pm

 . (10)

By Assumption 2

sup
x∈Rp

∣∣ fn(x)− f̃ n(x)
∣∣≤ c

nhp+1
n

n
′−1∑

m=0
|Zm | ,

with c > 0

E

 1

nhp+1
n

n
′−1∑

m=0
‖Zm‖

2

= 1

n2h2p+2
n

E

n
′−1∑

m=0
(‖Zm‖)2 +

n
′−1∑

t=0
t 6=m

(‖Zm‖)(‖Zt‖)


≤ 1

n2h2p+2
n

2
n
′−1∑

m=0
E (‖Zm‖)2 +

n
′−1∑

t=0
t 6=m

E (‖Zt‖)2

 .

The coefficients πi
j for i = 1, . . . , p are square summable, (see [18] for the fixed (i)).

The almost sure convergence of (i) is then verified.
Next, for the second term

sup
x∈Rp

∣∣∣∼f n(x)−E
(∼

f n(x)
)∣∣∣ a.s→ 0. (ii)
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Let us the Prakasa Rao [20] inequality, modified for the case of multivariate stationary process
(see [16]). Posing

δm (x,εm) = 1

hp
n

K

(
x −εm

hn

)
,

and sn = nhn , there exists c0 > 0 such that

sup
x∈Rp

δm (x,εm) ≤ c0sn .

P

∣∣∣∼f n(x)−E
(∼

f n(x)
)∣∣∣> ε

√
sn log(n)

n

≤ 2exp

(
− sn log(n)ε2

8c0M

)
,

P
(∣∣∣∼f n(x)−E

(∼
f n(x)

)∣∣∣> εn
α
2 log(n)

)
≤ 2exp

(
−nα+1 log2(n)ε2

8c0M

)
,

P

(
n1/4 sup

x∈Rp

∣∣∣∼f n(x)−E
(∼

f n(x)
)∣∣∣> εn

2α+1
4 log(n)

)
≤ 2exp

(
−n

4α+5
4 log2(n)ε2

8c0M

)
,

Hence l i m
n→∞

sn log(n)
n = 0. Moreover, let an be the sequence such that an = β log(n), where β ≥ 2.

Since

0 < ε2n
4α+5

4 log2(n)

8c0M
<∞, we have exp

(
−ε

2n
4α+5

4 log2(n)

8c0M

)
< nβ.

P

(
n1/4 sup

x∈Rp

∣∣∣∼f n(x)−E
(∼

f n(x)
)∣∣∣> εn

2α+1
4 log(n)

)
≤ 2

nβ
,

∑
n>1

P

(
n1/4 sup

x∈Rp

∣∣∣∼f n(x)−E
(∼

f n(x)
)∣∣∣> εn

2α+1
4 log(n)

)
≤ ∑

n>1

2

nβ
.

Since the serie
∑

n>1

2
nβ

converges, by Borel-cantelli Lemma, it follows that

sup
x∈Rp

∣∣∣∼f n(x)−E
(∼

f n(x)
)∣∣∣> ε= o

(
n

2α+1
4 log(n)

)
, (11)

almost surely when n →∞. Hence sup
x∈Rp

|
∼
f n(x)−E(

∼
f n(x))| converges a.s to 0.

Finally, for the third term
sup

x∈Rp

∣∣E (
f̃ n(x)

)− fd (x)
∣∣ a.s→ 0. (iii)

We have

E
(∼

f n(x)
)
= 1

hp
n

E

(
K

(
x −ε1

hn

))
= 1

hp
n

∫
Rp

K

(
x − z

hn

)
fd (z)d x

= 1

hp
n

∫
Rp

K (u) fd (x −uhn)du,

by a simple calculus and using the generalized developement of Taylor we get

E
(∼

f n(x)
)
− fd (x) =

∫
Rp

K (u)

[∣∣∣∣∣ p∑
k=1

∂ fd

∂xk
(x)

∣∣∣∣∣ (−hn)uk +
h2

n

2

∣∣∣∣∣ p∑
j=1

p∑
k=1

∂2 fd

∂x j xk
(x)

∣∣∣∣∣u j uk +o
(
h2

n

)]
du

=
∫
Rp

K (u)

[
h2

n

2

∣∣∣∣∣ p∑
k=1

∂2 fd

∂x2
k

(x)

∣∣∣∣∣u2
k +o

(
h2

n

)]
du

sup
x∈RP

∣∣∣E (∼
f n(x)

)
− fd (x)

∣∣∣≤ h2
n

2

p∑
k=1

sup
x∈RP

∣∣∣∣∣∂2 fd

∂x2
k

(x)

∣∣∣∣∣
∫
Rp

K (u)
[
u2

k +o(1)
]

du.
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By the assumptions 2 and 5 we have

l i m
n→∞

h2
n

2

p∑
k=1

sup
x∈RP

∣∣∣∣∣∂2 fd

∂x2
k

(x)

∣∣∣∣∣→ 0,
∫
Rp

K (u)
[
u2

k +o(1)
]

du <∞, for every x ∈Rp .

Therefore, sup
x∈RP

|E
(∼

f n(x)
)
− fd (x)|→ 0, as n →∞.

According to (i), (ii) and (iii), we get the almost sure convergence to zero of fn(x)− fd (x).
This completes the proof of Proposition 10. �

Proposition 11. Noting by F the set of all densities with respect to the Lebesgue measure, then for
every g ∈ F, the functional T : F→Θ is such that:

T (g ) =
{

d0 ∈Θ : H2
(
g , fd0

)= min
d ∈Θ

H2
(
g , fd

}}
.

If such a minimum exists. In case T (g ) is not unique, T (g ) will mean one of the minimum values
selected arbitrarily.

Proof of Proposition 11. The proof is well detailed by [5, Theorem 1] and by [10, Lemma 3.1]. �

Proposition 12. Assume that the Assumptions 3-6 and the Conditions 8-9 hold and that d lies in
interior ofΘ. So, for any sequence fn converging to fd in the Hellinger metric, we have

T
(

fn(n)
)= d +

∫
Rp

Ud (x)

[
f

1
2

n (x)− f
1
2

d (x)

]
d x +Vn

∫
Rp

g ′
d (x)

[
f

1
2

n (x)− f
1
2

d (x)

]
d x. (12)

Here Vn is a non-singular p × p-matrix, such that the components of
p

nVn tend to zero when
n →∞.

Proof of Proposition 12. See the proof of [5, Theorem 4]. �

Proposition 13. Assume that the Assumptions 2-3 and 5-7 hold. Then, the limiting distribution of√
nhn

[
f

1
2

n (x)− f
1
2

d (x)

]
is N

(
0, fd (x)

∫
Rp

K 2(u)du

)
.

Proof of Proposition 13. The proof of this is similar to the proof of [24, Theorem 3]. �

After these preliminary results, we are ready to establish the MHD estimation. The almost sure
convergence of d̂ n to d and it asymptotic normality are formally stated in the next Section 3.

3. Asymptotic properties of the MHDE for PtvARFIMA

Theorem 14. Suppose that Assumptions 1-7 hold. Then,

d̂n
a.s→ d , as n →∞. (13)

Proof of Theorem 14. By the propositions 10 and 11, the proof can directly be achieved. From
proposition 10, we have

P

{
lim

n→∞ f
1
2

n (x) = f
1
2

d (x) ∀ x

}
= 1.

Consequently
H2

(
fn , fd

) a.s→ 0 as n →∞.

Next, by Proposition 11, T ( fd ) = d uniquely on Θ, then the functional T is continuous at fd in
the Hellinger topology. Therefore

d̂n = T
(

fn(x)
)→ T

(
fd (x)

)= d ,

almost surely as n →∞. �
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Theorem 15. Suppose that the Assumptions 1-7 and Conditions 8 and 9 hold. Then, the limit
distribution of

p
n(d̂ n −d) is p

n
(
d̂ n −d

)→ N
(
0,Σ2) , (14)

where

Σ2 = 1

4

[∫
Rp

g ′
d (x)

[
g ′

d (x)
]t d x

]−1 ∫
Rp

k2(u)du. (15)

Proof of Theorem 15. By Proposition 12, one can show that

p
n

(
d̂ n −d

)=p
n

∫
Rp

Ud (x)

[
f

1
2

n (x)− f
1
2

d (x)

]
d x +p

nVn

∫
Rp

g ′
d (x)

[
f

1
2

n (x)− f
1
2

d (x)

]
d x.

=p
n

∫
Rp

Ud (x)

[
f

1
2

n (x)− f
1
2

d (x)

]
d x +op (1).

With Vn → 0 in probability, Ud ∈ L2 and Ud⊥ f
1
2

d , where ⊥ is the orthogonality in L2.
For b ≥ 0, a > 0, the algebraic identity is given by

b
1
2 −a

1
2 = b −a

2a
1
2

− (b −a)2[
2a

1
2

(
b

1
2 +a

1
2

)2
] .

According to Assumption 3, the condition f
1
2

d (x) > 0 and the algebraic identity, we have

p
n

(
d̂ n −d

)=p
n

∫
Rp

Ud (x)

 fn(x)− fd (x)

2 f
1
2

d (x)

d x + An .

Where

An =−pn
∫
Rp

Ud (x)


[

fn(x)− fd (x)
]2

2 f
1
2

d (x)

(
f

1
2

n (x)+ f
1
2

d (x)

)2

d x.

Hence

|An | ≤ 2δ−
3
2

∫
Rp

|Ud (x)|pn
[

fn(x)− fd (x)
]2 ,

where δ= inf
x∈Rp

f (x),

2 f
1
2

d (x)

(
f

1
2

n (x)+ f
1
2

d (x)

)2

> 2δ
3
2 .

Conditions 8 and 9 imply that Ud (x) is continuous and bounded. So, by proposition (3) and
the Vitali’s Theorem, |An | tends to 0 in probability for n →∞.

So, we can rewrite
p

n(d̂ n −d) as folows

p
n

(
d̂ n −d

)=p
n

∫
Rp

Ud (x)

 fn(x)− fd (x)

2 f
1
2

d (x)

d x +op (1).

By Proposition 13 and by a simple calculus we deduce the limiting distribution of
p

n(d̂ n −d),∫
Rp

 Ud (x)

2 f
1
2

d (x)

 Ud (x)

2 f
1
2

d (x)

t ∫
Rp

K 2(u)du fd (x)d x = 1

4

∫
Rp

Ud (x)(Ud (x))t d x
∫
Rp

K 2(u)du.

Which proves Theorem 15. �
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4. Simulation

In this section, we present a simulation experiment, in order to illustrate, the most significative
results for the method proposed in this article, we apply numerically the Minimum Hellinger
distance method. We consider two cases:

First case, we assume that the white noise εm , εm = (ε1+2m ,ε2+2m)
′

is the density function of
the standard normal distribution and in this case the kernel density K is also the density of the
standard normal distribution.

Second case, we consider εm and K as the density function of the Cauchy distribution
(see [14]).

We generate a PtvARFIMA2(0,d ,0), Xm = (X1+2m , X2+2m)
′
, m = 0,1, ..,n′ − 1, we use three

simple size n = 10; 50; 100, with two different values of d , such that d = (0.2,0.15) and d =
(0.49,0.4). We have

MSE = 1

nr

nr∑
j=1

{(
d̂ j

n,1 −d1

)2 +
(
d̂ j

n,2 −d2

)2
}

,

where nr = 100 is the number of replications and (d̂ j
n,1, d̂ j

n,2) denote the estimate of d for the
j th replication. The results are displayed in the following tables:

For the first case,

Table 1. MHDE for d = (0.2,0.15).

n 10 50 100
M HDE (0.2006,0.1494) (0.1987,0.1512) (0.2077,0.1423)
MSE 0.0075 0.0071 0.0054

Table 2. MHDE for d = (0.49,0.4).

n 10 50 100
M HDE (0.4944,0.0.3956) (0.4939,0.4011) (0.4938,0.401)
MSE 0.000895 0.000738 0.00064

Second case

Table 3. MHDE for d = (0.2,0.15).

n 10 50 100
M HDE (0.2084,0.1416) (0.1992,0.1507) (0.1988,0.1511)
MSE 0.0084 0.0068 0.0063

Table 4. MHDE for d = (0.49,0.4).

n 10 50 100
M HDE (0.4944,0.3952) (0.494,0.3992) (0.4943,0.3973)
MSE 0.000859 0.000796 0.000758

From tables (Tables 1, 2, 3 and 4) we can deduce that the mean parameter estimates are very
close in value to the true value of the parameters, and the normal law provides a high accuracy.
However, the MSE is decreasing with the increase in sample size. This happens because the
impact of the decrease in variance with increasing sample size.
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5. conclusion

In this paper, we have addressed the problem of the Minimum Hellinger distance (MHD) in
the [5]’s style for a periodically time-varying long-memory parameter. We have constructed
an estimate for the vector parameters d , using the MHD method and studied its asymptotic
properties by considering the related multivariate stationary model. We have also presented
some numerical simulations illustrating our theoretical results.
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