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Abstract. Let Ψ be a non-constant complex-valued analytic function defined on a connected, open set
containing the Lp -spectrum of the Laplacian L on a homogeneous tree. In this paper we give a necessary and
sufficient condition for the semigroup T (t ) = e tΨ(L ) to be chaotic on Lp -spaces. We also study the chaotic
dynamics of the semigroup T (t ) = e t (aL+b) separately and obtain a sharp range of b for which T (t ) is chaotic
on Lp -spaces. It includes some of the important semigroups such as the heat semigroup and the Schrödinger
semigroup.
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1. Introduction

A homogeneous tree X of degree q + 1 is a connected graph with no circuits such that every
vertex is connected to q + 1 other vertices. Henceforth we assume q ≥ 2. We denote by d(x, y)
the natural distance between any two vertices x and y , which is the number of edges joining
them. The canonical Laplacian L on X is defined by

L f (x) = f (x)− 1

q +1

∑
y :d(x,y)=1

f
(
y
)

.

Unlike many other spaces, L defines a bounded linear operator on the Lebesgue spaces Lp (X)
for every p ∈ [1,∞]. Let σp (L ) denote the Lp -spectrum of the Laplacian L . Let Ψ be a non-
constant complex holomorphic function defined on a connected open set containing σp (L ).
Then by the usual Riesz functional calculus (see [14, Definition 10.26 at page 261]), it follows that
the semigroup
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T (t ) = e tΨ(L ), where t ≥ 0, (1)

consists of bounded linear operators on Lp (X) for every p ∈ [1,∞]. Moreover, the semigroup T (t )
is strongly continuous, that is, ‖T (t ) f − f ‖Lp (X) → 0 as t → 0, for every f ∈ Lp (X).

In this paper we study the chaotic dynamics of the semigroup T (t ) = e tΨ(L ) on Lp (X). Before
stating our main results, we recall some basic definitions. For details, we refer to [5]. Let X be
a Banach space and B(X ) be the space of all bounded linear operators from X into itself. A
semigroup on X is a map T : [0,∞) → B(X ) such that T (0) = I and T (s + t ) = T (s)T (t ) for all
s, t ≥ 0. Furthermore, T (t ) is said to be hypercyclic if there exists w ∈ X such that {T (t )w : t ≥ 0} is
dense in X . A point w ∈ X is said to be periodic for T (t ) if there exists t > 0 such that T (t )w = w .
The set of all periodic points will henceforth be denoted by Xper . The semigroup T (t ) is said to
be chaotic if it is hypercyclic and its set of periodic points is dense in X .

It follows from the definition of hypercyclicity that the existence of a hypercyclic semigroup
on a Banach space implies that it is separable. Therefore, it is obvious that T (t ) cannot be
hypercyclic, hence not chaotic on L∞(X). For other values of p, we shall prove the following
results.

Theorem A. Let 2 < p <∞ and T (t ) = e tΨ(L ) be a semigroup on Lp (X) as defined in (1). Then the
following statements are equivalent.

(1) T (t ) is chaotic on Lp (X).
(2) T (t ) has a non-trivial periodic point, that is Lp (X)per 6= {0}.
(3) The set of periodic points of T (t ) is dense in Lp (X), that is Lp (X)per = Lp (X).

Theorem B. Let 1 ≤ p ≤ 2 and T (t ) be as in Theorem A. Then we have the following.

(1) T (t ) has no non-trivial periodic point in Lp (X).
(2) T (t ) is not hypercyclic on Lp (X).

In particular T (t ) is not chaotic on Lp (X).

For 2 < p <∞, let δp = 1/p −1/2, and γ(z) be as in (3). Define

Φp (a) = (
1−γ(

iδp
)) · ((ℜa)2 + tanh2 (

δp log q
)

(ℑa)2)1/2
. (2)

Then we have the following result regarding the chaoticity of the affine semigroup. As a con-
sequence of this result, we obtain the sharp range of perturbations for which the heat and the
Schrödinger semigroups are chaotic.

Theorem C. Suppose that T (t ) = e t (aL+b), t ≥ 0 where a is a non-zero complex number and b is
real. Let 2 < p <∞. Then the following statements are equivalent.

(1) T (t ) is chaotic on Lp (X).
(2) T (t ) is hypercyclic.
(3) a and b satisfy −ℜa −Φp (a) < b <−ℜa +Φp (a), whereΦp (a) is given by (2).

Remark 1. If we assume b to be a complex number, then there won’t be any significant change
in the proof of the Theorem C because |e i tℑb | = 1 for all t ≥ 0. However, there will be a minor
modification in the statement of Theorem C(3), where b will be replaced by ℜb.

Our inspiration to study this circle of ideas originated from the papers [9, 13]. In [9], Ji and
Weber initiated the study of chaotic dynamics of the heat semigroup on Riemannian symmet-
ric spaces of non-compact type. They studied the chaotic behaviour of certain shifts of the
heat semigroup corresponding to the Laplace–Beltrami operator on the space of all radial Lp -
functions (see [9, Theorem 3.1]). Later, Pramanik and Sarkar extended these results and gave a
complete characterization of the chaotic behaviour of the heat semigroup on the whole of Lp -
spaces and its related subspaces (see [13, Theorems 1.2-1.4]). In both articles, the results show



Pratyoosh Kumar and Sumit Kumar Rano 3

a significant difference among the settings 1 ≤ p ≤ 2 and 2 < p <∞. This difference can also be
seen in Theorems A and B of this paper. Similar results concerning the chaotic behaviour of the
Lp -heat semigroup and the weighted Lp -Dunkl heat semigroup are also known on harmonic N A
groups and Euclidean spaces, respectively (see [1, Theorem 1.3], and [15, Theorem A]). Another
motivation to study this class of semigroups is the work of deLaubenfels and Emamirad [11].
In [11], the authors studied the dynamical behaviour of a class of operators generated by non-
constant analytic functions of the shift operator on weighted Lp (N) spaces. Apart from the pa-
pers cited above, we also mention in particular, a recent paper by Cohen et al. [2] which deals
with similar topics about hypercyclic operators on spaces of functions on homogeneous trees.
These functions, however, are spanned by polyharmonic functions of L , typically not in Lp (X).

We end this section by providing a quick outline of the contents of this article. We have
collected all relevant notation, definitions, and facts about the homogeneous trees in Section 2.
The proofs of Theorem A and Theorem B are given in Section 3. In Section 4, we prove Theorem C
and discuss some of its important consequences.

2. Background materials on homogeneous trees

2.1. General Notations

The letters R and Cwill denote the fields of real and complex numbers, respectively. For z ∈Cwe
use the notationℜz andℑz for real and imaginary parts of z, respectively. We will use the standard
practice of using the letter C for constant, whose value may change from one line to another line.
For every Lebesgue exponent p ∈ (1,∞), we write p ′ to denote the conjugate exponent p/(p −1).
Further, we define p ′ =∞ when p = 1 and vice-versa. For p ∈ (1,∞), let

δp = 1

p
− 1

2
and Sp = {

z ∈C : |ℑz| ≤ ∣∣δp
∣∣} .

We assume δ1 = −δ∞ = 1/2 so that S1 = {z ∈ C : |ℑz| ≤ 1/2}. We shall henceforth write S◦
p and

∂Sp to denote the usual interior and the boundary of Sp , respectively. The notation ‖T ‖p→p will
denote the operator norm of a bounded linear operator T defined on the Lebesgue space Lp (X).
Moreover, we shall write σp (T ), Pσp (T ) to respectively denote the set of spectrum and point
spectrum of T in Lp (X).

2.2. Basics

Here we review some general facts about the homogeneous trees, most of which are already
available in [6, 7]. However, it is worth mentioning that we use a different parametrization
from that of the above-mentioned references while introducing the terms such as the Poisson
transform, the elementary spherical function, and many more, which appear later in this article.

Let o be a fixed reference point in X, and Ω be the boundary of X, that is, the set of all
infinite geodesic rays starting at o. For z ∈ C and a suitable function F defined on Ω, its Poisson
transformation Pz F (see [7, Chapter 4, formula (1) at page 53]) is given by

Pz F (x) =
∫
Ω

p1/2+i z (x,ω)F (ω)dν(ω),

where p(x,ω), defined onX×Ω, is the Poisson kernel. For details regarding the Poisson kernel, we
refer to [6, page 285] and [7, Chapter 3, Section 2]. It follows from the definition that Pz = Pz+τ,
where τ= 2π/log q . It is also a well-known fact that L Pz F (x) = γ(z)Pz F (x) where γ is an analytic
function defined by the formula

γ(z) = 1− q1/2+i z +q1/2−i z

q +1
. (3)
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For z ∈ C, the elementary spherical function φz is defined as the Poisson transform of the
constant function 1. A function f on X is said to be radial if f (x) = f (y) whenever d(o, x) =
d(o, y). It is known that φz is a radial eigenfunction of L with eigenvalue γ(z) and every radial
eigenfunction of L with eigenvalue γ(z) is a constant multiple of φz (see [6, Theorem 1]). Below
we enlist some properties of φz which can be easily derived from its explicit formula given in [6,
Theorem 2(ii)-(iii)] and [7, Chapter 3, Theorem 2.2].

Lemma 2. For z ∈C, let φz =Pz 1. Then the following assertions hold:

(i) For every x ∈X, the map z 7→φz (x) is an entire function.
(ii) φz ∈ L∞(X) if and only if z ∈ S1.

(iii) For 1 < p < 2, φz ∈ Lp ′
(X) if and only if z ∈ S◦

p .
(iv) For 1 ≤ p ≤ 2, φz ∉ Lp (X) for any z ∈ Sp .

For the proof of Lemma 2(ii) and (iii), we refer to [6, Corollary (i)-(ii) at page 288] and [7,
Chapter 3, Corollary 2.3]. We also need the following estimates of Pz F , which can be considered
as a generalisation of the size estimates of φz given above. These estimates follow from the first
two inequalities in [10, page 735], the analytic interpolation [8, Theorem 1.3.7] and the fact that
‖Pz F‖Lp′ (X) ≤C‖Pz F‖Lp′ ,1(X) (see [8, Proposition 1.4.10]).

Proposition 3. Let 1 < p < 2 and z ∈ C be such that ℑz = δr ′ where p < r < p ′. Then for all
F ∈ Lr ′ (Ω),

‖Pz F‖Lp′ (X) ≤C‖F‖Lr ′ (Ω). (4)

The Helgason–Fourier transform f̃ of a finitely supported function f is a function on C×Ω
defined by the formula

f̃ (z,ω) = ∑
x∈X

f (x)p1/2+i z (x,ω).

For a finitely supported function f on X and a continuous function F onΩ, we have∫
Ω

f̃ (z,ω)F (ω)dν(ω) = ∑
x∈X

f (x)

(∫
Ω

p1/2+i z (x,ω)F (ω)dν(ω)

)
= ∑

x∈X
f (x)Pz F (x). (5)

The estimates of the Poisson transform from Proposition 3 and the duality relation (5) together
gives us the following ‘restriction type’ inequality for the Helgason–Fourier transform (see [10,
Theorem 4.2] for a more general version):

Theorem 4. Let 1 < p < 2 and f ∈ Lp (X). For p < r < p ′ and z ∈ C with ℑz = δr ′ , there exists a
constant Cp,r > 0 such that ∥∥ f̃ (z, ·)∥∥Lr (Ω) ≤Cp,r

∥∥ f
∥∥

Lp (X) .

We now recall some important facts related to the Lp -point spectrum of L . It follows from
Lemma 2 above that for p ∈ (2,∞) and z ∈ S◦

p , φz is an Lp -eigenfunction of L and hence γ(S◦
p )

lies inside the set Pσp (L ) of Lp -point spectrum of L . In fact, γ(S◦
p ) is exactly the set Pσp (L ). To

prove this, let us assume that there exists a non-zero function u in Lp (X) such that L u = γ(z)u
for some z ∉ S◦

p . Suppose that u(xo) 6= 0 for some xo ∈ X. Then f (x) = ∫
K u(xokx)dk is a radial

eigenfunction of L with eigenvalue γ(z), hence f is a constant multiple φz . Since u ∈ Lp (X),
hence so is f , which is clearly not possible as φz ∉ Lp (X) for z ∉ S◦

p (by Lemma 2(iii)). In fact, by
using Lemma 2 and a similar technique as above, one can completely summarize the Lp -point
spectrum of L as follows:

Proposition 5. Regarding the Lp -point spectrum of L , we have the following results.

(i) For 1 ≤ p ≤ 2, the point spectrum of L on Lp (X) is empty.
(ii) For 2 < p <∞, the point spectrum of L on Lp (X) is the set γ(S◦

p ).
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The complete description of the Lp -spectrum of L is given in the following proposition. For
details we refer to [7, Chapter 3, Proposition 3.1 and Theorem 3.3].

Proposition 6. For every p ∈ [1,∞], the Lp -spectrum σp (L ) of L is the image of Sp under the
map γ, which is precisely the set of all w in Cwhich satisfies[

1−ℜw

b cosh
(
δp log q

)]2

+
[

ℑw

b sinh
(
δp log q

)]2

≤ 1, where b = 2
p

q

q +1
.

In particular, σ2(L ) degenerates into the line segment [1−b,1+b].

The elliptic region in Figure 1 represents the Lp -spectrum of L , when 1 < p <∞. Moreover,
for 2 < p <∞, the shaded open elliptic region in this figure also represents the Lp -point spectrum
of L , that is, γ(S◦

p ).

X

Y

|δp |

−|δp |

O X

Y

γ
Sp

γ(Sp )

(1,0)γ(i |δp |)
γ(τ/2+ i |δp |)O

Figure 1. Lp -spectrum of L , 1 < p <∞.

3. Proof of Theorem A and Theorem B

To prove Theorem A and Theorem B, we collect some key results which will be used very fre-
quently. We begin with the spectral mapping theorem (see [14, Theorem 10.28, Theorem 10.33]).

Theorem 7. Suppose T is a bounded linear operator on Lp (X) and g is a non-constant complex
holomorphic function defined on a connected open set containing σp (T ). Then we have the
following.

(a) σp (g (T )) = g (σp (T )).
(b) Pσp (g (T )) = g (Pσp (T )).

In comparison to [14, Theorem 10.28, Theorem 10.33], there is a slight abuse of notation in the
statement of Theorem 7, namely, the operator-valued version of g , which is denoted by g (T ) in
Theorem 7, corresponds to g̃ (T ) in [14, Theorem 10.28, Theorem 10.33]. We have skipped over
this notational inconvenience to avoid confusion with the Helgason–Fourier transform, which
we have also denoted by f̃ .

For 1 ≤ p <∞ define

X0 =
{

f ∈ Lp (X) :
∥∥T (t ) f

∥∥
Lp (X) → 0 as t →∞

}
, (6)

X∞ =
{

f ∈ Lp (X) :∀ ε> 0 ∃ g ∈ Lp (X)

and t0 > 0 s.t.
∥∥g

∥∥
Lp (X) < ε,

∥∥T (t0)g − f
∥∥

Lp (X) < ε
}

. (7)
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The following sufficient condition for hypercyclicity which was proved by Desch, Schappacher
and Webb is useful in the sequel.

Proposition 8 ([4, Theorem 2.3]). Let T (t ), t ≥ 0 be a strongly continuous semigroup on Lp (X) for
1 ≤ p <∞. If both the sets X0 and X∞ are dense in Lp (X), then T (t ) is hypercyclic.

We also need the following lemma about the existence of the Helgason–Fourier transform of
Lp -functions.

Lemma 9. Suppose f ∈ Lp (X) for 1 < p < 2. Then there exists a subset Ωp of Ω of full Haar
measure in K , such that f̃ (z,ω) exists for all ω ∈ Ωp and z ∈ S◦

p . Moreover for every ω ∈ Ωp , the

map z 7→ f̃ (z,ω) is analytic on S◦
p .

Proof. Fix 1 < p < 2 and suppose that f ∈ Lp (X). Consider a sequence {rn} of real numbers
satisfying the following conditions:

(a) For all n ∈N,

p < rn < 2 and hence 2 < r ′
n < p ′. (8)

(b) The following convergences hold.

1

rn
↑ 1

p
and hence

1

r ′
n
↓ 1

p ′ as n →∞. (9)

By using (8) and Theorem 4 it follows that for each n, there exist subsets Ωrn and Ωr ′n of Ω, of

full Haar measure in K such that |̃ f |(iδrn ,ω) and |̃ f |(iδr ′n ,ω) exist for all ω ∈ Ωrn and ω ∈ Ωr ′n
respectively. Now define the set

Ωp = ⋂
k=rn ,r ′n

Ωk .

Then |̃ f |(±iδrn ,ω) exists for every n ∈ N and ω ∈ Ωp . Furthermore, Ωp is a subset of Ω with full
Haar measure in K . We claim that f̃ (z,ω) exists for all ω ∈Ωp and z ∈ S◦

p . To prove this, let us first
assume that z ∈ S◦

p . Then z = α+ iδr ′ for some r satisfying p < r < p ′. By using this fact and (9),
we can find a natural number k such that

1

p ′ <
1

r ′
k

< 1

r
< 1

rk
< 1

p
. (10)

Hence for each ω ∈Ωp ,

∣∣ f̃ (z,ω)
∣∣= ∣∣∣∣∣ ∑

x∈X
p1/r+iα(x,ω) f (x)

∣∣∣∣∣≤ ∑
x∈Eω,1

p1/r (x,ω)
∣∣ f (x)

∣∣+ ∑
x∈Eω,2

p1/r (x,ω)
∣∣ f (x)

∣∣ ,

where the sets Eω,1 and Eω,2 are defined as follows:

Eω,1 =
{

x ∈X : p(x,ω) < 1
}

and Eω,2 =
{

x ∈X : p(x,ω) ≥ 1
}

.

Using (10) in the last inequality, we finally get∣∣ f̃ (z,ω)
∣∣≤ ∑

x∈Eω,1

p1/r ′k (x,ω)
∣∣ f (x)

∣∣+ ∑
x∈Eω,2

p1/rk (x,ω)
∣∣ f (x)

∣∣
≤ ∑

x∈X
p1/r ′k (x,ω)

∣∣ f (x)
∣∣+ ∑

x∈X
p1/rk (x,ω)

∣∣ f (x)
∣∣= ∣̃∣ f

∣∣(iδrk ,ω
)+ ∣̃∣ f

∣∣(iδr ′k
,ω

)
<∞.

This completes the proof of the existence while the analyticity of the Helgason–Fourier transform
follows from the standard use of Fubini’s theorem, Morera’s theorem and the fact that for each x
and ω, the map z 7→ p1/2+i z (x,ω) is analytic on S◦

p . �
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3.1. Proof of Theorem A

Proof. Fix p ∈ (2,∞). It follows from the definition that (1) implies (2) and (3). To complete the
proof we only need to show that (2) =⇒ (3) and (3) =⇒ (1).
We first prove (2) =⇒ (3): For a clear understanding, we have divided this proof into the following
steps.

Step 1. In this step, we prove that Pσp (Ψ(L )) ∩ iR is an infinite set. Condition (2) implies
that there exists a nonzero function h ∈ Lp (X) such that T (to)h = h for some to > 0, that is
1 ∈ Pσp (e toΨ(L )). On the other hand, Proposition 5(ii) and Theorem 7(b) together imply that
Pσp (e t0Ψ(L )) = e t0Ψ(γ(S◦

p )). Therefore there exists z0 ∈ S◦
p such that Ψ(γ(z0)) = 2nπi /to for some

n ∈Z.
Let Γ : S◦

p →C be defined by

Γ(z) = (
Ψ◦γ)

(z) =Ψ(
γ(z)

)
. (11)

It follows from the assumption on Ψ that Γ is a non-constant holomorphic function on S◦
p .

Since Γ(z0) = 2nπi /to for some z0 ∈ S◦
p and Γ(S◦

p ) = Pσp (Ψ(L )), by the open mapping theorem
it follows that Pσp (Ψ(L )) must contains some open ball centered at 2nπi /to . Consequently
Pσp (Ψ(L ))∩ iR is an infinite set. In particular the set V1 = {z ∈ S◦

p : Γ(z) ∈ iQ} is an infinite set
which contains a cluster point in S◦

p .

Step 2. Let z ∈V1. Since V1 ⊆ S◦
p , z =α+ iδr ′ for some r ∈ (p ′, p) and α ∈R. Hence the set

V1 =
⋃

z∈V1

{
Pz F : F ∈ Lr ′ (Ω) whenever ℑz = δr ′ with p ′ < r < p

}
is well defined. It follows from inequality (4) that V1 ⊆ Lp (X). We now show that span(V1) ⊆
Lp (X)per . SinceΨ(L )Pz F = Γ(z)Pz F for every z ∈ S◦

p , T (t )Pz F = e tΓ(z)Pz F . Now if g ∈ span(V1)
then

g =
k∑

j=1
β j Pz j F j , where z j ∈V1 and β j ∈C,1 ≤ j ≤ k.

For every j ∈ {1,2, . . . , k}, z j ∈ V1 and hence, Γ(z j ) = i p j /q j such that p j , q j ∈Z with q j 6= 0. If we
choose s = 2πq1 · · ·qk , then T (s)g = g . Hence span(V1) ⊆ Lp (X)per .

Step 3. To prove that Lp (X)per = Lp (X), it is enough to prove that span(V1) is dense in Lp (X). Let
f ∈ Lp ′

(X) annihilate V1, that is,
∑

x∈X
f (x)Pz F (x) = 0 for all Pz F ∈ V1. By the duality relation (5) we

have, ∫
Ω

f̃ (z,ω)F (ω)dν(ω) = ∑
x∈X

f (x)Pz F (x) = 0, for all Pz F ∈ V1.

Fix z ∈V1 and suppose that z =α+ iδr ′ for some r ∈ (p ′, p). Then for every F ∈ Lr ′ (X), we have∫
Ω

f̃ (α+ iδr ′ ,ω)F (ω)dν(ω) = 0.

Since F ∈ Lr ′ (X) is arbitrary, from Theorem 4 and the above expression, we have f̃ (α+ iδr ′ ,ω) = 0
for almost every ω ∈ Ω. Thus for every z ∈ V1, f̃ (z,ω) = 0 for almost every ω ∈ Ω. By Lemma 9,
for almost every ω ∈Ω, the function z 7→ f̃ (z,ω) is analytic on S◦

p . So we conclude that for almost

every ω, the set of zeros of f̃ has a cluster point in S◦
p , and hence f̃ (z,ω) = 0 for every z ∈ S◦

p

and for almost everyω. Since f ∈ Lp ′
(X) ⊆ L2(X) (as X is a discrete space) whenever 2 < p <∞, by

Plancherel Theorem [7, Chapter 3, Theorem 4.1] we conclude that f ≡ 0. This proves that span(V1)
is dense in Lp (X), hence (2) =⇒ (3).
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Now we will prove(3) =⇒ (1): Since the density of the periodic points is already assumed, to prove
our assertion it is enough to show that T (t ) is hypercyclic. In view of Proposition 8, we only need
to show that the sets X0 and X∞ (given by (6) and (7)) are dense in Lp (X). We define the sets

V2 =
{

z ∈ S◦
p : ℜ(Γ(z)) < 0

}
and V3 =

{
z ∈ S◦

p : ℜ(Γ(z)) > 0
}

.

By repeating the arguments of Step 1 and Step 2 in the previous proof, one may prove that V2 and
V3 are non-empty open sets and both contain a cluster point in S◦

p . Corresponding to the sets Vi ,
we define (for i = 2,3)

Vi =
⋃

z∈Vi

{
Pz F : F ∈ Lr ′ (Ω) whenever ℑz = δr ′ with p ′ < r < p

}
.

Adopting a similar approach as in Step 3, we may easily show that both span(V2) and span(V3) are
dense in Lp (X). The proof will be complete once we show that span(V2) ⊆ X0 and span(V3) ⊆ X∞.
For every z ∈V2,

lim
t →∞‖T (t )Pz F‖Lp (X) = lim

t →∞e tℜ(Γ(z)) ‖Pz F‖Lp (X) = 0.

This shows that V2 is a subset of X0, hence so is span(V2).
Next we prove that span(V3) ⊆ X∞. Let g ∈ span(V3) be of the form

g =
k∑

j=1
α j Pz j F j , where z j ∈V3 and α j ∈C,1 ≤ j ≤ k.

If we choose

g t =
k∑

j=1
e−tΓ(z j )α j Pz j F j ,

then T (t )g t = g for all t ≥ 0. Since ℜ(Γ(z j )) > 0 for each j , the limit ‖g t‖Lp (X) → 0 as t →∞. Hence
it follows from definition (7) that span(V3) ⊆ X∞. This completes the proof of Theorem A. �

3.2. Proof of Theorem B

Proof.
Part 1. Let p ∈ [1,2]. We know from Proposition 5(i) that Pσp (L ) = ;. Hence by Theorem 7(b)
it follows that Pσp (T (t )) = ; for all t > 0. Seeking a contradiction, suppose that T (t ) has a
non-trivial periodic point in Lp (X). Then there exist t0 > 0 and a non-zero h ∈ Lp (X) such that
T (t0)h = h, consequently 1 ∈ Pσp (T (t0)), a contradiction to the fact that Pσp (T (t0)) = ;. This
shows that only the zero function is a periodic point, that is, T (t ) has no non-trivial periodic
point in Lp (X) for any p ∈ [1,2].

Part 2. Now we will show that T (t ) is not hypercyclic on Lp (X). Let us first assume that p = 2. We
proof this assertion by contradiction. If possible, assume that there exists a non-zero h ∈ L2(X)
such that the set {T (t )h : t ≥ 0} is dense in L2(X). Then for g = 2h, there exists a sequence of
non-negative real numbers {tn} such that T (tn)h → g in L2(X) as n →∞.

If the sequence {tn} is bounded, then there exists a subsequence {tnk } of {tn} and some
number t0 ≥ 0 such that tnk → t0 as k → ∞. Using the strong continuity of T (t ), it follows that
T (tnk )h → T (t0)h as k →∞. Hence T (t0)h = g = 2h, which is impossible as Pσ2(T (t0)) =;.

If the sequence {tn} is unbounded, then without the loss of generality we may assume that {tn}
is strictly increasing to ∞. By using the Plancherel Theorem [7, Chapter 3, Theorem 4.1], we have

4‖h‖2
L2(X) = lim

n→∞‖T (tn)h‖2
L2(X) = lim

n→∞

τ/2∫
−τ/2

∫
Ω

exp
{
2tnℜ

(
Ψ

(
γ(s)

))}∣∣h̃(s,ω)
∣∣2

dν(ω)dµ(s).
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Let

S1 =
{

s ∈ [−τ/2,τ/2) : exp
{
2ℜ(

Ψ
(
γ(s)

))}≤ 1
}

and

S2 =
{

s ∈ [−τ/2,τ/2) : exp
{
2ℜ(

Ψ
(
γ(s)

))}> 1
}

.

If the Plancherel measure of S2 is zero then 4‖h‖2
L2(X)

≤ ‖h‖2
L2(X)

. This implies that ‖h‖L2(X) = 0,
which is a contradiction to our assumption that h 6= 0. If S2 has a positive Plancherel measure,
then

4‖h‖2
L2(X) ≥ lim

n→∞

∫
S2

∫
Ω

exp
{
2tnℜ

(
Ψ

(
γ(s)

))}∣∣h̃(s,ω)
∣∣2

dν(ω)dµ(s).

By the Monotone Convergence Theorem, it follows that the above integral tends to infinity as n
tends to infinity. This again leads to a contradiction. Hence we conclude that for any h ∈ L2(X)
and h 6= 0, the set {T (t )h : t ≥ 0} can never approximate 2h. This proves our assertion for p = 2.

Now we assume p ∈ [1,2). Since X is a discrete space, hence Lp (X) ⊆ L2(X) whenever 1 ≤ p < 2
and ‖h‖L2(X) ≤ ‖h‖Lp (X) for every h ∈ Lp (X). This implies that for any h ∈ Lp (X) and h 6= 0, the set
{T (t )h : t ≥ 0} can never approximate 2h. This completes the proof of Theorem B. �

4. Proof of Theorem C and some of its consequences

Before going into the details, we recall some important facts related to the operators eξL , ξ ∈ C.
For a finitely supported function f defined on X, eξL f = f ∗h−ξ, where

hξ(x) = e−ξ
∞∑

k=0

ξk

k !
µ(∗k)

1 , (12)

µ1 is the normalised radial measure concentrated on the set {x ∈X : d(o, x) = 1}, andµ(∗k)
1 denotes

the kth convolution power of µ1. For details, we refer to [16, Section 2, page 747]. Note that we use
a different parametrization: the operators eξL correspond to H−ξ in [16, page 747], the measure
µ1 in (12) corresponds to ν in [16, page 746], our γ(z) corresponds to 1−γ(z) in [16, page 744],
and γ(0) corresponds to b2 in [16, page 745].

Lemma 10. Let eξL be the operator defined as above. Then for p > 2 the following hold.

exp
{ℜξ+Φp (ξ)

}≤ ∥∥∥eξL
∥∥∥

p→p
≤C exp

{ℜξ+Φp (ξ)
}

. (13)

Proof. For ℜξ≤ 0, the result is already known (see [16, Theorem 1(iii)]). Now we prove the result
for ℜξ> 0. It was proved in [16, Corollary 4] that for all non-zero ξ,∥∥h−ξ

∥∥
Lp,1(X) ≤C

exp
{
γ(0)ℜξ}
|ξ|

( ∞∑
d=0

d qdδp

∣∣∣hZ−ξ(1−γ(0))(d)
∣∣∣) , (14)

where

hZ−ξ(1−γ(0))(d)

denotes the heat kernel associated to the heat operator onZ (see [16, page 748]), and ‖h−ξ‖Lp,1(X)
denote the Lorentz Lp,1-norm of h−ξ (for details about Lorentz norm, we refer to [8, Chapter 1,
Section 1.4]). By using [16, formula (2) at page 748], we also have

hZ−ξ(1−γ(0))(d) = eξ(1−γ(0))I|d |
(−ξ(

1−γ(0)
))

,
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where In(ξ) denotes the modified Bessel function of order n. Since ℜ{−ξ(1 − γ(0))} < 0, the
arguments given in [16] cannot be applied here. However, by using [12, formula (8.01) at page
379], we have

hZ−ξ(1−γ(0))(d) = e iπd e2ξ(1−γ(0))hZ
ξ(1−γ(0))(d) ∀ d ∈N∪ {0}.

Now, by plugging into (14) the pointwise estimate of hZ
ξ(1−γ(0))(d) given in [16, Lemma 6], the result

follows by just imitating the proofs of [16, Theorem 8(i)] and [16, Theorem 1(iii)].
Now we will prove the lower bound of ‖eξL ‖p→p . For p > 2,∥∥∥eξL

∥∥∥
p →p

≥
∥∥eξLφz

∥∥
Lp (X)∥∥φz

∥∥
Lp (X)

= exp
{ℜ(

ξγ(z)
)}

for all z ∈ S◦
p .

By taking the supremum over all z ∈ S◦
p , we have sup{exp{ℜ(ξγ(z))} : z ∈ S◦

p } = exp{ℜξ+Φp (ξ)}.
This gives the desired lower bound. �

Now we investigate the hypercyclicity of the semigroup e(aL+b)t when 2 < p <∞.

Lemma 11. Suppose that T (t ) = e t (aL+b) where t ≥ 0, a is a non-zero complex number and
b is real. Then for 2 < p < ∞, T (t ) is not hypercyclic on Lp (X) whenever b ≤ −ℜa −Φp (a) or
b ≥−ℜa +Φp (a).

Proof. Fix p ∈ (2,∞) and let a be a non-zero complex number. To prove that the semigroup T (t )
is not hypercyclic is equivalent to show that the set {T (t )h : t ≥ 0} is not dense in Lp (X) for any
h ∈ Lp (X). If b ≤−ℜa −Φp (a) then it follows from Lemma 10 that for every h ∈ Lp (X),

‖T (t )h‖Lp (X) = ebt
∥∥∥eatL h

∥∥∥
Lp (X)

≤C exp
{

t
(
b +ℜa +Φp (a)

)}‖h‖Lp (X) ≤C‖h‖Lp (X).

This show that the set {T (t )h : t ≥ 0} is bounded and hence it cannot be dense.
Now we consider the case when b ≥ −ℜa +Φp (a). We prove this assertion by contradiction.

Suppose that there exists a non-zero h in Lp (X) such that {T (t )h : t ≥ 0} is dense in Lp (X). Note
that for all t ≥ 0, eatL e−atL h = e−atL eatL h = h. By using the norm estimate (13), we have

‖h‖Lp (X) =
∥∥∥e−atL eatL h

∥∥∥
Lp (X)

≤C exp
{

t
(−ℜa +Φp (a)

)}∥∥∥eatL h
∥∥∥

Lp (X)
,

which further implies that

‖T (t )h‖Lp (X) = ebt
∥∥∥eatL h

∥∥∥
Lp (X)

≥C exp
{

t
(
b +ℜa −Φp (a)

)}‖h‖Lp (X) ≥C‖h‖Lp (X).

Thus we conclude that the function ‘0’ does not belong to the closure of {T (t )h : t ≥ 0} in Lp (X)
and we finally arrive at a contradiction. This shows that {T (t )h : t ≥ 0} cannot be dense in Lp (X)
for any h ∈ Lp (X), and completes the proof. �

4.1. Proof of Theorem C

Proof. It follows from the definition that (1) =⇒ (2). Moreover, (2) =⇒ (3) is a consequence
of the Lemma 11. So we only need to show that (3) =⇒ (1). To prove our assertion, in view
of Theorem A, it is enough to show that T (t ) has a non-trivial periodic point in Lp (X), or
equivalently, 1 ∈ Pσp (T (t )), for some t > 0. Assume z = s+iδp and define h(s) =ℜ(aγ(s+iδp )+b),
for all s ∈ [−τ/2,τ/2]. A straightforward computation yield that the maximum and the minimum
values of h on the interval [−τ/2,τ/2] are ℜa +Φp (a) + b and ℜa −Φp (a) + b respectively. By
applying the Maximum Modulus principle on the τ-periodic function e t (aγ(·)+b), we obtain

max
z∈Sp

∣∣∣e t (aγ(z)+b)
∣∣∣= exp

{(ℜa +Φp (a)+b
)

t
}

and min
z∈Sp

∣∣∣e t(aγ(z)+b)
∣∣∣= exp

{(ℜa −Φp (a)+b
)

t
}

.
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If −ℜa −Φp (a) < b <−ℜa +Φp (a), then for any fixed t > 0,

max
z∈Sp

∣∣∣e t(aγ(z)+b)
∣∣∣> 1 and min

z∈Sp

∣∣∣e t(aγ(z)+b)
∣∣∣< 1.

Consequently it can be proved that there exists z0 ∈ S◦
p such that e t (aγ(z0)+b) = 1. Since

Pσp (T (t )) = exp{(aγ(S◦
p )+ b)t } (by Proposition 5(ii) and Theorem 7(b)), 1 ∈ Pσp (T (t )), which

establishes our claim. �

4.2. Some Consequences

There are some well-known examples of semigroups which are generated by the affine functions.
As a consequence of Theorem C we have the following interesting results about the chaotic
dynamics of these semigroups.

4.2.1. The Heat Semigroup

It was already mentioned in the introduction that the chaotic dynamics of the heat semi-
group generated by shifts of the Laplace–Beltrami operator are extensively studied on symmetric
spaces [9, 13] and harmonic N A-groups [15]. Our goal is to formulate these results for the heat
semigroup on homogeneous trees by using Theorem C as a tool. A detailed study of the heat semi-
group on X was carried out in [3], where comparable upper and lower bounds for the Lp -Lr op-
erator norms of e−tL were obtained (see [3, Theorem 2.2]). The heat semigroup on X generated
by shifts of L is defined by the formula

T (t ) = e−t (L−b) where t ≥ 0, b ∈R.

Using Theorem B, it is clear that for any b ∈R, T (t ) is neither hypercyclic nor does it have any non-
trivial periodic point on Lp (X) whenever 1 ≤ p ≤ 2. Moreover, by puttingΨ(z) =−z+b and a =−1,
respectively, the following result is an immediate consequence of Theorem A and Theorem C.

Theorem 12. Suppose that T (t ) = e−t (L−b) where t ≥ 0. Then for 2 < p < ∞, the following are
equivalent.

(1) T (t ) is chaotic on Lp (X).
(2) T (t ) has a non-trivial periodic point.
(3) b satisfies the relation γ(iδp ) < b < γ(τ/2+ iδp ).
(4) T (t ) is hypercyclic.

The geometrical interpretation of the above result can also be seen from Figure 2. The figure
on the left represents the Lp -point spectrum of L and the figure on right represents the Lp -point
spectrum of L −b. It is easy to see that the Lp -point spectrum of L −b cuts the imaginary axis
at infinitely many points if and only if γ(iδp ) < b < γ(τ/2+ iδp ).

X

Y

γ(iδp )

γ(τ/2+ iδp )O X

Y

γ(iδp )−b γ(τ/2+ iδp )−bO

Figure 2.
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4.2.2. The Schrödinger Semigroup

Now we consider the Schrödinger semigroup generated by the perturbation of iL . Once again
by using Theorem A and Theorem C with Ψ(z) = i z + b and a = i , respectively, we have the
following.

Theorem 13. Suppose that T (t ) = e t (iL+b) where t ≥ 0. Then for 2 < p < ∞, the following are
equivalent.

(1) T (t ) is chaotic on Lp (X).
(2) T (t ) has a non-trivial periodic point.
(3) b satisfies the relation ℑγ(τ/4+ iδp ) < b <ℑγ(−τ/4+ iδp ).
(4) T (t ) is hypercyclic.

In a similar way as above, Theorem 13 can also be described geometrically using the following
figure.

X

Y
γ(−τ/4+ iδp )

γ(τ/4+ iδp )

O

Y

X

iγ(τ/4+ iδp )+b

iγ(−τ/4+ iδp )+b

O

Figure 3.
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