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Abstract. For Iwahori-spherical representations of non-Archimedean general linear groups, Chan–Savin
recently expressed the Whittaker functor as a restriction to an isotypic component of a finite Iwahori–
Hecke algebra module. We generalize this method to describe principal degenerate Whittaker functors.
Concurrently, we view Murnaghan’s formula for the Harish-Chandra–Howe character as a Grothendieck
group expansion of the same module.

Comparing the two approaches through the lens of Zelevinsky’s PSH-algebras, we obtain an explicit
unitriangular transition matrix between coefficients of the character expansion and the principal degenerate
Whittaker dimensions.

Résumé. Dans le cas des représentations Iwahori-sphériques de groupes généraux linéaires de corps non
archimédien, Chan-Savin ont récemment obtenu une expression du foncteur de Whittaker comme restric-
tion d’un module d’algèbre d’Iwahori–Hecke finie à une composante isotypique. Nous généralisons cette mé-
thode pour décrire les foncteurs de Whittaker dégénérés principaux. Parallèlement, nous interprétons la for-
mule de Murnaghan pour le caractère de Harish-Chandra–Howe comme une expansion du groupe de Gro-
thendieck de ce même module.

En comparant les deux approches selon le prisme des algèbres PSH de Zelevinsky, nous obtenons
une matrice de transition unitriangulaire explicite entre les coefficients d’expansion du caractère et les
dimensions de Whittaker dégénérées principales.
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1. Introduction

Let Gn = GLn(F ) be the general linear locally compact group, defined over a p-adic field F . Let
gn = gln(F ) be its Lie algebra. Integer partitions P (n) naturally parameterize nilpotent Ad(Gn)-
orbits {Oα}α∈P (n) in gn .
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We focus on two sets of integer invariants, indexed by those nilpotent orbits, attached to each
smooth complex irreducible representation π of Gn .

The first is the Harish-Chandra–Howe local character expansion [10,11]: The trace ofπ, viewed
as a distribution on Gn , is known to be represented by a locally constant integrable function Θπ

on regular elements of the group. For a regular element X ∈ gn close enough to zero, a celebrated
expansion

Θπ(1+X ) = ∑
α∈P (n)

cα(π)µ̂Oα (X ), cα(π) ∈Z , (1)

is known to hold, where µ̂Oα , α ∈ P (n), are suitably normalized functions representing the gn-
Fourier transform of the orbital integral distribution coming from the orbit Oα.

The second set of invariants are dimensions of certain degenerate Whittaker models attached
to π and a nilpotent Ad(Gn)-orbit. Namely, for α = (α1, . . . , αk ) ∈ P (n), a standard Levi subgroup
Gα1 ×·· ·×Gαk

∼= Mα <Gn is attached, and an exact Jacquet functor rα is defined, which produces
a finite-length smooth Mα-representation rα(π).

We denote the integers
dα(π) = dimCWh(rα(π)) , α ∈ P (n) ,

where Wh stands for the Whittaker functor on Mα-representations.
The spaces Wh(rα(π)), to which we will refer as principal degenerate Whittaker models,

received attention as early as the foundational work of Zelevinsky [21]. They were incorporated in
the more general framework of degenerate Whittaker models of Moeglin–Waldspurger [15], and
more recently were shown in [8] to be minimal, in the proper sense, of such models.

Explicit formulas for values of the dimensions dα(π) in special classes of representations were
recently explored in [12, 13].

By exactness and uniqueness properties of the Whittaker functor, those invariants may be
described as the number of (Whittaker-)generic irreducible constituents of rα(π). They may also
be expressed in a slightly different form: For each 0 ≤ k ≤ n, the exact Bernstein–Zelevinsky
derivative functor σ 7→ σ(k) takes smooth Gn-representations to smooth Gn−k -representations.
Here, we treat G0-representations merely as vector spaces.

In these terms dα(π) counts the dimension of the iterated derivative(
· · ·(π(α1))(α2) · · ·

)(αk )
.

This note explicates a linear formula for transition between the invariants {cα(π)}α∈P (n) and
{dα(π)}α∈P (n) for the case when π is a Iwahori-spherical representation.

Let In <Gn denote an Iwahori subgroup, which is contained in a maximal compact subgroup
In < Kn =GLn(OF ) <Gn (OF stands for the ring of integers of F ). An irreducible Gn-representation
π is called Iwahori-spherical if its subspace π0 =πIn of In-invariant vectors is non-zero.

Iwahori-spherical irreducible representations are known to be precisely those which appear
in the principal Bernstein block of Gn-representations.

Theorem 1. Assume that the residual characteristic of the field F is greater than 2n.
For each Iwahori-spherical irreducible representation π of Gn and each partition α ∈ P (n), the

formula
dα(π) = ∑

β∈P (n)
s
(
α,βt )cβ(π)

holds, where s(α,β) ∈Z≥0 are familiar combinatorial invariants described in (2), and β 7→βt is the
combinatorial transposition involution on P (n).

The resulting transition matrix (s(α,βt ))α,β is evidently unitriangular, with respect to the
natural partial order on the set of partitions P (n). This is also the topological order on nilpotent
orbits, i.e. Oα ⊆Oβ is equivalent to α≤β.
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Indeed, the combinatorial classification of Zelevinsky identifies, for an irreducible representa-
tion π, a unique maximal απ ∈ P (n) with a non-zero dαπ (π) (in fact, dαπ (π) = 1). The GLn case of
the celebrated result of Moeglin–Waldspurger [15] then showed that α = απ is also the maximal
partition for which the coefficient cα(π) does not vanish (see e.g. [9]), and that cαπ (π) = 1. The
orbit Oαπ thus becomes the wave-front set of π in the general formalism for representations of
reductive p-adic groups.

Theorem 1 is therefore a quantitative refinement, for the Iwahori-invariant case, of this clas-
sical comparison. An abstract general triangular expression of the local character expansion was
suggested by Barbasch–Moy [2], which was a main influence for this work. Similarly to our proof,
their treatment involved a reduction to finite group analogues of degenerate Whittaker models.

Let us elaborate on the line of reasoning for the proof of Theorem 1.
The finite-dimensional semisimple Hecke algebra Hn of In-bi-invariant complex functions on

Kn acts naturally on the space π0.
The key argument is that both sets of our invariants of interest for π are encoded in the

Hn-module π0. For local character expansion coefficients this phenomenon is interpreted out
of Murnaghan’s elegant formulas [18] for depth-zero representations (for large enough residual
characteristic of F ), which are based on expressions from [20] of orbital integrals on parahoric
subgroups.

As for dimensions of principal degenerate Whittaker models, their encoding in π0 stems from
the non-degenerate case in the works of Chan–Savin [5] and Barbasch–Moy [1].

The comparison between the two lines of work mentioned above becomes transparent when
put into the context of Zelevinsky’s PSH-algebras [22] approach to the representation theory
of Hn .

More precisely, let us write Rn for the Grothendieck group of Hn-modules. The sum R =
⊕n≥0Rn now becomes a (commutative) ring, relative to a natural induction structure. This ring is
known as the universal PSH-algebra, or the Hall algebra when put into the correct context.

The PSH-algebra framework provides two bases X = {xα}α∈P (n) and Y = {yα}α∈P (n) for Rn

and a perfect pairing on the group, by which its structure is axiomatically analysed.
In this context we show that Murnaghan’s formula amounts to {cα(π)}α∈P (n) being the expan-

sion of [π0] ∈Rn in the basis X , while the degenerate analogue of [5] puts {dα(π)}α∈P (n) as the
expansion of [π0] in the basis dual to Y , relative to the pairing. Thus, Theorem 1 follows from a
computation of the triangular basis transition matrix, which is a combinatorial exercise handled
in Section 2.

We hope that our result may be extended in future work into a more general understanding of
the elusive links between Harish-Chandra–Howe character distributions, Iwahori–Hecke algebra
representation theory and invariants arising from degenerate Whittaker models. In that context
we mention a related work of Ciubotaru–Mason–Brown–Okada [6] on the role of Arthur packets
in the description of the wavefront set for Iwahori-spherical representations.

Acknowledgements

Special thanks to Dan Ciubotaru for insightful remarks that sparked my interest in the problem,
and to Fiona Murnaghan for an encouraging discussion, and for sharing her point of view. Thanks
are also due to Dima Gourevitch, Kei Yuen Chan, Jiandi Zou and Chuijia Wang for valuable
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2. Background

Let us write
C (n) = {

(α1, . . . , αk ) : αi ∈Z>0, α1 + . . .+αk = n
}
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for the set of compositions of an integer n ≥ 1, and

P (n) = {(α1 ≥ . . . ≥αk )} ⊆C (n)

for the set of its partitions.
Forα= (α1, . . . , αk ) ∈C (n), the standard Levi subgroup Mα <Gn is the group of block-diagonal

matrices, with block sizes α1, . . . , αk . We write Pα < Gn for the standard parabolic subgroup
generated by Mα and the upper-triangular matrices in Gn , and Nα < Pα for its unipotent radical.

Denoting the ring of integers of F by OF and its maximal ideal by pF , we consider the maximal
compact subgroup Kn = GLn(OF ) < Gn and its normal subgroup K 1

n = I +Mn(pF ) < Kn . Clearly,
Kn/K 1

n
∼=Gn :=GLn(F), where F is the finite residue field F=OF /pF .

2.1. Finite general linear groups

Let us recall some aspects of the complex representation theory of the finite group Gn . We follow
the elegant treatment of Zelevinsky’s book [22] and review some of its results.

We write Pα = MαNα < Gn , for each α ∈ C (n), for the analogous finite field versions of
standard parabolic subgroups and their Levi decompositions. We also write Bn = P (1, ...,1) for the
minimal standard parabolic subgroup.

Given a composition α = (α1, . . . , αk ) ∈ C (n) and a tuple of representations σi of Gαi , for
i = 1, . . . , k, the parabolic induction σ1 × ·· · ×σk is defined as the Gn-representation induced
from the inflation of σ1 ⊗·· ·⊗σk to Pα.

An irreducible representation of Gn is called unipotent, if it possesses non-zero Bn-invariant
vectors.

Let Rn denote the Grothendieck group of finite-dimensional complex representations of Gn ,
whose irreducible constituents are all unipotent. We write [σ] ∈Rn for the isomorphism class of
a Gn-representation σ.

A non-degenerate symmetric bilinear form on Rn is given by

〈[σ1], [σ2]〉 = dimHomHn (σ1,σ2) .

Zelevinsky identifies the sum of abelian groups

R=⊕n≥0Rn

with an axiomatic notion of a universal positive self-adjoint Hopf algebra.
In particular, it becomes a commutative associative ring with respect to the parabolic induc-

tion product [σ1][σ2] := [σ1 ×σ2]. Here, R0 =Z is viewed formally as the ring identity element.
We write xn ∈ Rn for the class that corresponds to the trivial representation of Gn . The

irreducible Steinberg representation of Gn , whose class we write as yn ∈ Rn , plays a role dual
to the trivial representation.

Each partition α ∈ (α1, . . . , αk ) ∈ P (n) gives rise to product elements

xα = xα1 · · ·xαk , yα = yα1 · · · yαk ∈Rn .

For each n ≥ 1, both sets of elements

X = {xα}α∈P (n), Y = {yα}α∈P (n)

give bases to the free abelian group Rn .
Let α ∈ (α1, . . . , αk ), β = (β1, . . . , βl ) ∈ P (n) be two given partitions of an integer n ≥ 1. We set

the invariant

s(α,β) = #

{
A ⊆ {1, . . . ,k}× {1, . . . , l } :

αi = #
{

j : (i , j ) ∈ A
}

, ∀ 1 ≤ i ≤ k

β j = #
{
i : (i , j ) ∈ A

}
, ∀ 1 ≤ j ≤ l

}
. (2)
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In other words, s(α,β) counts the number of bipartite graphs with labelled vertices, whose vertex
degrees are prescribed by the given partitions.

Proposition 2 ([22, 3.17 (c)]). The pairing in Rn satisfies〈
xα, yβ

〉= s(α,β) ,

for all α,β ∈ P (n).

For α = (α1, . . . , αk ) ∈ P (n), we write the transposed partition αt = (β1, . . . , βl ) to be given by
βi = #{1 ≤ j ≤ k : α j ≥ i }. Evidently, (αt )t =α.

Recall that the set of partitions P (n) is equipped with a partial order defined by the dominance
relation.

A moment’s reflection shows that s(α,αt ) = 1 for all α ∈ P (n), and that α≤ β ∈ P (n) whenever
s(α,βt ) 6= 0 holds. Hence, the transition matrix between the bases X and the dual of Y , when
ordered by P (n)-labels, becomes unitriangular with respect to that order.

2.1.1. Class functions

Let C (Gn) be the (finite-dimensional) space of conjugation-invariant complex functions on
the finite group Gn that are supported on unipotent elements.

Given a finite-dimensional complex representation σ of Gn , we set chu(σ) ∈ C (Gn) to be the
restriction of the character function g 7→ Tr(σ(g )) to the unipotent elements of Gn .

We obtain a linear map

resu :C⊗Rn → C
(
Gn

)
, (3)

which takes an isomorphism class [σ] ∈Rn to the restricted function chu(σ).

Lemma 3 ([22, 10.3]). The map resu is a linear isomorphism.

2.2. Hecke algebra perspective

Let τn denote the unipotent representation of Gn , for which [τn] = x(1, ...,1) holds in Rn . In other
words, τn is the induction of the trivial representation of Bn .

It follows that the complex finite-dimensional intertwiner algebra

Hn = EndGn
(τn)

acts on the space of Bn-invariants for each unipotent Gn-representation.
The resulting functor is known to give a bijection on irreducible representation (for example,

[7, Theorem 6.1.1]). More precisely, taking a Gn-representation to its Bn-invariants identifies Rn

with the Grothendieck group of (all) complex finite-dimensional representations of the algebra
Hn . In particular, we will also write [σ] ∈Rn , for a representation σ of Hn .

We recall that Hn is the Iwahori–Hecke algebra (of type GLn), and can also be viewed as a
deformation of the group algebra of the symmetric group Sn . Furthermore, it is known to be
isomorphic to it (see [7, Chapter 6.2]).

We note that the Steinberg representation of Gn has a 1-dimensional space of Bn-invariants,
which produces the Hn-representation corresponding to the sign representation ofSn , under the
above isomorphism. Thus, viewingRn as the Grothendieck group of Hn , the elements xn , yn ∈Rn

stand for the isomorphism classes of the two unique 1-dimensional representations.
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2.2.1. Product structure

For any α= (α1, . . . , αk ) ∈C (n), let us denote the algebra

Hα := Hα1 ⊗·· ·⊗Hαk .

Since τn = τα1 ×·· ·×ταk , we have an embedding of algebras

ια : Hα
∼= EndMα

(
τα1 ⊗·· ·⊗ταk

) → Hn . (4)

For a tuple of representations σi of Hαi , i = 1, . . . , k, the induction product σ1 × ·· · ×σk is
defined as the Hn-representation induced from σ1 ⊗·· ·⊗σk through the above embedding.

Since Bn = (Mα∩Bn)Nα holds, in the ring R, we clearly have

[σ1 ×·· ·×σk ] = [σ1] · · · [σk ] ,

with the latter product already defined through Gn-representations.
We also let r̂α be the functor taking Hn-representations to Hα-representations by restricting

through the embedding ια.
Due to semisimplicity of all algebras involved, the functor r̂α is both right and left adjoint to

the induction product functor.

3. Murnaghan character expansion

For α ∈ P (n), let nα < gn be the Lie algebra (consisting of block-upper-triangular matrices) of the
unipotent radical Nα of Pα.

We set Oα to be unique nilpotent Ad(Gn)-orbit in gn , for which nαt ∩Oα is dense in nαt .

Remark 4. The duality involved in our notation is natural from the geometric point of view, so
that the dominance order on partition corresponds to the topological closure order on nilpotent
orbits.

In terms of matrices, one can take Oα to be the nilpotent orbit of the Jordan matrix composed
of block sizes that are described by α. A canonical representative in nα∩Oαt can be taken in what
is known as the Weyr form [19] of a nilpotent matrix. We note that this choice differs from the
notations of [18], on which we base our other conventions.

Integrating over the Gn-invariant measure on Oα defines a distribution µOα ∈C∞
c (gn)∗, whose

Fourier transform is a distribution given in terms of the function µ̂Oα on regular elements of gn .
We normalize all measures involved to fit the conventions in [18]. In particular, the normaliza-

tion is pinned by choosing µ̂Oαt to equal the character expansion near zero of the Pα-parabolic
induction of the trivial representation of Mα.

For a smooth irreducible representation π of Gn , the coefficients cα(π) are now defined as in
the identity (1) given in the introduction section.

3.1. Restriction to the finite Hecke algebra

Let us recall the relation of the Iwahori–Hecke algebras Hn and the ring Rwith the representation
theory of the p-adic group Gn .

For any totally disconnected locally compact group T1 and a open compact subgroup T2 < T1,
let us write H (T1,T2) for the space of compactly supported complex functions on T1 that are
bi-invariant with respect to T2. It is naturally equipped with an associative (unital) convolution
product.

We have a standard identification Hn
∼=H (Gn ,Bn) for algebras of intertwiner operators.
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The (standard) Iwahori subgroup K 1
n < In < Kn is taken as the preimage of Bn under the

quotient map Kn →Gn . We thus obtain an identification

Hn
∼=H (Kn , In) . (5)

Recall that a smooth irreducible representation of Gn is called Iwahori-spherical, if it possesses
non-zero In-invariant vectors.

For an irreducible Iwahori-spherical representation (π,V ) of Gn , the space of invariant vectors
V In naturally becomes a Hn-representation through (5), which we denote by π0.

We now interpret a basic case of the main result of [18].

Proposition 5. Assume that the residual characteristic of the field F is greater than 2n.
Let π be an irreducible Iwahori-spherical representation of Gn , and π0 be the resulting represen-

tation of the Iwahori–Hecke algebra Hn .
As elements of Rn , the identity

[π0] =
∑

α∈P (n)
cα(π)xαt

holds.

Proof. Let V denote the space of π. We have {0} 6= V In ⊆ V K 1
n . A finite-group representation π of

Gn on V K 1
n is obtained by factoring through the π(Kn)-action.

Note, that viewing V In as the space of Bn-invariant vectors for π, the representation π0 can be
directly constructed out of π.

Moreover, since π is Iwahori-spherical, we know by the general theory of types for Gn (see [17]
or [16]) that π must be a unipotent representation. In other words, [π] ∈ Rn is a well-defined
element (that is equal to [π0]).

By (the depth zero case of) [18, Lemma 4.5], we now have

resu
(
π
)= ∑

α∈P (n)
cα(π)resu

(
xαt

)
.

Hence, the formula now follows from the isomorphism in Lemma 3. �

4. Degenerate Whittaker dimensions

Letψ : F →C× be a fixed non-zero additive character. We write Un = N(1, ...,1) <Gn for the standard
maximal unipotent subgroup.

Given a partition α ∈ P (n), let Iα = {1, . . . , n} \ {α1 + . . .+α j }k
j=1 be the corresponding set of

indices. Then, ψα : Un →C× is the group character taking a matrix (ui , j ) ∈Un to ψ(
∑

i ∈ Iα ui ,i+1).
Eachα ∈ P (n) thus defines the principal degenerate Whittaker functor Whα by taking a smooth

representation (π,V ) of Gn to the co-invariant vector space

Whα(π) =V /span
{
π(u)v −ψα(u)v : v ∈V , u ∈Un

}
.

In the general formalism of [8, 15], the functor Whα becomes associated with a degenerate
model arising from the nilpotent orbit Oα. It again justifies our enumeration of nilpotent orbits
as noted in Remark 4.

As defined in the introduction section, we record the dimensions of principal degenerate
Whittaker models as

dα(π) = Whα(π) .

Similarly, the Jacquet functor produces a Mα-representation on the co-invariant space

rα(π) =V /span{π(u)v − v : v ∈V , u ∈ Nα} .

For α= (n), Iα = I and ψα is a non-degenerate character. In this case, Wh = Whα is the (non-
degenerate) Whittaker functor.
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The Whittaker functor on smooth Mα-representations, which we denote as Wh as well, may
be naturally identified with Wh⊗·· ·⊗Wh, when Mα viewed as a product of general linear groups.

It is easy to verify the natural functor identification

Whα = Wh◦rα , (6)

for each α ∈ P (n).

4.1. Hecke algebra interpretation

Let us recall a key corollary of the results of Chan–Savin [5] and Barbasch-Moy [1], when applied
to the GLn case.

Proposition 6 ([5, Corollary 4.5]). Let π be a smooth representation of Gn of finite-length,
whose irreducible subquotients are all Iwahori-spherical. Letπ0 be the resulting finite-dimensional
representation of Hn on the space of In-invariant vectors in π.

The dimension of the Whittaker space Wh(π) is given by the pairing value 〈[π0], yn〉 in Rn ,
against the element yn ∈Rn representing the sign/Steinberg representation.

We would like to state an enhancement to the above proposition by showing that all dimen-
sions dα(π), α ∈ P (n), for Iwahori-spherical representations π, can be extracted out of the iso-
morphism class of π0.

For that goal we need to produce the Hecke algebra analog of the Jacquet functor that appears
in the description (6).

For a composition α = (α1, . . . , αk ) ∈ C (n), let τα be the Mα-representation induced from the
trivial representation of Bn ∩ Mα. Thus, τα ∼= τα1 ⊗ ·· · ⊗ταk , when identifying Mα with a group
product ×k

i=1Gαi . We see a chain of natural algebra identifications

H (Kn ∩Mα, In ∩Mα) ∼=H
(
Mα,Bn ∩Mα

)∼= EndMα
(τα) ∼= Hα; . (7)

For a finite-length smooth representation ρ of Mα, we set ρ0 to be the Hα-representation on
the In ∩Mα-invariant vectors in ρ, obtained through the above identification with a convolution
algebra.

Lemma 7. For an irreducible Iwahori-spherical representation π of Gn and a composition α ∈
C (n), we have an isomorphism

r̂α (π0) ∼= (rα(π))0

of Hα-representations.

Proof. Let V be the space of π, and Vα the space of its Jacquet module rα(π).
It is known (e.g. [14, Proposition I.4.3]) that the projection

pα : V In →V In ∩Mα
α (8)

is an isomorphism of vectors spaces.
Moreover, unpacking the claim in [3, Proposition 5 and Remark 5] for the case of In , we see

that pα intertwines the resulting actions of H (Kn ∩Mα, In ∩Mα). In more detail,

pα

(
π

(
ια

(
f
))

v
)=π

(
f
)

pα(v)

holds, for all v ∈ V In and f ∈ H (Kn ∩ Mα, In ∩ Mα). Here, π stands for the actions of the
corresponding convolution algebras on invariant vectors. �

Remark 8. The normalization twist issues in [3, 4] and the commonly encountered choice of an
opposite parabolic in isomorphisms of the form (8) are absent in our discussion, because of our
focus on actions rising from representations restricted to the compact group Kn .
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We are ready to state the degenerate analog to Proposition 6.

Proposition 9. Let π be an irreducible Iwahori-spherical representation of Gn , and π0 be the
resulting representation of the Iwahori–Hecke algebra Hn .

For any partition α ∈ P (n), the dimension of the corresponding degenerate Whittaker models
space is given as

dα(π) = 〈
[π0], yα

〉
.

Proof. By the adjunction described in Section 2.2.1, we may write〈
[π0], yα

〉= dimHomHα

(
r̂α (π0) ,εα1 ⊗·· ·⊗εαk

)
, (9)

where α = (α1, . . . , αk ) and εαi stands for the sign representation of Hαi (that is, yα = [εα1 ×·· ·×
εαk ]).

Let us write {
σi

1 ⊗·· ·⊗σi
k

}t

i=1

for the Jordan–Hölder series of rα(π), when Mα is identified with ×k
i=1Gαi .

By exactness of the functor of taking In ∩Mα-invariants, we have

(rα(π))0 =
t⊕

i=1

(
σi

1

)
0
⊗·· ·⊗

(
σi

k

)
0

.

Therefore, by (9) and Lemma 7, we may write〈
[π0], yα

〉= t∑
i=1

k∏
j=1

dimGα j

((
σi

j

)
0

,εα j

)
=

t∑
i=1

k∏
j=1

〈[(
σi

j

)
0

]
, yα j

〉
.

When applying Proposition 6, the last value becomes equal to dα(π). �

Theorem 1 is now a direct consequence of the two expansions in Proposition 5 and Proposi-
tion 9, and the change of basis formula in Proposition 2.
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