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Abstract. We extend the result of Ball and Nguyen on the jump of entropy under convolution for log-concave
random vectors. We show that the result holds for any pair of vectors (not necessarily identically distributed)
and that a similar inequality holds for the Fisher information, thus providing a quantitative Blachmann–Stam
inequality.
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1. Introduction

Let X be a random vector distributed according to a measure µ in Rd , with density f with respect
to the Lebesgue measure. We will denote this by X ∼ µ = f dλ. If

∫
f | log f | < +∞, we define its

entropy by

EntL(µ) = EntL(X ) =−
∫
Rd

f log f ,

where the subscript L stands for “Lebesgue”.
It should be noted that this entropy can be either positive or negative, and that for any

invertible matrix A, EntL(AX ) = EntL(X )+ log(|det A|). Entropy is also translation invariant, and
it is classical that, when the covariance matrix is fixed, the Gaussian distribution maximizes
entropy. It will be useful to normalize vectors so that they are centered, and have covariance
matrix identity. Such a vector, as well as its distribution, is called isotropic.

The classical Shannon–Stam inequality asserts that taking a convolution increases entropy: for
two iid random vectors X1 and X2

EntL(X1) ≤ EntL

(
X1 +X2p

2

)
.

Moreover, there is equality if and only if X has a Gaussian distribution. Now, one can wonder
if that equality case is stable, meaning if the entropy jump EntL( X1+X2p

2
)−EntL(X ) is small, does
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it imply that X is almost Gaussian? The general answer is no, as one can convince himself by
considering a well chosen double-bump Gaussian [4].

However, when the distribution of X admits a spectral gap, excluding double-bumped type
distributions, some positive answers exist. Recall that X is said to have a spectral gap, or equiva-
lently satisfy a Poincaré inequality, if there exists a constant c > 0 such that for any smooth enough
function f , the variance of f (X ) can be controlled in terms of the euclidean norm of ∇ f (x) as fol-
lows:

var f (X ) ≤ c E
[∣∣∇ f (X )

∣∣2
]

.

The smallest such constant c will be denoted cX and called the Poincaré constant of X . Under a
spectral gap assumption, it was proven by Ball, Barthe and Naor in [2] that for a one dimensional
isotropic random variable X ,

EntL

(
X1 +X2p

2

)
−EntL(X1) ≥ 1

2(1+ cX )
(EntL(G)−EntL(X1)) ,

where G is a standard Gaussian.
We can rewrite the right-hand side as a Kullback–Leibler divergence. Recall that, if X is

isotropic,

EntL(G)−EntL(X ) = D(X ||G) =
∫
Rd

fγ log
(

fγ
)

dγ≥ 0,

where fγ is the relative density of X with respect to the Gaussian measure γ, that is X ∼ fγdγ
and G ∼ γ. In the sequel we shall use the notation D(X ) = D(X ||G). This is a strong measure of
closeness to the Gaussian; for instance the Pinsker–Csiszar–Kullback inequality states that(∫

Rd

∣∣ f − g
∣∣)2

≤ 1

2
D(X ||G),

where f and g are the density of X and G , respectively. In 2012, Ball and Nguyen generalized the
result to arbitrary dimension, assuming log-concavity of X ([3]). They use a semigroup approach,
differentiating twice the entropy along the Ornstein–Uhlenbeck semigroup.

The Fisher information of a random vector with smooth density f is

IL(X ) =
∫ ∣∣∇ f

∣∣2

f
= 4

∫ ∣∣∣∇(√
f
)∣∣∣2

,

whenever those integrals are well defined. As for the entropy, for a fixed covariance matrix, the
Gaussian is extremal; in this case, it has the smallest information. Information is classically the
derivative of the entropy along the semi-group. In the spirit of the Shannon–Stam Inequality, the
Blachman–Stamn inequality asserts that taking a convolution decreases the information:

IL(X1) ≥ IL

(
X1 +X2p

2

)
.

As before, we can define a relative information, notably to the Gaussian measure dγ. If X ∼
fγdγ is a random vector with smooth density, we will denote its relative information to dγ by

I (X ||G) = Iγ(X ) =
∫ ∣∣∇ fγ

∣∣2

fγ
dγ.

When X is isotropic, integrating by parts yields:

I (X ||G) = IL(X )−d = IL(X )− IL(G).

Consequently, for a measure µ on Rd , we write D(µ||γ) = D(X ||G), IL(µ) = IL(X ) and I (µ||γ) =
I (X ||G) where X ∼µ is a random vector distributed according to µ
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In this note, we use the same strategy as in [3], but improve their result in two directions. First
we generalize it to non identically distributed pairs of random vectors. For two measures µ and ν
define

δE ,λ(µ,ν) = EntL(Xλ)− (1−λ)EntL(X0)−λEntL(X1),

where X0 and X1 are independent random vectors distributed according to µ and ν respectively,
and Xλ = p

1−λX0 +
p
λX1. The Shannon–Stam inequality asserts that δλ(µ,ν) ≥ 0 and this

quantity is precisely the deficit in the Shannon–Stam inequality.

Theorem 1 (Quantitative Shannon–Stam). Let µ,ν be two log-concave isotropic measures with
Poincaré constant respectively c0 and c1, and λ ∈ [0,1]. Then,

δE ,λ(µ,ν) ≥ λ(1−λ)

4max(c0,c1)

(
D

(
µ||γ)+D

(
ν||γ))

.

This should be compared with a recent result of Eldan and Mikulincer ([5, Theorem 3]). They
get a more general result, allowing µ and ν to have different covariance matrices, but in the case
where µ and ν have the same covariance matrix, they get a worst dependence on the Poincaré
constant.

Secondly, we get a same kind of inequality for the information, yielding a stability result for
the Blachman-Stam inequality. Define this time the information deficit of a pair of measures by

δI ,λ(µ,ν) = (1−λ)IL(X0)+λIL(X1)− IL(Xλ)

where X0 and X1 are independent random vectors distributed according to µ and ν respectively,
and Xλ =

p
1−λX0 +

p
λX1

Theorem 2 (Quantitative Blachman–Stam). Let µ,ν be two log-concave isotropic measures with
Poincaré constant respectively c0 and c1, and λ ∈ [0,1]. Then,

δI ,λ(µ,ν) ≥ λ(1−λ)

4max(c0,c1)

(
I (µ||dγ)+ I (ν||dγ)

)
.

In the sequel, quantities computed with respect to the Lebesgue measure have a subscript “L"
while quantities that are computed with respect to the Gaussian measure have none.

2. A lemma of Ball–Nguyen

Let X be a random vector with smooth density f = e−ψ with respect to the Lebesgue measure. We
define σL(X ) to be the random matrix σL(X ) :=∇2(ψ)(X ) and, we denote

KL(X ) = E[∥σL(X )∥2] ,

where ∥.∥ denotes the Hilbert–Schmidt norm on matrices and the subscripts L yet again stands
for “Lebesgue”, which we take temporarily as the reference measure. Understanding this quantitiy
will prove to be important later on, as it will appear in the second derivative of the entropy along
the Ornstein–Uhlenbeck semigroup.

We recall a lemma of Ball–Nguyen [3], for which we provide a simple proof.

Lemma 3 ((Ball-Nguyen)). Let X be a random vector in Rd with smooth density, E ⊂ Rd be any
subspace, pE be the orthogonal projection onto E and XE = pE (X ). Then

σL(XE ) ≤ pEE [σL(X ) |XE ] p∗
E , a.s,

for the partial order on symmetric matrices.
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Proof. Let ψE : E −→R be such that XE ∼ e−ψE (x)d x. We have for x ∈ E

ψE (x) =− ln
∫

E⊥
e−ψ(x,y)d y.

Then, setting dνx = e−ψ(x,y)∫
E⊥ e−ψ(x,y)d y

d y , a straightforward computation shows that:

∀ x ∈ E , ∇2ψE (x) =
∫

E⊥
∇2

xxψdνx −covdνx

(∇xψ
)

.

In particular,

∀ x ∈ E , ∇2ψE (x) ≤
∫

E⊥
∇2

xxψdνx ,

which is the desired result. □

If X0 and X1 are two independent random vectors in Rd and λ ∈ [0,1], applying the previous
lemma to the random vector (X0, X1) and the projection p(x, y) =p

1−λx +p
λy yields:

Lemma 4. For any independent random vectors X0, X1 in Rd , with smooth densities, and any
λ ∈ [0,1]

σL(Xλ) ≤ E [(1−λ)σL(X0)+λσL(X1) |Xλ] a.s,

where Xλ =
p

1−λX0 +
p
λX1.

If X0 and X1 are log-concave and independent, then so is Xλ, by Prékopa’s theorem. Thus
σL(X0),σL(X1) and σ(Xλ) are positive matrices, so as in Ball–Nguyen’s article, the inequality
above translates to an inequality on their norm.

Lemma 5. For any log-concave independent random vectors X0, X1 in Rd , with smooth densities,
and any λ ∈ [0,1]

(1−λ)KL(X0)+λKL(X1)−KL(Xλ) ≥λ(1−λ)E
[∥σL(X1)−σL(X0)∥2] .

Remark 6. In particular, we have:

KL(Xλ) ≤ (1−λ)KL(X0)+λKL(X1),

which can be seen as a second-order Blachman–Stam inequality.

Proof. As explained, the matrices being positive, the inequality in Lemma 4 implies that:

∥σL(Xλ)∥ ≤ ∥E [(1−λ)σL(X0)+λσL(X1)|Xλ]∥ .

Taking the expectation of the square and using Jensen’s inequality then implies:

KL(Xλ) ≤ E[∥(1−λ)σL(X0)+λσL(X1)∥2]
= (1−λ)2KL(X0)+λ2KL(X1)+2λ(1−λ)E [〈σL(X0),σL(X1)〉]
= (1−λ)KL(X0)+λKL(X1)−λ(1−λ)E

[∥σL(X0)−σL(X1)∥2]
since X0 and X1 are independent. □

Now we want to translate this result to the Gaussian setting. Assuming that X has density
fγ = e−ϕ with respect to the Gaussian measure, we similarly introduce:

σ(X ) :=σγ(X ) :=∇2(ϕ)(X )

K (X ) :=Kγ(X ) = E[∥σ(X )∥2]
I (X ) =Iγ(X ) = E

[∥∥∇ϕ(X )
∥∥2

]
.

Note that the definition of I is consistent with the one given in the introduction. Then Lemma 5
becomes:
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Lemma 7. For any log-concave independent isotropic random vectors X0, X1 in Rd , with smooth
densities, and any λ ∈ [0,1], we have

(1−λ)M(X0)+λM(X1)−M(Xλ) ≥λ(1−λ)E
[∥σ(X1)−σ(X0)∥2] , (1)

where M(X ) = K (X )+2I (X ).

Proof. Let X be an isotropic log-concave random vector with density e−ϕ with respect to the
Gaussian measure, and e−ψ with respect to the Lebesgue measure. By definition we have:

σ(X ) =σL(X )− I d .

Hence,

K (X ) = KL(X )−2E [tr(σL(X ))]+n.

Now, by integration by parts:

E [tr(σL(X ))] =
∫
Rn

div
(∇ψ)

(x)e−ψ(x)d x

=
∫
Rn

∇ψ(x) ·∇ψ(x)e−ψ(x)d x

= E
[∥∥∇ψ(X )

∥∥2
]
= E

[∥∥∇ϕ(X )+X
∥∥2

]
= I (X )+n.

The lemma follows. □

The next lemma provides a lower bound for the right-hand side in the inequality (1).

Lemma 8. For any log-concave independent isotropic random vectors X0, X1 in Rd with smooth
densities we have

(1−λ)M(X0)+λM(X1)−M(Xλ) ≥ λ(1−λ)

2max(c0,c1)

(
I (X0)+K (X0)+ I (X1)+K (X1)

)
,

where c0,c1 are the Poincaré constants of X0 and X1, respectively.

Proof. We denote by c0 the Poincaré constant of X0. We condition on X1 and apply the Poincaré
inequality for X0 to the function ∇ϕ0(X0)−∇2ϕ1(X1)X0 which is centered and we use the fact that
X0 and X1 are isotropic:

E
[∥∥∇2ϕ0(X0)−∇2ϕ1(X1)

∥∥2
]
≥ 1

c0
E
[∥∥∇ϕ0(X0)−∇2ϕ1(X1)X0

∥∥2
]

= 1

c0
E
[∥∥∇ϕ0(X0)

∥∥2 +∥∥∇2ϕ1(X1)
∥∥]

= 1

c0
(I (X0)+K (X1)).

By symmetry we get:

E
[∥∥σγ(X1)−σγ(X0)

∥∥2
]
≥ 1

2max(c0,c1)

(
I (X0)+K (X0)+ I (X1)+K (X1)

)
.

Plugging this into Lemma 7 concludes the proof. □

3. The Ornstein–Uhlenbeck process and proof of the theorems

Let X be a random vector in Rd with density f with respect to the Gaussian measure γ. Let Lγ be
the diffusion operator defined by Lγ f (x) =∆ f (x)−∇ f (x) ·x. The differential equation associated
to Lγ is the modified heat equation:

∂ ft

∂t
= Lγ ft ; f0 = f .
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Its solution ft is the relative density of the random vector X t = e−t X +
p

1−e−2t G , where G
is a standard Gaussian independent of X , with respect to the Gaussian measure. From this
description of X t it is clear that X t has a C ∞ density, with integrability properties as good as
f , and that the process commutes with convolutions, in the sense that, with the notations of the
previous sections, for all independent X0, X1 random vectors, and any λ ∈ [0,1], we have

(Xλ)t = (X t )λ in law. (2)

It is also useful to note that if X is such that cX ≥ 1, in particular if X is isotropic, then for all t ≥ 0:

cX t ≤ cX .

Indeed, if X and Y are independent random vectors satisfying a Poincaré inequality andλ ∈ [0,1],
then using the conditional variance formula, a few computations show that

cpλX+p1−λY ≤λcX + (1−λ)cY ,

which in our case yields cX t ≤ e−2t cX + (1−e−2t )×1 ≤ cX .
We denote by (Pt )t ≥0 the semi-group defined by Pt ( f ) = ft . The following computations are

standard (see [1]): if X has finite entropy, then for t > 0

∂

∂t
Ent(X t ) = I (X t ),

∂I (X t )

∂t
=−2I (X t )−2K (X t ) =−M(X t )−K (X t ).

As a consequence, a linear inequality on the information can be integrated along the semi-group
to get the same inequality for the entropy. We also get that ∂I (X t )

∂t ≤ −2I (X t ) which implies that
I (X t ) ≤ e−2t I (X0). Moreover, the control role of L comes from the observation that

e2t ∂
(
e−2t I (X t )

)
∂t

=−2M(X t ). (3)

Now we are in position to prove Theorem 2, from which Theorem 1 will be an immediate
corollary.

Let X0 and X1 be two isotropic random log-concave vectors in Rd and λ ∈ [0,1], and Xλ =p
1−λX0+

p
λX1. Denote by (X0)t , (X1)t and (Xλ)t their evolution along the Ornstein–Uhlenbeck

semi-group. Further define:

I0(t ) = I ((X0)t ) , I1(t ) = I ((X1)t ) , Iλ(t ) = I ((Xλ)t ) ,

and similarly, define K0(t ),K1(t ),Kλ(t ), M0(t ), M1(t ), Mλ(t ); using (3), the commutation prop-
erty (2), the observation that the Poincaré constants only decrease along the semi-group and
Lemma 8, we get the following:

Lemma 9. With the previous notations, for all t ≥ 0,

− ∂

∂t

(
(1−λ)e−2t I0(t )+λe−2t I1(t )−e−2t Iλ(t )

)
≥ λ(1−λ)e−2t

max(c0(t ),c1(t ))
(I0(t )+K0(t )+ I1(t )+K1(t ))

≥− λ(1−λ)

2max(c0,c1)
e−2t ∂

∂t
(I0(t )+ I1(t )) .

Proofs of Theorem 1 and Theorem 2. Integrating the inequality of Lemma 9 from 0 to ∞, we get:

(1−λ)I (X0)+λI (X1)− I (Xλ) ≥− λ(1−λ)

2max(c0,c1)

∫ +∞

0
e−2t d

d t
(I0(t )+ I1(t )) d t

= λ(1−λ)

2max(c0,c1)

(
I (X0)+ I (X1)−2

∫ ∞

0
e−2t (I0(t )+ I1(t ))d t

)
≥ λ(1−λ)

4max(C0,C1)
(I (X0)+ I (X1)) ,
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where in the last inequality, we used the fact that I1(t ) ≤ e−2t I (X1) and I0(t ) ≤ e−2t I (X0). This
proves Theorem 2.

Integrating Theorem 2 along the semi-group yields Theorem 1. □
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