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Abstract. The generalized Frobenius number is the largest integer represented in at most p ways by a linear
combination of nonnegative integers of given positive integers a1, a2, . . . , ak . When p = 0, it reduces to the
classical Frobenius number. In this paper, we give the generalized Frobenius number when a j = (bn+ j−1−1)/
(b −1) (b ≥ 2) as a generalization of the result of p = 0 in [16].
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1. Introduction

Let a1, a2, . . . , ak be positive integers such that their greatest common divisor is one. Denote
the Frobenius number by g (a1, a2, . . . , ak ), which is the largest integer not representable as a
nonnegative integer combination of a1, a2, . . . , ak .

On the other hand, to find the number of representations d(n; a1, a2, . . . , ak ) to a1x1 +a2x2 +
·· · + ak xk = n for a given positive integer n is also one of the most important and interesting
topics. This number is equal to the coefficient of xn in 1/(1−xa1 )(1−xa2 ) · · · (1−xak ). Sylvester [19]
and Cayley [8] showed that d(n; a1, a2, . . . , ak ) can be expressed as the sum of a polynomial in
n of degree k − 1 and a periodic function of period a1a2 · · ·ak . In [3], the explicit formula for
the polynomial part is derived by using Bernoulli numbers. For two variables, a formula for
d(n; a1, a2) is obtained in [20]. For three variables in the pairwise coprime case d(n; a1, a2, a3),
in [9], the periodic function part is expressed in terms of trigonometric functions. However, the
calculation becomes very complicated for larger a1, a2, a3. In [6], three variables case can be easily
worked with in his formula using floor functions.
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In this paper, we are interested in one of the general types of Frobenius numbers, which fo-
cuses on the number of solutions. For a given nonnegative integer p, consider the largest integer
gp (a1, a2, . . . , ak ) such that the number of expressions that can be represented by a1, a2, . . . , ak

is at most p ways. That is, all integers larger than gp (a1, a2, . . . , ak ) have at least the number of
representations of p+1 or more ways. When p = 0, g (a1, a2, . . . , ak ) = g0(a1, a2, . . . , ak ) is the orig-
inal Frobenius number. One can consider a slightly modified number, that is, the largest inte-
ger g ′

p (a1, a2, . . . , ak ) such that the number of expressions is exactly p ( [4]). However, for some
cases any positive integer does not have exactly p representations, in particular, when p becomes
larger. In addition, p1 < p2 does not necessarily imply g ′

p1
(a1, a2, . . . , ak ) < g ′

p2
(a1, a2, . . . , ak ).

Therefore, it is better to treat with gp (a1, a2, . . . , ak ). Of course, after knowing gp (a1, a2, . . . , ak )
and gp−1(a1, a2, . . . , ak ), we can also get g ′

p (a1, a2, . . . , ak ).
In the literature on the Frobenius problem, Sylvester number n(a1, a2, . . . , ak ), which is the to-

tal number of nonrepresentable integers, also plays an important role as that of g (a1, a2, . . . , ak ).
This number is called genus of the set of representable integers. Similarly to the generalized
Frobenius number, we can consider the generalized Sylvester number np (a1, a2, . . . , ak ) as the
cardinality of the set of integers which can be represented by a1, a2, . . . , ak at most p ways. When
p = 0, n(a1, a2, . . . , ak ) = n0(a1, a2, . . . , ak ) is the original Sylvester number. Recently, in [10] gen-
eralized Frobenius numbers (called p-Frobenius numbers) for sequences of triangular numbers
are obtained.

In this paper, we mainly focus on repunit numbers. Generalized Frobenius numbers and
Sylvester numbers for different numbers are treated in different papers by the author. In [16],
explicit formulas of Frobenius and Sylvester numbers for repunits are found when p = 0. More
general numbers satisfying a linear recurrence relation are treated in [2]. Approaches from
numerical semigroup are used in both papers.

2. Preliminaries

For two variables, it is very easy to see that

gp (a1, a2) = (p +1)a1a2 −a1 −a2 , (1)

np (a1, a2) = 1

2

(
(2p +1)a1a2 −a1 −a2 +1

)
(2)

(see [4]). However, for three variables, no formula is known, not even for special triples. For
p = 0, some explicit forms have been discovered in some particular cases, including arithmetic,
geometric-like, Fibonacci, Mersenne, and triangular (see [14, 15, 17] and references therein) and
so on. However, for p ≥ 1, no explicit form has been found even in these particular cases. In due
course, by using our constructed framework, we can also find explicit forms of the total number
of nonnegative integers that can only be expressed in at most p ways.

For a positive integer p and a set of positive integers A = {a1, a2, . . . , ak } with gcd(A) = 1, denote
by Rp (A) the set of all nonnegative integers whose representations in terms of a2, . . . , ak with
nonnegative integral coefficients have at least p ways. We introduce the p-Apéry set (see [1])
below in order to obtain the formulas for gp (A) and np (A). Without loss of generality, we assume
that a1 = min(A).

Definition 1. For a set of positive integers A = {a1, a2, . . . , ak } with gcd(A) = 1 and a1 = min(A) we
denote by

App (A) = App (a1, a2, . . . , ak ) =
{

m(p)
0 ,m(p)

1 , . . . , m(p)
a1−1

}
,

the p-Apéry set of A, where m(p)
i is the least positive integer of Rp+1(A) satisfying m(p)

i ≡ i (mod a1)
(0 ≤ i ≤ a1 −1). Note that m(0)

0 is defined to be 0.
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It follows that for each p,

App (A) ≡ {0,1, . . . , a1 −1} (mod a1) .

It is hard to find any explicit form of gp (a1, a2, . . . , ak ) when k ≥ 3. Nevertheless, the following

convenient formulas are known (see [4, Lemma 2]). Though finding m(p)
j is enough hard in

general, we can obtain it for some special sequences (a1, a2, . . . , ak ). For np (a1, a2, . . . , ak ), see [4,
Lemma 3].

Lemma 2. Let k and p be integers with k ≥ 2 and p ≥ 0. Assume that gcd(a1, a2, . . . , ak ) = 1. We
have

gp (a1, a2, . . . , ak ) = max
0≤ j ≤a1−1

m(p)
j −a1 , (3)

np (a1, a2, . . . , ak ) = 1

a1

a1−1∑
j=0

m(p)
j − a1 −1

2
. (4)

Remark 3. When p = 0, (3) is the formula by Brauer and Shockley [7]:

g (a1, a2, . . . , ak ) =
(

max
1≤ j ≤a1−1

m j

)
−a1 , (5)

where m j = m(0)
j (1 ≤ j ≤ a1 −1) with m0 = 0. When p = 0, (4) is the formula by Selmer [18]:

n(a1, a2, . . . , ak ) = 1

a1

a1−1∑
j=0

m j − a1 −1

2
. (6)

More generalized formulas, including power sum and weighted sum, are given in [11].

3. Repunits

A repunit is a number consisting of copies of the single digit 1 ( [5, Ch.11]). In general, for some
integer b ≥ 2, a repunit in base b is given by

bn −1

b −1
(n ≥ 1) .

When b = 2, there are the Mersenne numbers ( [17]), which have been studied extensively for
hundreds of years.

For the set A = {a1, a2, . . . , ak }, denote by 〈A〉 the set of all the representable elements in the
linear combination of a1, a2, . . . , ak with nonnegative coefficients, that is,

〈A〉 = {
a1x1 +a2x2 +·· ·+ak xk

∣∣x1, x2, . . . , xk ≥ 0
}

.

In [16, Corollary 6], the minimal system of generators of the numerical semigroup S(b,n) is given
as the set {

bn −1

b −1
,

bn+1 −1

b −1
, . . . ,

b2n−1 −1

b −1

}
.

Therefore, when considering only whether or not there is a representation (solution), it is the
same for both finite and infinite elements. However, in our case, in order to consider the number
of representations (solutions) concretely, for example, in the case of p or less, and p + 1 or
more, even though they are overlapping elements, their presences definitely affect the count of
numbers. In other words, the situation is different for an infinite number of elements and a finite
number of elements. Therefore, from now on, in this paper, we will limit our consideration to
finite elements

An := {a1, a2, . . . , an} . (7)
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by fixing

a j = a j (n) = bn+ j−1 −1

b −1
( j = 1,2, . . . , n) . (8)

In [16], explicit formulas for the case p = 0 are found.

Lemma 4. We have

g0(An) = g0
(
S(b,n)

)= bn(bn −1)

b −1
−1,

n0(An) = n0
(
S(b,n)

)= bn

2

(
bn −b

b −1
+n −1

)
(n ≥ 1) .

When n = 2, by using (1), we can obtain the explicit formula:

gp
(

A2
)= (

b2 −1
)(

b2 +p
(
b2 +b +1

))
b −1

−1.

In this paper, we shall prove the following explicit formula when n ≥ 3 and 0 ≤ p ≤ b.

Theorem 5. Let b ≥ 2. When n ≥ 3, we have

gp
(
S(b,n)

)= bn (bn −1)+p
(
bn+2 −1

)
b −1

−1.

When n = 3 and 0 ≤ p ≤ b, we also give the formula for generalized Sylvester number np (A3).

3.1. Three variables

In this section, we consider the case for three variables as n = 3 in (7) with (8). When p = 0, the
Apéry set is given for any integer n ≥ 2 ( [16, Theorem 12]).

Lemma 6. We have

Ap0(a1, . . . , an) = {
x2a2 +·· ·+xn an

∣∣ (x2, . . . , xn) ∈ R(b,n)
}

,

where R(b,n) denotes the set of all (n −1)-tuple satisfying the following conditions:

(1) for every i = 2, . . . ,n, xi ∈ {0,1, . . . , b};
(2) if i = 3, . . . , n and xi = b then x2 = ·· · = xi−1 = 0.

Table 1. Complete residue system for repunit

r0,0 r1,0 · · · rb,0

r0,1 r1,1 · · · rb,1
...

...
r0,b−1 r1,b−1 · · · rb,b−1

r0,b

In particular, for n = 3, the Apéry set for p = 0 is given as in Lemma 7. See Table 1. For
convenience, put

rx2,x3 = x2a2 +x3a3 , (9)

where x2 and x3 are nonnegative integers.
When a j ( j = 1,2,3; n = 3) as triple in (8), the Apéry set for p = 0 is given as follows (see also [16,

Corollary 14, Example 17]).

Lemma 7. For any integer n ≥ 2, we have

Ap0(a1, a2, a3) = {
r0,0, . . . , rb,0,r0,1, . . . , rb,1, . . . ,r0,b−1, . . . , rb,b−1,r0,b

}
.
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When p ≥ 1, it is not easy to give the Apéry set accurately for any n ≥ 3. However, if n = 3, we
can determine the Apéry set. We focus on the numbers of representations, so we have to see how
they are distributed.

Lemma 8. The sequence of the number of the representations {d(i ; a2, a3)}i≥0 is given by


b︷ ︸︸ ︷︷ ︸︸ ︷

m . . .m︸ ︷︷ ︸
k

m −1. . .m −1︸ ︷︷ ︸
a2−k

. . .
︷ ︸︸ ︷
m . . .m︸ ︷︷ ︸

k

m −1. . .m −1︸ ︷︷ ︸
a2−k


a2−1

k=1

m . . .m︸ ︷︷ ︸
(b+1)a2



∞

m=1

=

b︷ ︸︸ ︷︷ ︸︸ ︷
10. . .0︸ ︷︷ ︸

a2−1

. . .
︷ ︸︸ ︷
10. . .0︸ ︷︷ ︸

a2−1

b︷ ︸︸ ︷︷ ︸︸ ︷
110. . .0︸ ︷︷ ︸

a2−2

. . .
︷ ︸︸ ︷
110. . .0︸ ︷︷ ︸

a2−2

· · ·

b︷ ︸︸ ︷︷ ︸︸ ︷
1. . .1︸ ︷︷ ︸
a2−1

0. . .
︷ ︸︸ ︷
1. . .1︸ ︷︷ ︸
a2−1

0 1. . .1︸ ︷︷ ︸
(b+1)a2

b︷ ︸︸ ︷︷ ︸︸ ︷
21. . .1︸ ︷︷ ︸

a2−1

. . .
︷ ︸︸ ︷
21. . .1︸ ︷︷ ︸

a2−1

b︷ ︸︸ ︷︷ ︸︸ ︷
221. . .1︸ ︷︷ ︸

a2−2

. . .
︷ ︸︸ ︷
221. . .1︸ ︷︷ ︸

a2−2

· · ·

b︷ ︸︸ ︷︷ ︸︸ ︷
2. . .2︸ ︷︷ ︸
a2−1

1. . .
︷ ︸︸ ︷
2. . .2︸ ︷︷ ︸
a2−1

1 2. . .2︸ ︷︷ ︸
(b+1)a2

b︷ ︸︸ ︷︷ ︸︸ ︷
32. . .2︸ ︷︷ ︸

a2−1

. . .
︷ ︸︸ ︷
32. . .2︸ ︷︷ ︸

a2−1

· · · .

Proof. We have
1

(1−xa2 )(1−xa3 )
=

∞∑
i=1

d(i ; a2, a3)xi .

Since gcd(a2, a3) = 1, the length of the period is a2a3 = a2(ba2 +1). �

From Lemma 8, it can be seen that the positions of 1 appear by ascending order (x2, x3) =
(0,0), . . . , (b−1,0), (b,0), (0,1), . . . , (2b−1,0), (b−1,1), (2b,0), (b,1), (0,2), . . . , (3b−1), (2b−1,1), (b−
1,2), . . . , (b2 − 1), . . . , (2b − 1,b − 2), (b − 1,b − 1), (b2,0), . . . , (2b,b − 2), (b,b − 1), (0,b). However,
since rb+ j ,l ≡ r j−1,l+1 (mod a1) ( j ≥ 1,l ≥ 0), the least nonnegative value, whose number of
representations equals 2, is selected as each element of the Apéry set when the remainders with
respect to a1 are equal. Hence, we have the Apéry set in Lemma 9.

When p = 1, the Apéry set is given as in Lemma 9. See Table 2. The largest element of the set is
shown in a round circle.

Table 2. Two complete residue systems

r0,0 r1,0
· · ·

rb,0
rb+1,0 rb+2,0 · · · r2b+1,0

r0,1 r1,1 · · · rb,1 rb+1,1 rb+2,1 · · · r2b+1,1

r0,2 r1,2 · · · rb,2
...

...
...

...
...

... rb+1,b−2 rb+2,b−2 · · · r2b+1,b−2

r0,b−1 r1,b−1 · · · rb,b−1 rb+1,b−1�� ��r0,b r1,b · · · rb,b�� ��r0,b+1

Notice that some identities of a j = a j (n) in (8) hold for any n ≥ 1 but some others hold only
for n = 3. Therefore, the main results hold only for n = 3.

Lemma 9. Only for n = 3, we have

Ap1(a1, a2, a3) = {
rb+1,0, . . . , r2b+1,0, . . . , rb+1,b−2, . . . , r2b+1,b−2,rb+1,b−1,r1,b , . . . , rb,b ,r0,b+1

}
.
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By the setting in (8) and (9), it is easy to find the following identities.

Sublemma 10. For n = 3, we have

(b +1)a3 =
(
b3 +1

)
a1 +ba2 , (10)

a2 +ba3 =
(
b3 +b +1

)
a1 , (11)(

b3 +b +1
)

a1 + rx2,0 = rx2+1,b , (12)(
b3 +1

)
a1 + rb,0 = r0,b+1 . (13)

For n ≥ 1, we have

ba1 + rx2,x3 = rx2+b+1,x3−1 , (14)

ba1 + r0,b = rb+1,b−1 . (15)

Proof of Lemma 9. By (10) and (11), for n = 3 there is a different representation for the same
integer. By (14), for n ≥ 1 we have

rx2,x3 ≡ rx2+b+1,x3−1 (mod a1) (0 ≤ x2 ≤ b, 1 ≤ x3 ≤ b −1) .

And by (15), for n ≥ 3 we have
r0,b ≡ rb+1,b−1 (mod a1) .

This explains the situation where the leftmost block, except for the first row, is shifted to the
second block as it is to the upper right by adding ba1, as the part that is congruent modulo a1.
Only the first row (shown with a shadow in Table 2) is ordered from the end of the first block as
the remainder modulo a1, and the last one is at the bottom left. Namely, for x2 = 0,1, . . . , b − 1,
by (12) for n = 3 we have

rx2,0 ≡ rx2+1,b (mod a1) .

And by (13) for n = 3 we have
rb,0 ≡ r0,b+1 (mod a1) .

Therefore, all the elements in Ap1(a1, a2, a3) have exactly two different expressions each, and any
such an element minus a1 does not have two different expressions. �

When p = 2, the Apéry set is given as in Lemma 11. See Table 3.

Lemma 11. For n = 3 we have

Ap2 (a1, a2, a3) = {
r2b+2,0, . . . ,r3b+2,0, . . . ,r2b+2,b−3, . . . ,r3b+2,b−3,r2b+2,b−2, . . .

rb+2,b−1, . . . ,r2b+1,b−1,rb+1,b ,r1,b+1, . . . ,rb,b+1,r0,b+2
}

.

In addition to the identities in Sublemma 10, it is convenient to see the following.

Sublemma 12. For n = 3, we have(
b3 +2b +1

)
a1 + rx2,0 = ba1 + r1+x2,b = rb+2+x2,b−1 , (16)(

b3 +b +1
)

a1 + rb,0 = ba1 + r0,b+1 = rb+1,b , (17)(
b3 +b +1

)
a1 + rx2,1 = rx2+1,b+1 , (18)(

b3 +1
)

a1 + rb,1 = r0,b+2 . (19)

For n ≥ 1, we have

2ba1 + rx2,x3 = ba1 + rb+1+x2,x3−1 = r2b+2+x2,x3−2 , (20)

ba1 + r0,b = rb+1,b−1 . (21)(
b3 +b +1

)
a1 + rx2,1 =

(
b3 +1

)
a1 + rb+1+x2,0 , (22)(

b3 +1
)

a1 + rb,1 =
(
b3 −b +1

)
a1 + r2b+1,0 . (23)
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Proof of Lemma 11. By (10), (11) and (20), for 0 ≤ x2 ≤ b and 2 ≤ x3 ≤ b −1 or (x2, x3) = (0,b), for
n ≥ 1 we have

rx2,x3 ≡ rb+1+x2,x3−1 ≡ r2b+2+x2,x3−2 (mod a1) .

By (16) for 0 ≤ x2 ≤ b −1, for n = 3 we have

rx2,0 ≡ r1+x2,b ≡ rb+2+x2,b−1 (mod a1) .

And by (17), for n = 3 we have

rb,0 ≡ r0,b+1 ≡ rb+1,b (mod a1) .

By (22) and (18) for 0 ≤ x2 ≤ b −1, only for n = 3 we have

rx2,1 ≡ rb+1+x2,0 ≡ rx2+1,b+1 (mod a1) .

And by (23) and (19), only for n = 3 we have

rb,1 ≡ r2b+1,0 ≡ r0,b+2 (mod a1) .

Therefore, all the elements in Ap2(a1, a2, a3) have exactly three different expressions each, and
any such an element minus a1 does not have three different expressions. �

Table 3. Three complete residue systems

r0,0 r1,0 · · · rb,0 rb+1,0 rb+2,0 · · · r2b+1,0 r2b+2,0 r2b+3,0 · · · r3b+2,0

r0,1 r1,1 · · · rb,1 rb+1,1 rb+2,1 · · · r2b+1,1
...

...
...

r0,2 r1,2 · · · rb,2
...

...
... r2b+2,b−3 r2b+3,b−3 · · · r3b+2,b−3

...
...

... rb+1,b−2 rb+2,b−2 · · · r2b+1,b−2 r2b+2,b−2

r0,b−1 r1,b−1 · · · rb,b−1 rb+1,b−1 rb+2,b−1 · · · r2b+1,b−1�� ��r0,b r1,b · · · rb,b rb+1,b�� ��r0,b+1 r1,b+1 · · · rb,b+1�� ��r0,b+2

1st block 2nd block 3rd block︸ ︷︷ ︸
b+1

︸ ︷︷ ︸
b+1

︸ ︷︷ ︸
b+1

In Table 3, the one consisting of b+1 columns is regarded as one block, and the whole is divided
into three blocks.

In general, for any nonnegative integer p with p ≤ b, the corresponding complete residue
system is given as follows. See Table 4.

Lemma 13. For p ≤ b, we have

App (a1, a2, a3) = {
rpb+p,0, . . . , r(p+1)b+p,0, . . . , rpb+p,b−p−1, . . . , r(p+1)b+p,b−p−1,rpb+p,b−p ,

r(p−1)b+p,b−p+1, . . . , rpb+p−1,b−p+1,r(p−1)b+p−1,b−p+2,

r(p−2)b+p−1,b−p+3, . . . , r(p−1)b+p−2,b−p+3,r(p−2)b+p−2,b−p+4,

. . . ,

rb+2,b+p−3, . . . , r2b+1,b+p−3,rb+1,b+p−2,r1,b+p−1, . . . , rb,b+p−1,r0,b+p
}

.
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Proof. From the first block, we get the elements r1,b+p−1, . . . , rb,b+p−1 and r0,b+p . From
the second block, we get the elements rb+2,b+p−3, . . . , r2b+1,b+p−3 and rb+1,b+p−2. Then,
from the (p − 1)th block, we get the elements r(p−2)b+p−1,b−p+3, . . . ,r(p−1)b+p−2,b−p+3 and
r(p−2)b+p−2,b−p+4. From the pth block, we get the elements r(p−1)b+p,b−p+1, . . . , rpb+p−1,b−p+1 and
r(p−1)b+p−1,b−p+2. Finally, from the (p+1)th block, we get the elements rpb+p,0, . . . , r(p+1)b+p,0, . . . ,
rpb+p,b−p−1, . . . , r(p+1)b+p,b−p−1 and rpb+p,b−p .

More precisely, each corresponding element modulo a1 in App (a1, a2, a3), App−1(a1, a2, a3),
. . . , Ap0(a1, a2, a3) are given as follows.

rpb+p+x2,x3 ≡ r(p−1)b+(p−1)+x2,x3+1 ≡ r(p−2)b+(p−2)+x2,x3+2

≡ ·· · ≡ rx2,x3+p
(
0 ≤ x2 ≤ b, 0 ≤ x3 ≤ b −p −1 or (x2, x3) = (0,b −p)

)
,

r(p−1)b+p+x2,b−p+1 ≡ r(p−2)b+p−1+x2,b−p+2 ≡ r(p−3)b+p−2+x2,b−p+3

≡ ·· · ≡ r1+x2,b ≡ rx2,0 (0 ≤ x2 ≤ b −1) ,

r(p−1)b+p−1,b−p+2 ≡ r(p−2)b+p−2,b−p+3 ≡ ·· · ≡ r0,b+1 ≡ rb,0 ,

r(p−2)b+p+x2,b−p+3 ≡ r(p−3)b+p−2+x2,b−p+4 ≡ ·· · ≡ r1+x2,b+1

≡ rb+1+x2,0 ≡ rx2,1 (0 ≤ x2 ≤ b −1) ,

r(p−2)b+p−2,b−p+4 ≡ r(p−3)b+p−3,b−p+5 ≡ ·· · ≡ r0,b+2 ≡ r2b+1,0 ≡ rb,1 ,

. . . . . .

rb+2+x2,b+p−3 ≡ r1+x2,b+p−2 ≡ r(p−2)b+p−2+x2,0 ≡ r(p−3)b+p−3+x2,1

≡ ·· · ≡ rx2,p−2 ,

rb+1,b+p−2 ≡ r0,b+p−1 ≡ r(p−1)b+p−2,0 ≡ r(p−2)b+p−3,1

≡ ·· · ≡ rb,p−2 ,

r1+x2,b+p−1 ≡ r(p−1)b+p−1+x2,0 ≡ r(p−2)b+p−2+x2,1

≡ ·· · ≡ rx2,p−1 ,

r0,b+p ≡ rpb+p−1,0 ≡ r(p−1)b+p−2,1 ≡ ·· · ≡ rb,p−1 (mod a1) .

Note that in each congruence sequence, the elements are strictly decreasing.
Each element in App (a1, a2, a3) has p +1 different expressions for (x1, x2, x3) as follows. Since

for n ≥ 1
ba1 +a3 = (b +1)a2 , (24)

we get

rpb+p+x2,x3 = ba1 + r(p−1)b+p−1+x2,1+x3 = 2ba1 + r(p−2)b+p−2+x2,2+x3

= ·· · = pba1 + rx2,p+x3

(
0 ≤ x2 ≤ b, 0 ≤ x3 ≤ b −p −1 or (x2, x3) = (0,b −p)

)
.

By (10) and (11), we get

r(p−1)b+p+x2,b−p+1 = ba1 + r(p−2)b+p−1+x2,b−p+2 = 2ba1 + r(p−3)b+p−2+x2,b−p+3

= ·· · = (p −1)ba1 + r1+x2,b = (
b3 +pb +1

)
a1 + rx2,0 (0 ≤ x2 ≤ b −1) ,

r(p−1)b+p−1,b−p+2 = ba1 + r(p−2)b+p−2,b−p+3 = 2ba1 + r(p−3)b+p−3,b−p+4

= ·· · = (p −1)ba1 + r0,b+1 =
(
b3 + (p −2)b +1

)
a1 + rb,0 ,

r(p−2)b+p−1+x2,b−p+3 = ba1 + r(p−3)b+p−2+x2,b−p+4 = 2ba1 + r(p−4)b+p−3+x2,b−p+5

= ·· · = (p −2)ba1 + r1+x2,b+1

= (
b3 + (p −2)b +1

)
a1 + rb+1+x2,0

= (
b3 + (p −1)b +1

)
a1 + rx2,1 (0 ≤ x2 ≤ b −1) ,

r(p−2)b+p−2,b−p+4 = ba1 + r(p−3)b+p−3,b−p+5 = 2ba1 + r(p−4)b+p−4,b−p+6
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= ·· · = (p −2)ba1 + r0,b+2 =
(
b3 + (p −3)b +1

)
a1 + r2b+1,0

= (
b3 + (p −2)b +1

)
a1 + rb,1 .

By (24) again, we get

rb+2+x2,b+p−3 = ba1 + r1+x2,b+p−2 =
(
b3 − (p −4)b +1

)
a1 + r(p−2)b+p−2+x2,0

= (
b3 − (p −5)b +1

)
a1 + r(p−3)b+p−3+x2,1 = ·· ·

= (
b3 +2b +1

)
a1 + rx2,p−2 (0 ≤ x2 ≤ b −1)

rb+1,b+p−2 = ba1 + r0,b+p−1 =
(
b3 − (p −3)b +1

)
a1 + r(p−1)b+p−2,0

= (
b3 − (p −4)b +1

)
a1 + r(p−2)b+p−3,1

= ·· · = (
b3 +b +1

)
a1 + rb,p−2 ,

r1+x2,b+p−1 =
(
b3 − (p −2)b +1

)
a1 + r(p−1)b+p−1+x2,0

= (
b3 − (p −3)b +1

)
a1 + r(p−2)b+p−2+x2,1

= ·· · = (
b3 +b +1

)
a1 + rx2,p−1 (0 ≤ x2 ≤ b −1)

r0,b+p = (
b3 − (p −1)b +1

)
a1 + rpb+p−1,0

= (
b3 − (p −2)b +1

)
a1 + r(p−1)b+p−2,1

= ·· · = (
b3 +1

)
a1 + rb,p−1 .

�

Table 4. App (a1, a2, a3)

rpb+p,0 · · · · · · r(p+1)b+p,0
...

...
rpb+p,b−p−1 · · · · · · r(p+1)b+p,b−p−1

· · · · · · rpb+p,b−p

r(p−1)b+p,b−p+1 · · · rpb+p−1,b−p+1

r(p−1)b+p−1,b−p+2

r(p−1)b+p−2,b−p+3

· · · · · ·
rb+2,b+p−3 · · · r2b+1,b+p−3

rb+1,b+p−2

r1,b+p−1 · · · rb,b+p−1

r0,b+p

Theorem 14. Let b ≥ 2. Then for 0 ≤ p ≤ b, we have

gp (a1, a2, a3) = b3
(
b3 −1

)+p
(
b5 −1

)
b −1

−1,

np (a1, a2, a3) = b3

2

(
b3 −b

b −1
+2

)
+ p(b +1)

2

(
2b3 +2b2 − (p −1)b +2

)
.

Proof. The maximum element in App (a1, a2, a3) is r0,b+p . Thus, by Lemma 2 (3), we have

gp (a1, a2, a3) = (b +p)a3 −a1

= b3a1 +pa3 −1

= b3
(
b3 −1

)+p
(
b5 −1

)
b −1

−1.
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We consider the sum of the elements in App (a1, a2, a3). For the coefficients of a2, we have

(b −p)

( (
(p +1)b +p

)(
(p +1)b +p +1

)
2

− (pb +p −1)(pb +p)

2

)
+ (pb +p)+

(
(pb +p −1)(pb +p)

2
−

(
(p −1)b +p −1

)(
(p −1)b +p

)
2

)
+ (

(p −1)b +p −1
)+( (

(p −1)b +p −1
)(

(p −1)b +p
)

2
−

(
(p −2)b +p −2

)(
(p −2)b +p −1

)
2

)
+ (

(p −2)b +p −2
)+·· ·+

(
(2b +1)(2b +2)

2
− b(b +1)

2

)
+ (b +1)+ b(b +1)

2

= 1

2
(b +1)

(
(2p +1)b2 −p(p −1)b −p(p −1)

)
.

For the coefficients of a3, we have

(b +1)
(b −p −1)(b −p)

2
+ (b −p)+b(b −p +1)+ (b −p +2)+b(b −p +3)

+·· ·+b(b +p −3)+ (b +p −2)+b(b +p −1)+ (b +p)

= (b +1)
(b −p −1)(b −p)

2
+pb2 + (p +1)b

= 1

2

(
b3 + (

p2 +p +1
)

b + (
p2 +p

))
.

Hence,
a1∑

j=1
m(p)

j = 1

2
(b +1)

(
(2p +1)b2 −p(p −1)b −p(p −1)

)
a2 + 1

2

(
b3 + (

p2 +p +1
)

b + (
p2 +p

))
a3

= 1

2

b3 −1

b −1

(
b5 + (2p +1)b4 +2(2p +1)b3 − (

p2 −3p −1
)

b2 − (
p2 −3p −1

)
b +2p

)
.

Therefore, by Lemma 2 (4), we have

np (a1, a2, a3) = 1

a1

a1∑
j=1

m(p)
j − a1 −1

2

= 1

2

(
b5 + (2p +1)b4 +2(2p +1)b3 −p(p −3)b2 −p(p −3)b +2p

)
= b3

2

(
b3 −b

b −1
+2

)
+ p(b +1)

2

(
2b3 +2b2 − (p −1)b +2

)
.

�

3.2. The case p > b

When p > b, it is not easy to give a general formula. As the value of p increases, it becomes more
and more complicated to accurately determine the Apéry set. Nevertheless, as long as the value
of p is small, it is possible to determine App (A), App+1(A) and so on from App−1(A) (p −1 = b).
Here, for simplicity, put A = A3 = {a1, a2, a3}.

All Ap j (A) ( j ≥ 0) elements except the element in the top row shift up one row to the block on
the right and move as is. These are the elements of Ap j+1(A) that are equal modulo a1 respectively.
Only the element of Ap j (A) in the top row corresponds to the leftmost block in order from the
continuation. This procedure is repeated as Ap j+2(A), Ap j+3(A) and so on.

For example, let b = 2. The position of Ap j (A) is denoted by j© as shown in Table 6.
We have

Ap0(A) = {
r0,0,r1,0,r2,0,r0,1,r1,1,r2,1,r0,2

}
,
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Table 5. Ap j (A) for p > b

r0,0 r1,0 r2,0 r3,0 r4,0 r5,0 r6,0 r7,0 r8,0 r9,0 r10,0 r11,0

r0,1 r1,1 r2,1 r3,1 r4,1 r5,1 r6,1 r7,1 r8,1 r9,1

r0,2 r1,2 r2,2 r3,2 r4,2 r5,2 r6,2 r7,2

r0,3 r1,3 r2,3 r3,3 r4,3 r5,3

r0,4 r1,4 r2,4 r3,4

r0,5 r1,5

Table 6. The position of Ap j (A)

1© 2© 3© 4© 5©
0© 2© 3© 4© 5©

1© 2© 3© 4© 5©
1© 2© 3© 4© 5©
2© 3© 4© 5©
4© 5©

Ap1(A) = {
r1,2,r2,2,r0,3,r3,0,r4,0,r5,0,r3,1

}
,

Ap2(A) = {
r4,1,r5,1,r3,2,r1,3,r2,3,r0,4,r6,0

}
,

Ap3(A) = {
r7,0,r8,0,r6,1,r4,2,r5,2,r3,3,r1,4

}
,

Ap4(A) = {
r2,4,r0,5,r9,0,r7,1,r8,1,r6,2,r4,3

}
,

Ap5(A) = {
r5,3,r3,4,r1,5,r10,0,r11,0,r9,1,r7,2

}
,

Ap6(A) = {
r8,2,r6,3,r4,4,r2,5,r0,6,r12,0,r10,1

}
,

Ap7(A) = {
r11,1,r9,2,r7,3,r5,4,r3,5,r1,6,r13,0

}
,

Ap8(A) = {
r14,0,r12,1,r10,2,r8,3,r6,4,r4,5,r2,6

}
,

Ap9(A) = {
r0,7,r15,0,r13,1,r11,2,r9,3,r7,4,r5,5

}
,

Ap10(A) = {
r3,6,r1,7,r16,0,r14,1,r12,2,r10,3,r8,4

}
.

All the above sets are congruent to {0,1,2,3,4,5,6} (mod a1) (a1 = 23 −1 = 7), with the elements
in order. Finding the maximum element, we obtain that

g0(A) = r0,2 −a1 = 62−7 = 55,

g1(A) = r0,3 −a1 = 93−7 = 86,

g2(A) = r0,4 −a1 = 124−7 = 117,

g3(A) = r1,4 −a1 = 139−7 = 132,

g4(A) = r0,5 −a1 = 155−7 = 148,

g5(A) = r1,5 −a1 = 170−7 = 163,

g6(A) = r0,6 −a1 = 186−7 = 179,

g7(A) = r1,6 −a1 = 201−7 = 194,

g8(A) = r2,6 −a1 = 209−7 = 202,
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g9(A) = r5,5 −a1 = 230−7 = 223,

g10(A) = r8,4 −a1 = 244−7 = 237.

Note that g0, g1, g2 can be yielded from Theorem 14.
However, from the value when p = 11, the correspondence rules mentioned above begin to

collapse. Namely, according to the rule, it is expected that

Ap11(A) = {
r6,5,r4,6,r2,7,r17,0,r15,1,r13,2,r11,3

}
,

Ap12(A) = {
r9,4,r7,5,r5,6,r0,8,r18,0,r16,1,r14,2

}
,

and so on. However, in fact,

Ap11(A) = {
r6,5,r4,6,r2,7,r0,8,r15,1,r13,2,r11,3

}
,

Ap12(A) = {
r9,4,r7,5,r5,6,r17,0,r1,8,r16,1,r14,2

}
,

and so on. That is, the elements in bold letters actually appear interchangeably.

4. Four variables

The situation becomes more complicated for four variables, because there are many overlapped
elements in Ap j (A4) and in Ap j+1(A4) and even more. That is, there exist i such that m(i )

j = m(i )
j+1.

In this section, we consider the case for four variables as n = 4 in (7) with (8).
Put rx2,x3,x4 = x2a2 + x3a3 + x4a4, where x2, x3 and x4 are nonnegative integers. We illustrate

the case where b = 3. In Table 7, denote rx2,x3,x4 simply by (x2, x3, x4), and the integers are modulo
a1 = 40.

As in Table 7, the elements in Ap0(A4) are divided into b + 1 parts (blocks). The first b parts
(blocks) have the (b + 1)b + 1 elements and the last part (block) has only one element, so that
#Ap0(A4) = b((b +1)b +1)+1 = (b4 −1)/(b −1).

As seen in Table 7, the values that take x4 = 0 start from the first line, and continues to
x3 = 0,1,2,3,4, . . . and the following lines. The values that take x4 = 1 start from the (b +1)th line,
and continues to x3 = 0,1,2,3,4, . . . and the following lines. The valued that take x4 = 2 start from
the (2b + 2)th line, and continues to x3 = 0,1,2,3,4, . . . and the following lines. Finally, there is
the value that take x4 = b. Therefore, there are overlapped elements (shown as shaded cells) as
r0,b+1,0 = rb,0,1, . . . , r0,2b,0 = rb,b−1,1, and r0,b+1,1 = rb,0,2, . . . , r0,2b,1 = rb,b−1,2 and so on.

Then as seen in Table 8, from Ap0(A4) to Ap1(A4), the corresponding element with the same
modulo moves to the next right block to fill the gap. Only the elements in the first line go down
to the last lower left block. However, unlike the case of n = 3, the elements in the shaded cell do
not move. As mentioned above, they have the same value, but they have different expressions in
terms of a2, . . . , ak .

The situation is similar for the case from Ap1(A4) to Ap2(A4). As in Table 9, the corresponding
element with the same modulo moves to the next right block to fill the gap. Only the elements in
the first line go down to the last lower left block. However, the elements in the shaded cell do not
move.

Such a situation continues as long as p ≤ b. When p = b +1 and p becomes even larger, the
element of Ap0(A4) that keeps moving to the upper right disappears, so the regularity is gradually
lost and the situation becomes more difficult and complicated.

Therefore, the maximum element of App (A4) is given by

r0,p,b = p
(
b6 −1

)
b −1

+ b
(
b7 −1

)
b −1

≡ p(b +1)−1
((

b4 −1
)

/(b −1)
)

.

Hence, by Lemma 2 (3), for b ≥ 2 and 0 ≤ p ≤ b, we have

gp (A4) = r0,p,b −
(
b4 −1

)
/(b −1)
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Table 7. Complete residue system Ap0(A4) for n = 4 and b = 3

(0,0,0) (1,0,0) (2,0,0) (3,0,0)
(0,1,0) (1,1,0) (2,1,0) (3,1,0)
(0,2,0) (1,2,0) (2,2,0) (3,2,0)
(0,3,0)

(0,0,1) (1,0,1) (2,0,1) (3,0,1)
(0,1,1) (1,1,1) (2,1,1) (3,1,1)
(0,2,1) (1,2,1) (2,2,1) (3,2,1)
(0,3,1)

(0,0,2) (1,0,2) (2,0,2) (3,0,2)
(0,1,2) (1,1,2) (2,1,2) (3,1,2)
(0,2,2) (1,2,2) (2,2,2) (3,2,2)
(0,3,2)

(0,0,3)

0 1 2 3
4 5 6 7
8 9 10 11

12
13 14 15 16
17 18 19 20
21 22 23 24
25

26 27 28 29
30 31 32 33
34 35 36 37
38

39

Table 8. Complete residue system Ap1(A4) for n = 4 and b = 3

4 5 6 7
8 9 10 11

12
13 14 15

16 17 18 19
20 21 22 23
24 25

26 27 28
29 30 31 32
33 34 35 36
37 38

39
0 1 2

3

Table 9. Complete residue system Ap2(A4) for n = 4 and b = 3

8 9 10 11
12

13 14 15
16

17 18 19 20
21 22 23 24
25 26 27

28 29
30 31 32 33
34 35 36 37
38 39

0 1
2 3

4 5 6
7

= b4
(
b4 −1

)+p
(
b6 −1

)
b −1

−1.
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Table 10. Complete residue system Ap3(A4) for b = 3

12
13 14 15

16
17 18 19

20 21 22 23
24 25

26 27 28
29 30 31

32 33 34 35
36 37 38

39 0
1 2

3 4 5
6 7

8 9 10
11

5. The cases n ≥ 5

When n ≥ 5, the exact structure of App (An), where An with a j ( j = 1,2, . . . , n) is given in (7)
with (8), becomes more complicated. Nevertheless, it is still possible to prove that for 0 ≤ p ≤ b

gp (An) = bn (bn −1)+p
(
bn+2 −1

)
b −1

−1.

When n = 5, put rx2,x3,x4,x5 = x2a2 + x3a3 + x4a4 + x5a5, where x2, x3, x4 and x5 are nonnegative
integers. Or, denote rx2,x3,x4,x5 simply by (x2, x3, x4, x5).

As in Table 7, the whole array is regarded as one group, the one with 0 added at the end,
(x2, x3, x4,0), is the first block, and the one with 1 added at the end, (x2, x3, x4,1), is the next
block, and the first column of block 0 and the last column of block 1 are overlapped. In addition,
place block 1 just below block 0. Similarly, block 2, . . . , block (b −1) are placed one on top of the
other, assuming that the elements are (x2, x3, x4,2), . . . , (x2, x3, x4,b −1), respectively, and the last
element (0,0,0,b) is placed at the bottom left of the end. So, #Ap0(A5) = bb((b+1)b+1)+1)+1 =
(b5 −1)/(b −1).

In Table 11, we illustrate the case n = 5 and b = 2 by using the residues modulo a1 = (25 −
1)/(2−1) = 31. The inside of the frame is when p = 0, and the outside of the frame is when p = 1.
Shadowed cells represent duplicates, that is m(0)

j = m(1)
j . The first group corresponding the case

n = 4 and b = 2 is {
{0,1,2,3,4,5,6}, {7,8,9,10,11,12,13}, {14}

}
,

where each value is expressed of the form (x2, x3, x4,0). The second group corresponding the case
n = 4 and b = 2 is {

{15,16,17,18,19,20,21}, {22,23,24,25,26,27,28}, {29}
}

,

where each value is expressed of the form (x2, x3, x4,1). The last one is {30}, which value is of the
form (0,0,0,2). When p = 1, the corresponding residue moves to fill the gap in the block on the
right, but only the overlapping part does not move. Also, only the elements in the top row are
moved to fill the gap in the bottom left block. The corresponding residue moves according to the
same principle as p = 2 and p = 3, and the regularity continues until p = b. When p = b+1, all the
elements of the upper right block move completely, and the regularity begins to be broken.

In Table 12, only the last and lower left block is shown for general b when n = 5. Here, obviously
the bottom left element takes the maximum value. The numbers in the second diagram are the
corresponding residues modulo a1 := (b5 −1)/(b −1).

Similarly, when n = 6, for all the quadruple (x2, x3, x4, x5) when n = 5, the first group is
in the form of (x2, x3, x4, x5,0), the second group is of (x2, x3, x4, x5,1), . . . , the bth group is of
(x2, x3, x4, x5,b − 1) and the last one is of (0,0,0,0,b). In Table 13, only the last and lower left
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Table 11. Complete residue systems for n = 5 and b = 2

0 1 2 3 4 5
3 4 5 6
6 7 8

7 8 9 10 11
10 11 12 13
13 14

14 15 16
15 16 17 18 19
18 19 20 21
21 22 23

22 23 24 25 26
25 26 27 28
28 29

29 30
30 0 1
2

Table 12. Complete residue systems for App (A5)

(0,0,b,b −1) p = 0
p = 0 (0,0,0,b) (1,0,0,b) . . . (b,0,0,b) p = 1
p = 1 (0,1,0,b) (1,1,0,b) . . . (b,1,0,b) p = 2
p = 2 (0,2,0,b) . . .

. . . . . .
p = b −1 (0,b −1,0,b) (1,b −1,0,b) . . . (b,b −1,0,b) p = b

p = b (0,b,0,b)

−2 p = 0
p = 0 −1 0 . . . b −1 p = 1
p = 1 b b +1 . . . 2b p = 2
p = 2 2b +1 . . .

. . . . . .
p = b −1 (b −1)(b +1)−1 (b −1)(b +1) . . . b(b +1)−2 p = b

p = b b(b +1)−1

block is shown for general b and general n. Here, obviously the bottom left element takes the
maximum value. The numbers in the second diagram are the corresponding residues modulo
a1 := (bn −1)/(b −1).

Table 13. Complete residue systems App (An) for general n

(0, . . . ,0︸ ︷︷ ︸
n−3

,b,b −1) p = 0

p = 0 (0, . . . ,0︸ ︷︷ ︸
n−2

,b) (1,0, . . . ,0︸ ︷︷ ︸
n−3

,b) . . . (b,0, . . . ,0︸ ︷︷ ︸
n−3

,b) p = 1

p = 1 (0,1,0, . . . ,0︸ ︷︷ ︸
n−4

,b) (1,1,0, . . . ,0︸ ︷︷ ︸
n−4

,b) . . . (b,1,0, . . . ,0︸ ︷︷ ︸
n−4

,b) p = 2

p = 2 (0,2,0, . . . ,0︸ ︷︷ ︸
n−4

,b) . . .

. . . . . .
p = b −1 (0,b −1,0, . . . ,0︸ ︷︷ ︸

n−4

,b) (1,b −1,0, . . . ,0︸ ︷︷ ︸
n−4

,b) . . . (b,b −1,0, . . . ,0︸ ︷︷ ︸
n−4

,b) p = b

p = b (0,b,0, . . . ,0︸ ︷︷ ︸
n−4

,b)

−2 p = 0
p = 0 −1 0 . . . b −1 p = 1
p = 1 b b +1 . . . 2b p = 2
p = 2 2b +1 . . .

. . . . . .
p = b −1 (b −1)(b +1)−1 (b −1)(b +1) . . . b(b +1)−2 p = b

p = b b(b +1)−1



88 Takao Komatsu

Concerning the element ( j ,b −1,0, . . . , 0︸ ︷︷ ︸
n−4

,b) ( j = 0,1, . . . , b), we see that

j
(
bn+1 −1

)
b −1

+ (p −1)
(
bn+2 −1

)
b −1

+ b
(
b2n−1 −1

)
b −1

= bn −1

b −1

(
bn +1+ (p −1)b2 + j b

)+ (
(p −1)(b +1)+ j −1

)≡ (p −1)(b +1)+ j −1

(
bn −1

b −1

)
.

Concerning the last element, we see that

p
(
bn+2 −1

)
b −1

+ b
(
b2n−1 −1

)
b −1

= bn −1

b −1

(
bn +1+pb2)+ (

p(b +1)−1
)≡ p(b +1)−1

(
bn −1

b −1

)
.

By Lemma 2 (3), we obtain the result in Theorem 5.

6. Further problems

When p > b, in particular, when p is comparatively bigger than b, the situation seems to be very
complicated. Is it possible to give any simplified formula for gp (An)?

From another point of view, what general formula holds for np (An)? Furthermore, there are
more generalized concepts. The generalized Sylvester sum sp (a1, a2, . . . , ak ) is the total sum
of all the elements which can be represented by a1, a2, . . . , ak at most p ways. When p = 0,
s(a1, a2, . . . , ak ) = s0(a1, a2, . . . , ak ) is the original Sylvester sum. Recently, the Sylvester weighted
sum [12, 13] is also introduced and studied.

Acknowledgement

The author thanks the referee for carefully reading of the manuscript and for giving constructive
comments.

References

[1] R. Apéry, “Sur les branches superlinéaires des courbes algébriques”, C. R. Acad. Sci. Paris 222 (1946), p. 1198-1200.
[2] F. Arias, J. Borja, “The Frobenius problem for numerical semigroup generated by sequences that satisfy a linear

recurrence relation”, https://arxiv.org/abs/2111.04899, 2021.
[3] M. Beck, I. M. Gessel, T. Komatsu, “The polynomial part of a restricted partition function related to the Frobenius

problem”, Electron. J. Comb. 8 (2001), no. 1, article no. 7 (5 pages).
[4] M. Beck, C. Kifer, “An extreme family of generalized Frobenius numbers”, Integers 11 (2011), no. 5, article no. A24.
[5] A. H. Beiler, Recreations in the theory of numbers – the queen of mathematics entertains, second ed., Dover Publica-

tions, 1966.
[6] D. S. Binner, “The number of solutions to ax +by + cz = n and its relation to quadratic residues”, J. Integer Seq. 23

(2020), no. 6, article no. 20.6.5 (19 pages).
[7] A. Brauer, J. E. Shockley, “On a problem of Frobenius”, J. Reine Angew. Math. 211 (1962), p. 215-220.
[8] A. Cayley, “On a problem of double partitions”, Philos. Mag. XX (1860), p. 337-341.
[9] T. Komatsu, “On the number of solutions of the Diophantine equation of Frobenius-General case”, Math. Commun.

8 (2003), no. 2, p. 195-206.
[10] ——— , “The Frobenius number for sequences of triangular numbers associated with number of solutions”, Ann.

Comb. 26 (2022), no. 3, p. 757-779.
[11] ——— , “Sylvester power and weighted sums on the Frobenius set in arithmetic progression”, Discrete Appl. Math.

315 (2022), p. 110-126.
[12] T. Komatsu, Y. Zhang, “Weighted Sylvester sums on the Frobenius set”, Ir. Math. Soc. Bull. 87 (2021), p. 21-29.
[13] ——— , “Weighted Sylvester sums on the Frobenius set in more variables”, Kyushu J. Math. 76 (2022), no. 1, p. 163-

175.
[14] A. M. Robles-Pérez, J. C. Rosales, “The Frobenius number for sequences of triangular and tetrahedral numbers”,

J. Number Theory 186 (2018), p. 473-492.

https://arxiv.org/abs/2111.04899


Takao Komatsu 89

[15] J. C. Rosales, M. B. Branco, D. Torrão, “The Frobenius problem for Thabit numerical semigroups”, J. Number Theory
155 (2015), p. 85-99.

[16] ——— , “The Frobenius problem for repunit numerical semigroups”, Ramanujan J. 40 (2016), no. 2, p. 323-334.
[17] ——— , “The Frobenius problem for Mersenne numerical semigroups”, Math. Z. 286 (2017), no. 1-2, p. 741-749.
[18] E. S. Selmer, “On the linear diophantine problem of Frobenius”, J. Reine Angew. Math. 293/294 (1977), p. 1-17.
[19] J. J. Sylvester, “On the partition of numbers”, Quart. J. 1 (1857), p. 141-152.
[20] A. Tripathi, “The number of solutions to ax +by = n”, Fibonacci Q. 38 (2000), no. 4, p. 290-293.


	1. Introduction
	2. Preliminaries
	3. Repunits
	3.1. Three variables
	3.2. The case p>b

	4. Four variables
	5. The cases n>= 5
	6. Further problems
	Acknowledgement
	References

